Yi-ping Cui

List of Publications by Citations

Source: https://exaly.com/author-pdf/4620852/yi-ping-cui-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 269 38 5,095 h-index g-index citations papers 6,072 285 5.2 5.94 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
269	SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. <i>Chemical Reviews</i> , 2017 , 117, 7910-7963	68.1	332
268	SERS-fluorescence joint spectral encoding using organic-metal-QD hybrid nanoparticles with a huge encoding capacity for high-throughput biodetection: putting theory into practice. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2993-3000	16.4	182
267	Postsynthetic Doping of MnCl Molecules into Preformed CsPbBr Perovskite Nanocrystals via a Halide Exchange-Driven Cation Exchange. <i>Advanced Materials</i> , 2017 , 29, 1700095	24	167
266	Screening and multiple detection of cancer exosomes using an SERS-based method. <i>Nanoscale</i> , 2018 , 10, 9053-9062	7.7	143
265	Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. <i>Analytical Chemistry</i> , 2011 , 83, 4178-83	7.8	133
264	SERS detection and removal of mercury(II)/silver(I) using oligonucleotide-functionalized core/shell magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (1), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (2), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (3), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (3), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (3), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (3), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (3), 100 magnetic silica sphere@Au nanoparticles. <i>ACS Applied Materials & Description</i> (3), 100 magnetic silica sphere (3), 100 magnetic sphere (3), 100 magn	9.5	128
263	Highly sensitive immunoassay based on Raman reporter-labeled immuno-Au aggregates and SERS-active immune substrate. <i>Biosensors and Bioelectronics</i> , 2009 , 25, 826-31	11.8	124
262	pH and thermo dual-stimuli-responsive drug carrier based on mesoporous silica nanoparticles encapsulated in a copolymer-lipid bilayer. <i>ACS Applied Materials & District Science</i> , 2013, 5, 10895-903	9.5	123
261	A SERS-based immunoassay with highly increased sensitivity using gold/silver core-shell nanorods. <i>Biosensors and Bioelectronics</i> , 2012 , 38, 94-9	11.8	110
260	Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. <i>Analytical Methods</i> , 2016 , 8, 5001-5008	3.2	97
259	Dual-mode probe based on mesoporous silica coated gold nanorods for targeting cancer cells. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 2883-9	11.8	97
258	Rapid simultaneous detection of multi-pesticide residues on apple using SERS technique. <i>Analyst, The,</i> 2014 , 139, 5148-54	5	86
257	Rapid and reproducible analysis of thiocyanate in real human serum and saliva using a droplet SERS-microfluidic chip. <i>Biosensors and Bioelectronics</i> , 2014 , 62, 13-8	11.8	85
256	Biological pH sensing based on surface enhanced Raman scattering through a 2-aminothiophenol-silver probe. <i>Biosensors and Bioelectronics</i> , 2008 , 23, 886-91	11.8	70
255	Imaging and Intracellular Tracking of Cancer-Derived Exosomes Using Single-Molecule Localization-Based Super-Resolution Microscope. <i>ACS Applied Materials & Design Communication</i> , 8, 2582	25-2-583	3 ⁷⁰
254	Distinguishing breast cancer cells using surface-enhanced Raman scattering. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 1093-100	4.4	69
253	A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods. <i>Talanta</i> , 2012 , 97, 368-75	6.2	67

252	A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery. <i>Nanoscale</i> , 2015 , 7, 15477-86	7.7	66
251	Near-infrared BODIPY-based two-photon ClO probe based on thiosemicarbazide desulfurization reaction: naked-eye detection and mitochondrial imaging. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 585	<i>4</i> - ' 3861	66
250	Surface enhanced Raman scattering traceable and glutathione responsive nanocarrier for the intracellular drug delivery. <i>Analytical Chemistry</i> , 2013 , 85, 2223-30	7.8	60
249	Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity. <i>Nanoscale</i> , 2014 , 6, 1808-16	7.7	59
248	Combining Multiplex SERS Nanovectors and Multivariate Analysis for In Situ Profiling of Circulating Tumor Cell Phenotype Using a Microfluidic Chip. <i>Small</i> , 2018 , 14, e1704433	11	58
247	Post-healing of defects: an alternative way for passivation of carbon-based mesoscopic perovskite solar cells via hydrophobic ligand coordination. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 2449-2455	13	52
246	pH-controllable drug carrier with SERS activity for targeting cancer cells. <i>Biosensors and Bioelectronics</i> , 2014 , 57, 10-5	11.8	51
245	Ultrasensitive telomerase activity detection by telomeric elongation controlled surface enhanced Raman scattering. <i>Small</i> , 2013 , 9, 4215-20	11	49
244	Highly sensitive SERS-based immunoassay with simultaneous utilization of self-assembled substrates of gold nanostars and aggregates of gold nanostars. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 3992-3998	7.3	49
243	Scattering and Absorption Cross-Section Spectral Measurements of Gold Nanorods in Water. Journal of Physical Chemistry C, 2010 , 114, 2853-2860	3.8	48
242	A SERS-Assisted 3D Barcode Chip for High-Throughput Biosensing. <i>Small</i> , 2015 , 11, 2798-806	11	47
241	Simultaneous and highly sensitive detection of multiple breast cancer biomarkers in real samples using a SERS microfluidic chip. <i>Talanta</i> , 2018 , 188, 507-515	6.2	46
240	Resonant Mode Analysis of the Nanoscale Surface Plasmon Polariton Waveguide Filter with Rectangle Cavity. <i>Plasmonics</i> , 2013 , 8, 267-275	2.4	46
239	pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. <i>Biosensors and Bioelectronics</i> , 2016 , 75, 446-51	11.8	44
238	Aqueous synthesis of multilayer Mn:ZnSe/Cu:ZnS quantum dots with white light emission. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 660-666	7.1	42
237	BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation. <i>Scientific Reports</i> , 2015 , 5, 12602	4.9	42
236	Single component Mn-doped perovskite-related CsPbClBr nanoplatelets with a record white light quantum yield of 49%: a new single layer color conversion material for light-emitting diodes. <i>Nanoscale</i> , 2017 , 9, 16858-16863	7.7	41
235	Gold-modified silver nanorod arrays: growth dynamics and improved SERS properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 1150-1159		41

234	Array-Assisted SERS Microfluidic Chips for Highly Sensitive and Multiplex Gas Sensing. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 1395-1403	9.5	41
233	Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. <i>Analyst, The</i> , 2013 , 138, 3450-6	5	40
232	A multiplex and straightforward aqueous phase immunoassay protocol through the combination of SERS-fluorescence dual mode nanoprobes and magnetic nanobeads. <i>Biosensors and Bioelectronics</i> , 2013 , 41, 745-51	11.8	40
231	Silica coated gold nanoaggregates prepared by reverse microemulsion method: dual mode probes for multiplex immunoassay using SERS and fluorescence. <i>Talanta</i> , 2011 , 86, 170-7	6.2	37
230	Key Roles of Solution pH and Ligands in the Synthesis of Aqueous ZnTe Nanoparticles. <i>Chemistry of Materials</i> , 2010 , 22, 5838-5844	9.6	36
229	Trapping and manipulation of nanoparticles using multifocal optical vortex metalens. <i>Scientific Reports</i> , 2017 , 7, 14611	4.9	35
228	Black Phosphorus-Based Drug Nanocarrier for Targeted and Synergetic Chemophotothermal Therapy of Acute Lymphoblastic Leukemia. <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> . <i>ACS Applied Materials & Description of Acute Lymphoblastic Leukemia</i> .	9.5	33
227	Profiling of Exosomal Biomarkers for Accurate Cancer Identification: Combining DNA-PAINT with Machine- Learning-Based Classification. <i>Small</i> , 2019 , 15, e1901014	11	32
226	Single molecule localization imaging of exosomes using blinking silicon quantum dots. <i>Nanotechnology</i> , 2018 , 29, 065705	3.4	30
225	SERS-based DNA detection in aqueous solutions using oligonucleotide-modified Ag nanoprisms and gold nanoparticles. <i>Analytical and Bioanalytical Chemistry</i> , 2013 , 405, 6131-6	4.4	30
224	Luminescent and Magnetic Properties in Semiconductor Nanocrystals with Radial-Position-Controlled Mn2+ Doping. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 15829-15834	3.8	30
223	Co-doping of Ag into Mn:ZnSe Quantum Dots: Giving Optical Filtering effect with Improved Monochromaticity. <i>Scientific Reports</i> , 2015 , 5, 14817	4.9	30
222	Gold-carbon dots for the intracellular imaging of cancer-derived exosomes. <i>Nanotechnology</i> , 2018 , 29, 175701	3.4	29
221	A SERS/fluorescence dual-mode nanosensor based on the human telomeric G-quadruplex DNA: Application to mercury (II) detection. <i>Biosensors and Bioelectronics</i> , 2015 , 69, 142-7	11.8	28
220	Visualization and intracellular dynamic tracking of exosomes and exosomal miRNAs using single molecule localization microscopy. <i>Nanoscale</i> , 2018 , 10, 5154-5162	7.7	28
219	Gold aggregates- and quantum dots- embedded nanospheres: Switchable dual-mode image probes for living cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 4307		28
218	Synthesis of Ag doped ZnlnSe ternary quantum dots with tunable emission. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5111-5115	7.1	27
217	Effect of surface/interfacial defects on photo-stability of thick-shell CdZnSeS/ZnS quantum dots. <i>Nanoscale</i> , 2018 , 10, 18331-18340	7.7	27

(2017-2019)

216	Multiplex Cellular Imaging and in Vitro Tumor Targeting. <i>ACS Applied Materials & Company and State Applications:</i> 2019, 11, 47671-47679	9.5	26	
215	SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1889-97	10.1	25	
214	Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis. <i>ACS Sensors</i> , 2017 , 2, 773-780	9.2	24	
213	High Internal Quantum Efficiency of Nonpolar a-Plane AlGaN-Based Multiple Quantum Wells Grown on r-Plane Sapphire Substrate. <i>ACS Photonics</i> , 2018 , 5, 1903-1906	6.3	24	
212	Dual-mode tracking of tumor-cell-specific drug delivery using fluorescence and label-free SERS techniques. <i>Biosensors and Bioelectronics</i> , 2014 , 51, 82-9	11.8	24	
211	Discriminative detection of bivalent Mn ions by a pH-adjustable recognition method via quantum dot fluorescence sensing. <i>Journal of Materials Chemistry</i> , 2012 , 22, 9216		24	
210	Ultralow-Threshold Single-Mode Lasing from Phase-Pure CdSe/CdS Core/Shell Quantum Dots. Journal of Physical Chemistry Letters, 2016 , 7, 4968-4976	6.4	23	
209	Varying polarization and spin angular momentum flux of radially polarized beams by anisotropic Kerr media. <i>Optics Letters</i> , 2016 , 41, 1566-9	3	23	
208	Preparation of a magnetofluorescent nano-thermometer and its targeted temperature sensing applications in living cells. <i>Talanta</i> , 2015 , 131, 259-65	6.2	21	
207	Surface Enhanced Raman Scattering Based in Situ Hybridization Strategy for Telomere Length Assessment. <i>ACS Nano</i> , 2016 , 10, 2950-9	16.7	21	
206	From red selenium to cuprous selenide: a novel and facile route to a high performance metal selenide cathode for sensitized solar cells. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14585	13	21	
205	Theoretical simulation of CdTe nanocrystals in aqueous synthesis. Structural Chemistry, 2010, 21, 519-5	25 .8	21	
204	Ag@4ATP-coated liposomes: SERS traceable delivery vehicles for living cells. <i>Nanoscale</i> , 2014 , 6, 8155-	6 1 7.7	20	
203	Mixing Assisted "Hot Spots" Occupying SERS Strategy for Highly Sensitive In Situ Study. <i>Analytical Chemistry</i> , 2018 , 90, 4535-4543	7.8	19	
202	Polarization evolution characteristics of focused hybridly polarized vector fields. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 117, 915-926	1.9	19	
201	Thermally tunable random laser in dye-doped liquid crystals. <i>Journal of Modern Optics</i> , 2013 , 60, 1607-1	16111	19	
200	Tailoring optical complex field with spiral blade plasmonic vortex lens. Scientific Reports, 2015, 5, 13732	2 4.9	19	
199	Study on the Polarization of Random Lasers from Dye-Doped Nematic Liquid Crystals. <i>Nanoscale Research Letters</i> , 2017 , 12, 27	5	18	

198	A conjugated BODIPYEriphenylamine multi-aldoxime: Sonogashira coupling, ratiometric chemodosimeter and rapid detection of hypochlorite with two-photon excited fluorescence. <i>New Journal of Chemistry</i> , 2018 , 42, 6910-6917	3.6	18
197	A smart two-photon fluorescent platform based on desulfurization gyclization: a phthalimide fhodamine chemodosimeter for Hg2+ NIR emission at 746 nm and through-bond energy transfer. <i>New Journal of Chemistry</i> , 2017 , 41, 13495-13503	3.6	18
196	In situ probing of celldell communications with surface-enhanced Raman scattering (SERS) nanoprobes and microfluidic networks for screening of immunotherapeutic drugs. <i>Nano Research</i> , 2017 , 10, 584-594	10	17
195	Voltage-dependent electroluminescence from colloidal CdSeInS quantum dots. <i>Applied Physics Letters</i> , 2007 , 91, 243114	3.4	17
194	A SERS-colorimetric dual-mode aptasensor for the detection of cancer biomarker MUC1. <i>Analytical and Bioanalytical Chemistry</i> , 2020 , 412, 5707-5718	4.4	17
193	Size-tunable CsPbBr perovskite ring arrays for lasing. <i>Nanoscale</i> , 2018 , 10, 10383-10388	7.7	17
192	Single-Mode Lasing from "Giant" CdSe/CdS Core-Shell Quantum Dots in Distributed Feedback Structures. <i>ACS Applied Materials & </i>	9.5	16
191	Detection of orbital angular momentum using a photonic integrated circuit. <i>Scientific Reports</i> , 2016 , 6, 28262	4.9	16
190	Coherent Random Lasing from Dye Aggregates in Polydimethylsiloxane Thin Films. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	16
189	Surface-enhanced fluorescence from fluorophore-assembled monolayers by using Ag@SiO2 nanoparticles. <i>ChemPhysChem</i> , 2011 , 12, 992-8	3.2	16
188	Phase-change metasurface with tunable and switchable circular dichroism. <i>Optics Letters</i> , 2021 , 46, 252	25 3 2528	3 16
187	Manipulation of Irradiative Defects at MnSe and ZnSe DopantHost Interface. <i>Advanced Functional Materials</i> , 2016 , 26, 4274-4282	15.6	15
186	WavenumberIntensity joint SERS encoding using silver nanoparticles for tumor cell targeting. <i>RSC Advances</i> , 2014 , 4, 60936-60942	3.7	15
185	Tailoring of random lasing characteristics in dye-doped nematic liquid crystals. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 115, 303-309	1.9	15
184	Peroxidase-like recyclable SERS probe for the detection and elimination of cationic dyes in pond water. <i>Journal of Hazardous Materials</i> , 2021 , 408, 124426	12.8	15
183	Manipulating "Hot Spots" from Nanometer to Angstrom: Toward Understanding Integrated Contributions of Molecule Number and Gap Size for Ultrasensitive Surface-Enhanced Raman Scattering Detection. <i>ACS Applied Materials & Detection (ACS APPLIED & D</i>	9.5	14
182	Water Dispersible and Biocompatible Porphyrin-Based Nanospheres for Biophotonics Applications: A Novel Surfactant and Polyelectrolyte-Based Fabrication Strategy for Modifying Hydrophobic Porphyrins. ACS Applied Materials & Dispersion Amplication Action Action Action Based Nanospheres for Biophotonics Based Nanospheres for Biophoto	9.5	14
181	Assessing telomere length using surface enhanced Raman scattering. <i>Scientific Reports</i> , 2014 , 4, 6977	4.9	14

(2020-2013)

180	Immunoassays based on surface-enhanced fluorescence using gap-plasmon-tunable Ag bilayer nanoparticle films. <i>Journal of Fluorescence</i> , 2013 , 23, 71-7	2.4	14	
179	Nonlinear polarization evolution of hybridly polarized vector beams through isotropic Kerr nonlinearities. <i>Optics Express</i> , 2016 , 24, 25867-25875	3.3	14	
178	Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves. <i>Optics Express</i> , 2018 , 26, 29192-29202	3.3	14	
177	Quantum-confined stark effect in the ensemble of phase-pure CdSe/CdS quantum dots. <i>Nanoscale</i> , 2019 , 11, 12619-12625	7.7	13	
176	A Hybrid Plasmonic Modulator Based on Graphene on Channel Plasmonic Polariton Waveguide. <i>Plasmonics</i> , 2018 , 13, 2029-2035	2.4	13	
175	Mixing enhancement of a novel C-SAR microfluidic mixer. <i>Chemical Engineering Research and Design</i> , 2018 , 132, 338-345	5.5	13	
174	A Seven Bit Silicon Optical True Time Delay Line for Ka-Band Phased Array Antenna. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-9	1.8	13	
173	Synthesis of thiosalicylic acid-capped CdTe quantum dots. <i>RSC Advances</i> , 2014 , 4, 4993	3.7	13	
172	A FRET based dual emission nanoprobe (FREDEN) with improved blinking behavior for single molecule localization imaging. <i>Nanoscale</i> , 2016 , 8, 19110-19119	7.7	12	
171	Z-scan characterization of optical nonlinearities of an imperfect sample profits from radially polarized beams. <i>Applied Physics B: Lasers and Optics</i> , 2014 , 117, 1141-1147	1.9	12	
170	SERS-based dynamic monitoring of minimal residual disease markers with high sensitivity for clinical applications. <i>Nanoscale</i> , 2019 , 11, 2460-2467	7.7	11	
169	A SERS fiber probe fabricated by layer-by-layer assembly of silver sphere nanoparticles and nanorods with a greatly enhanced sensitivity for remote sensing. <i>Nanotechnology</i> , 2019 , 30, 255503	3.4	11	
168	Bright type-II photoluminescence from Mn-doped CdS/ZnSe/ZnS quantum dots with Mn ions as exciton couplers. <i>Nanoscale</i> , 2017 , 9, 18281-18289	7.7	11	
167	Effect of Cu/In ratio and shell thickness on the photo-stability of CuInS2/ZnS nanocrystals. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 12151-12156	7.1	11	
166	Bright white-light emission from Ag/SiO2/CdS-ZnS core/shell/shell plasmon couplers. <i>Nanoscale</i> , 2015 , 7, 20607-13	7.7	11	
165	Effects of solid substrate on the SERS-based immunoassay: a comparative study. <i>Journal of Raman Spectroscopy</i> , 2011 , 42, 313-318	2.3	11	
164	The influence of solvent and ligands on characters of ZnS clusters. Structural Chemistry, 2010, 21, 1215-	1289	11	
163	Low-Threshold Amplified Spontaneous Emission and Lasing from Thick-Shell CdSe/CdS Core/Shell Nanoplatelets Enabled by High-Temperature Growth. <i>Advanced Optical Materials</i> , 2020 , 8, 1901615	8.1	11	

162	An optical ratiometric temperature sensor based on dopant-dependent thermal equilibrium in dual-emitting Ag&Mn:ZnInS quantum dots. <i>RSC Advances</i> , 2016 , 6, 58113-58117	3.7	11
161	A Tunable Optical Delay Line Based on Cascaded Silicon Nitride Microrings for Ka-Band Beamforming. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-10	1.8	10
160	Optically encoded nanoprobes using single walled carbon nanotube as the building scaffold for magnetic field guided cell imaging. <i>Talanta</i> , 2014 , 119, 144-50	6.2	10
159	Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecommunication wavelength. <i>Applied Physics Letters</i> , 2010 , 97, 263108	3.4	10
158	Enantioselective optical trapping of chiral nanoparticles using a transverse optical needle field with a transverse spin. <i>Optics Express</i> , 2020 , 28, 27808-27822	3.3	10
157	Bi and Sb Codoped CsAgNaInCl Double Perovskite with Excitation-Wavelength-Dependent Dual-Emission for Anti-Counterfeiting Application. <i>ACS Applied Materials & Dual-Emission for Anti-Counterfeiting Application</i> . <i>ACS Applied Materials & Dual-Emission for Anti-Counterfeiting Application</i> .	031 ⁵ -31	037
156	TiCT MXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout. <i>ACS Nano</i> , 2021 ,	16.7	10
155	Performances of Microwave Photonic Notch Filter Based on Microring Resonator With Dual-Drive Modulator. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-13	1.8	10
154	Hydrophobic Plasmonic Nanoacorn Array for a Label-Free and Uniform SERS-Based Biomolecular Assay. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 29917-29927	9.5	9
153	Dual peptides modified fluorescence-SERS dual mode imaging nanoprobes with improved cancer cell targeting efficiency. <i>RSC Advances</i> , 2016 , 6, 81046-81052	3.7	9
152	Design and Optimization of a Graphene Modulator Based on Hybrid Plasmonic Waveguide with Double Low-Index Slots. <i>Plasmonics</i> , 2019 , 14, 133-138	2.4	9
151	Optical Beamformer Based on Diffraction Order Multiplexing (DOM) of an Arrayed Waveguide Grating. <i>Journal of Lightwave Technology</i> , 2019 , 37, 2898-2904	4	9
150	A straightforward immunoassay applicable to a wide range of antibodies based on surface enhanced fluorescence. <i>Journal of Fluorescence</i> , 2013 , 23, 551-9	2.4	9
149	Investigating the Intracellular Behaviors of Liposomal Nanohybrids SERS: Insights into the Influence of Metal Nanoparticles. <i>Theranostics</i> , 2018 , 8, 941-954	12.1	9
148	Highly uniform SERS-active microchannel on hydrophobic PDMS: a balance of high reproducibility and sensitivity for detection of proteins. <i>RSC Advances</i> , 2017 , 7, 8771-8778	3.7	8
147	An online pH detection system based on a microfluidic chip. <i>Analytica Chimica Acta</i> , 2020 , 1106, 71-78	6.6	8
146	Fast response and low power consumption 1½ thermo-optic switch based on dielectric-loaded surface plasmon polariton waveguides. <i>Journal of Modern Optics</i> , 2016 , 63, 1354-1363	1.1	8
145	Tight focusing properties of spatial-variant linearly-polarized vector beams. <i>Journal of Optics (India)</i> , 2014 , 43, 18-27	1.3	8

(2013-2013)

144	Development of an electrically controlled terahertz-wave modulator. <i>Journal of Modern Optics</i> , 2013 , 60, 1690-1695	1.1	8	
143	Theoretical and experimental investigation of doping M in ZnSe (M = Cd, Mn, Ag, Cu) clusters: optical and bonding characteristics. <i>Luminescence</i> , 2016 , 31, 312-316	2.5	8	
142	Assembly of light-emitting diode based on hydrophilic CdTe quantum dots incorporating dehydrated silica gel. <i>Luminescence</i> , 2016 , 31, 419-422	2.5	8	
141	Ultrasonic irradiation-promoted one-pot synthesis of CH3NH3PbBr3 quantum dots without using flammable CH3NH2 precursor. <i>Materials Research Express</i> , 2017 , 4, 025038	1.7	7	
140	High hole concentration in nonpolar a-plane p-AlGaN films with Mg-delta doping technique. <i>Superlattices and Microstructures</i> , 2017 , 109, 880-885	2.8	7	
139	Optical pulling forces on Rayleigh particles using ambient optical nonlinearity. <i>Nanophotonics</i> , 2019 , 8, 1117-1124	6.3	7	
138	Design and Analysis of a Compact SOI-Based Aluminum/Highly Doped p-Type Silicon Hybrid Plasmonic Modulator. <i>IEEE Photonics Journal</i> , 2016 , 8, 1-11	1.8	7	
137	Evaluation of Multidrug Resistance of Leukemia Using Surface-Enhanced Raman Scattering Method for Clinical Applications. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 24999-25005	9.5	7	
136	A Compact Graphene Modulator Based on Localized Surface Plasmon Resonance with a Chain of Metal Disks. <i>Plasmonics</i> , 2019 , 14, 1949-1954	2.4	7	
135	Temperature-dependent photovoltaic characterization of a CdTe/CdSe nanocrystal solar cell. <i>Electronic Materials Letters</i> , 2014 , 10, 433-437	2.9	7	
134	Tunable solid-state fluorescence emission and red upconversion luminescence of novel anthracene-based fluorophores. <i>Coloration Technology</i> , 2013 , 129, 165-172	2	7	
133	A dual mode targeting probe for distinguishing HER2-positive breast cancer cells using silica-coated fluorescent magnetic nanoparticles. <i>Journal of Nanoparticle Research</i> , 2013 , 15, 1	2.3	7	
132	Indium-surfactant-assisted epitaxial growth of semi-polar (left(11overline{2}2right)) plane Al0.42Ga0.58N films. <i>Journal of Materials Science: Materials in Electronics</i> , 2017 , 28, 15217-15223	2.1	7	
131	WaterEthanol solvent mixtures: a promising liquid environment for high quality positively-charged CdTe nanocrystal preparation. <i>RSC Advances</i> , 2015 , 5, 18379-18383	3.7	7	
130	Synthesis of Aqueous CdTe Nanocrystals with High Efficient Blue-Green Emission of Exciton. <i>Chinese Journal of Chemistry</i> , 2012 , 30, 803-808	4.9	7	
129	Negative refraction with high transmission at visible and near-infrared wavelengths. <i>Applied Physics Letters</i> , 2008 , 92, 241108	3.4	7	
128	New photochromic bisthienylethene derivatives containing carbazole. <i>Journal of Physical Organic Chemistry</i> , 2007 , 20, 968-974	2.1	7	
127	??????????????????????. Chinese Science Bulletin, 2013 , 58, 601-607	2.9	7	

126	Anisotropic nonlinear Kerr media: Z-scan characterization and interaction with hybridly polarized beams. <i>Optics Express</i> , 2019 , 27, 13845-13857	3.3	7
125	In Situ Visualization and SERS Monitoring of the Interaction between Tumor and Endothelial Cells Using 3D Microfluidic Networks. <i>ACS Sensors</i> , 2020 , 5, 208-216	9.2	7
124	Large enhancement of optical limiting effects in anisotropic two-photon absorbers by radially polarized beams. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2016 , 33, 2512	1.7	7
123	New Insights into the Multiexciton Dynamics in Phase-Pure Thick-Shell CdSe/CdS Quantum Dots. Journal of Physical Chemistry C, 2018 , 122, 25059-25066	3.8	7
122	Blashsynthesis of BiantsMn-doped CdS/ZnS nanocrystals for high photostability. <i>RSC Advances</i> , 2015 , 5, 88921-88927	3.7	6
121	Dendrimer ligands-capped CHNHPbBr perovskite nanocrystals with delayed halide exchange and record stability against both moisture and water. <i>Nanotechnology</i> , 2018 , 29, 235603	3.4	6
120	A Stopband and Passband Switchable Microwave Photonic Filter Based on Integrated Dual Ring Coupled Machiden Interferometer. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-8	1.8	6
119	The controllable intensity and polarization degree of random laser from sheared dye-doped polymer-dispersed liquid crystal. <i>Nanophotonics</i> , 2017 , 7, 473-478	6.3	6
118	Enhanced performance of GaN-based light-emitting diodes by using a p-InAlGaN/GaN superlattice as electron blocking layer. <i>Journal of Modern Optics</i> , 2013 , 60, 2012-2017	1.1	6
117	STUDY ON THE REFRACTIVE NON-LINEARITY OF THREE-PHOTON ABSORBING MEDIA WITH THE Z-SCAN TECHNIQUE. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2010 , 19, 327-338	0.8	6
116	Tunable fiber laser based fiber Bragg grating strain sensor demodulation system with enhanced resolution by digital signal processing. <i>Microwave and Optical Technology Letters</i> , 2006 , 48, 1391-1393	1.2	6
115	Random lasing based on rough dye-doped polymer thin film. <i>Optical and Quantum Electronics</i> , 2016 , 48, 1	2.4	6
114	Epitaxial growth of semi-polar (11-22) plane AlGaN epi-layers on m-plane (10-10) sapphire substrates. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2017 , 214, 1600802	1.6	5
113	Effect of alignment layer on polymer-dispersed liquid crystal random laser. <i>Journal of Modern Optics</i> , 2017 , 64, 1429-1434	1.1	5
112	Conservation of the spin angular momentum in second-harmonic generation with elliptically polarized vortex beams. <i>Applied Physics Letters</i> , 2019 , 114, 101101	3.4	5
111	Epitaxial growth and optical characterization of AlInGaN quaternary alloys with high Al/In mole ratio. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 705-710	2.1	5
110	INFLUENCES OF AGGREGATION ON THE TWO-PHOTON FLUORESCENCE PROCESS. Journal of Nonlinear Optical Physics and Materials, 2013 , 22, 1350011	0.8	5
109	Theoretical study on influence of ligand and solvent to CdS clusters. <i>International Journal of Quantum Chemistry</i> , 2011 , 111, 156-164	2.1	5

108	Synthesis of water-dispersible one-dimensional Te@ZnTe coreBhell nanoparticles. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16427		5	
107	Preparation of Ag@ZnO coreEhell nanostructures by liquid-phase laser ablation and investigation of their femtosecond nonlinear optical properties. <i>Applied Physics B: Lasers and Optics</i> , 2020 , 126, 1	1.9	5	
106	Ultra-sensitive surface enhanced Raman spectroscopy sensor for in-situ monitoring of dopamine release using zipper-like ortho-nanodimers. <i>Biosensors and Bioelectronics</i> , 2021 , 180, 113100	11.8	5	
105	Super blinking and biocompatible nanoprobes based on dye doped BSA nanoparticles for super resolution imaging. <i>Nanotechnology</i> , 2019 , 30, 065701	3.4	5	
104	BlinkingBilica nanoparticles for optical super resolution imaging of cancer cells. <i>RSC Advances</i> , 2017 , 7, 48738-48744	3.7	4	
103	Surface properties of AlN and Al x Ga1N N epitaxial layers characterized by angle resolved X-ray photoelectron spectroscopy. <i>Journal of Materials Science: Materials in Electronics</i> , 2015 , 26, 950-954	2.1	4	
102	Application of aqueous Ag:ZnInSe quantum dots to non-toxic sensitized solar cells. <i>RSC Advances</i> , 2015 , 5, 46186-46191	3.7	4	
101	Theoretical investigation on bond and spectrum of cyclo[18] carbon (C) with sp-hybridized. <i>Journal of Molecular Modeling</i> , 2020 , 26, 111	2	4	
100	Enhanced hole concentration in nonpolara-plane p-AlGaN film with multiple-step rapid thermal annealing technique. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 095101	3	4	
99	Design and assembly of an aqueous red CdTe QD-LED: major factors to fabricate aqueous QD-LEDs. <i>RSC Advances</i> , 2016 , 6, 77963-77967	3.7	4	
98	Selectively enhanced Raman scattering with triple-resonance nanohole arrays. <i>Optics Communications</i> , 2019 , 452, 494-498	2	4	
97	Controllable vector bottle-shaped fields generated by focused spatial-variant linearly polarized vector beams. <i>Applied Physics B: Lasers and Optics</i> , 2013 , 113, 165-170	1.9	4	
96	Optical and bonding characters of Hg type clusters. New Journal of Chemistry, 2013, 37, 3303	3.6	4	
95	Effects of Mg-doping on characteristics of semi-polar (112½) plane p-AlGaN films. <i>Materials Letters</i> , 2017 , 209, 472-475	3.3	4	
94	Bright and high-photostable inner-Mn-doped core/giant-shell quantum dots. <i>Superlattices and Microstructures</i> , 2017 , 111, 665-670	2.8	4	
93	Synthesis, Photophysical Properties of Tribranched Chromophores Based on 1,3,5-Triazine Core and Different Electro-donating End-groups. <i>Chinese Journal of Chemistry</i> , 2011 , 29, 2129-2133	4.9	4	
92	Simultaneous detection of multiple exosomal microRNAs for exosome screening based on rolling circle amplification. <i>Nanotechnology</i> , 2021 , 32, 085504	3.4	4	
91	Carbon-based fully printable self-powered ultraviolet perovskite photodetector: Manganese-assisted electron transfer and enhanced photocurrent. <i>Nanomaterials and</i> Nanotechnology, 2020 , 10, 184798042092567	2.9	4	

90	A wideband 1½ optical beam-forming chip based on switchable optical delay lines for Ka-band phased array. <i>Optics Communications</i> , 2021 , 488, 126842	2	4
89	Single-channel UV/vis dual-band detection with ZnCdS:Mn/ZnS core/shell quantum dots. <i>Nanotechnology</i> , 2019 , 30, 075501	3.4	4
88	DNA-assisted synthesis of Ortho-NanoDimer with sub-nanoscale controllable gap for SERS application. <i>Biosensors and Bioelectronics</i> , 2021 , 172, 112769	11.8	4
87	Enhanced hole concentration and improved surface morphology for nonpolar a-plane p-type AlGaN/GaN superlattices grown with indium-surfactant. <i>Superlattices and Microstructures</i> , 2019 , 130, 396-400	2.8	3
86	Investigation of a naked Ag7 cluster: configurations and spectral characteristics. <i>New Journal of Chemistry</i> , 2015 , 39, 3105-3108	3.6	3
85	Effect of fluctuation in Al incorporation on the microstructure, bond lengths, and surface properties of an Al x Ga1⊠ N epitaxial layer. <i>Electronic Materials Letters</i> , 2015 , 11, 675-681	2.9	3
84	A two-step method to synthesize water-dispersible Mn:ZnSe/ZnO core/shell quantum dots with pure dopant emission. <i>New Journal of Chemistry</i> , 2015 , 39, 8818-8824	3.6	3
83	A simple multiple centrifugation method for large-area homogeneous perovskite CsPbBr films with optical lasing <i>RSC Advances</i> , 2020 , 10, 25480-25486	3.7	3
82	Characterization of optical properties and thermo-optic effect for non-polar AlGaN thin films using spectroscopic ellipsometry. <i>Journal Physics D: Applied Physics</i> , 2020 , 53, 205104	3	3
81	A hardware solution for real-time image acquisition systems based on GigE camera. <i>Journal of Real-Time Image Processing</i> , 2016 , 12, 827-834	1.9	3
80	An innovative strategy to obtain extraordinary specificity in immunofluorescent labeling and optical super resolution imaging of microtubules. <i>RSC Advances</i> , 2017 , 7, 39977-39988	3.7	3
79	Plasmonic trapping of nanoparticles by metaholograms. <i>Scientific Reports</i> , 2017 , 7, 10552	4.9	3
78	Laser-induced circumferential waves on hollow cylinder and their interaction with defects by finite element method. <i>Indian Journal of Physics</i> , 2009 , 83, 1583-1592	1.4	3
77	Aromaticity of ionic structures: Investigation and application of NICS value and 4n + 2 rule. International Journal of Quantum Chemistry, 2010 , 110, 1287-1294	2.1	3
76	Anisotropic two-photon absorbers measured by the Z-scan technique and its application in laser beam shaping. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2020 , 37, 756	1.7	3
75	A TiN MXene-based nanosystem with ultrahigh drug loading for dual-strategy synergistic oncotherapy. <i>Nanoscale</i> , 2021 , 13, 18546-18557	7.7	3
74	A high-precision, template-assisted, anisotropic wet etching method for fabricating perovskite microstructure arrays <i>RSC Advances</i> , 2020 , 10, 38220-38226	3.7	3
73	Improving power conversion efficiency in luminescent solar concentrators using nanoparticle fluorescence and scattering. <i>Nanotechnology</i> , 2020 , 31, 455205	3.4	3

72	High perovskite-to-manganese energy transfer efficiency in single-component white-emitting Mn-doped halide perovskite quantum dots. <i>Journal of Materials Science</i> , 2020 , 55, 2984-2993	4.3	3
71	SERS-fluorescence-superresolution triple-mode nanoprobe based on surface enhanced Raman scattering and surface enhanced fluorescence. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 8459-8466	7.3	3
70	Enhanced Multiexciton Emission Property in Gradient Alloy Core/Shell CdZnSeS/ZnS Quantum Dots: Balance between Surface Passivation and Strain-Induced Lattice Defect. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 10759-10767	3.8	3
69	Au/Ag Bimetallic Nanocuboid Superlattices Coated with Ti3C2 Nanosheets for Surface-Enhanced Raman Spectroscopy Detection of Fish Drug Residues in Pond Water. <i>ACS Applied Nano Materials</i> , 2021 , <i>4</i> , 6844-6851	5.6	3
68	Computational and experimental studies on third-order optical nonlinearities of novel D-EA-EA type chalcone derivatives: (1E,4E)-1-(4-substituted)-5-phenylpenta-1,4-dien-3-one. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2019 , 28, 1950024	0.8	3
67	Vector beams excited nonlinear optical effects. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2018 , 27, 1850045	0.8	3
66	Configurations and characteristics of boron and B clusters. <i>Journal of Molecular Modeling</i> , 2017 , 23, 198	3 2	2
65	Polarization rotation and singularity evolution of fundamental Poincarlbeams through anisotropic Kerr nonlinearities. <i>Journal of Optics (United Kingdom)</i> , 2020 , 22, 085501	1.7	2
64	Improvement in structural and electrical characteristics of nonpolar a-plane Si-doped n-AlGaN. <i>Journal of Materials Science</i> , 2020 , 55, 12022-12030	4.3	2
63	A Microwave Frequency Measurement System Based on Si3N4 Ring-Assisted Mach-Zehnder Interferometer. <i>IEEE Photonics Journal</i> , 2020 , 12, 1-13	1.8	2
62	Single molecule localization imaging of telomeres and centromeres using fluorescence in situ hybridization and semiconductor quantum dots. <i>Nanotechnology</i> , 2018 , 29, 285602	3.4	2
61	Synthesis of nontoxic Co:CuInS2@ZnS nanocrystals with both fluorescence and room temperature ferromagnetism. <i>RSC Advances</i> , 2016 , 6, 19430-19436	3.7	2
60	Fano Resonances in Ultracompact Silicon-on-Insulator Compatible Integrated Photonic Plasmonic Hybrid Circuits. <i>Advanced Optical Materials</i> , 2017 , 5, 1700304	8.1	2
59	The influence of surface composition of quantum dots fluorescence sensing on the discriminative detection of bivalent Mn and Cu cations. <i>Analytical Methods</i> , 2014 , 6, 9596-9600	3.2	2
58	A novel separation technique for aqueous nanoparticles based on a phase transfer approach. <i>Journal of Materials Chemistry</i> , 2012 , 22, 13469		2
57	Investigation of ZnmCdnXy (y = m + n; X = Te, Se and S) Clusters with TDDFT Method. <i>Journal of Cluster Science</i> , 2011 , 22, 49-58	3	2
56	A fiber Bragg grating current sensor with temperature compensation. <i>Optoelectronics Letters</i> , 2009 , 5, 347-351	0.7	2
55	THICKNESS DEPENDENCE OF THIRD-HARMONIC GENERATION FROM SELF-ASSEMBLED REGIOREGULAR POLY(3-HEXYLTHIOPHENE) THIN FILMS ON QUARTZ GLASSES WITH DIFFERENT SURFACES. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2008 , 17, 451-463	0.8	2

54	Highly efficient and controllable photoluminescence emission on a suspended MoS-based plasmonic grating. <i>Nanotechnology</i> , 2020 , 31, 505201	3.4	2
53	Stable white photoluminescence from Mn-contained organic lead bromide perovskite ring arrays formed from 2D colloidal crystal templates. <i>New Journal of Chemistry</i> , 2020 , 44, 13619-13625	3.6	2
52	A High-Performance Microwave Photonic Phase Shifter Based on Cascaded Silicon Nitride Microrings. <i>IEEE Photonics Technology Letters</i> , 2020 , 32, 1265-1268	2.2	2
51	Dual-Labeled Graphene Quantum Dot-Based Flater Resonance Energy Transfer Nanoprobes for Single-Molecule Localization Microscopy. <i>ACS Omega</i> , 2021 , 6, 8808-8815	3.9	2
50	Enhanced circular dichroism of sparse nanoobjects by localized superchiral optical field. <i>Journal of Optics (United Kingdom)</i> , 2021 , 23, 065002	1.7	2
49	Integrated Multi-Functional Optical Filter Based on a Self-Coupled Microring Resonator Assisted MZI Structure. <i>Journal of Lightwave Technology</i> , 2021 , 39, 1429-1437	4	2
48	Eliminating nonspecific binding sites for highly reliable immunoassay via super-resolution multicolor fluorescence colocalization. <i>Nanoscale</i> , 2021 , 13, 6624-6634	7.7	2
47	Fano Resonance Ion Sensor Enabled by 2D Plasmonic Sub-Nanopores-Material. <i>IEEE Sensors Journal</i> , 2021 , 1-1	4	2
46	Large Group Delay in Silicon-on-Insulator Chirped Spiral Bragg Grating Waveguide. <i>IEEE Photonics Journal</i> , 2021 , 1-1	1.8	2
45	Manipulating valley-polarized photoluminescence of MoS2 monolayer at off resonance wavelength with a double-resonance strategy. <i>Applied Physics Letters</i> , 2021 , 119, 031106	3.4	2
44	Size-dependent dual emission of Cu,Mn:ZnSe QDs: Controlling both emission wavelength and intensity. <i>Luminescence</i> , 2017 , 32, 474-480	2.5	1
43	Improvement of properties in nonpolar a-plane p-AlGaN films by Mg-delta doping method 2017,		1
42	Impacts of annealing processes on the electrical properties of gasb metal-oxide-semiconductor devices 2014 ,		1
41	Study of lattice deformation and atomic bond length for AlxGa1NN epi-layers with synchrotron radiation X-ray absorption spectroscopy. <i>Journal of Materials Science: Materials in Electronics</i> , 2014 , 25, 4800-4805	2.1	1
40	pH-Dependent Metal-Enhanced Fluorescence from CdTe@PAA Nanospheres near the Au Nanoparticles in Aqueous Solution. <i>Chinese Journal of Chemistry</i> , 2012 , 30, 1490-1496	4.9	1
39	SYNTHESIS, FLUORESCENCE AND ELECTROCHEMICAL PROPERTIES OF SYMMETRICAL CHROMOPHORES WITH ELECTRON ACCEPTING OXADIAZOLE. <i>Journal of Nonlinear Optical Physics and Materials</i> , 2008 , 17, 473-485	0.8	1
38	Novel simulation method for fiber Bragg grating under inhomogeneous strain fields. <i>Optoelectronics Letters</i> , 2005 , 1, 238-240	0.7	1
37	Surface-Enhanced Circular Dichroism by Localized Superchiral Hotspots in a Dielectric Dimer Array Metasurface. <i>Journal of Physical Chemistry C</i> , 2022 , 126, 2199-2206	3.8	1

(2021-2021)

36	Silicon-assisted surface enhanced fluorescence toward improved assay performances. <i>Nanotechnology</i> , 2021 , 32, 125201	3.4	1
35	Lead-free p-type Mn:Cs3Cu2I5 perovskite with tunable dual-color emission through room-temperature grinding method. <i>Journal of Materials Science</i> , 2021 , 56, 12326-12335	4.3	1
34	Influence of plasmonic resonant wavelength on energy transfer from an InGaN quantum well to quantum dots. <i>Applied Physics Letters</i> , 2021 , 118, 202103	3.4	1
33	Implementation of a Highly-Sensitive and Wide-Range Frequency Measurement Using a Si3N4 MDR-Based Optoelectronic Oscillator. <i>IEEE Photonics Journal</i> , 2019 , 11, 1-8	1.8	1
32	Spontaneous morphology reconfiguration of luminescent CH3NH3PbBr3 perovskites from monodispersed nanocrystals to discontinuous rings by dewetting-triggered solute migration. <i>Journal of Materials Science</i> , 2019 , 54, 1248-1254	4.3	1
31	A straightforward and sensitive "ON-OFF" fluorescence immunoassay based on silicon-assisted surface enhanced fluorescence <i>RSC Advances</i> , 2021 , 11, 7723-7731	3.7	1
30	Ultrasmall silica nanospheres based blinking nanoprobes for optical super resolution imaging. <i>Optical Materials</i> , 2021 , 112, 110799	3.3	1
29	Achievement of polarity reversion from Al(Ga)-polar to N-polar for AlGaN film on AlN seeding layer grown by a novel flow-modulation technology. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 7858-7866	2.1	1
28	Effect of NH3-flow modulation on the morphological properties of nonpolar a-plane AlGaN epilayers. <i>Superlattices and Microstructures</i> , 2021 , 159, 107045	2.8	1
27	Ultrasonically-prepared copper-doped cesium halide nanocrystals with bright and stable emission. <i>Nanoscale</i> , 2021 , 13, 9659-9667	7.7	1
26	Improving performance of silicon thermo-optic switch by combing spiral phase shifter and optimized pulse driving. <i>IEEE Photonics Journal</i> , 2022 , 1-1	1.8	1
25	Ultralow Threshold Room Temperature Polariton Condensation in Colloidal CdSe/CdS Core/Shell Nanoplatelets <i>Advanced Science</i> , 2022 , e2200395	13.6	1
24	Quaternary-Ammonium-Modulated Surface-Enhanced Raman Spectroscopy Effect: Discovery, Mechanism, and Application for Highly Sensitive Sensing of Acetylcholine. <i>Analytical Chemistry</i> , 2020 , 92, 9706-9713	7.8	О
23	Improvement of the performance of a field-emission device with a metal mask. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 48-51		О
22	Photonic generation of broadband linearly chirped microwave waveform based on a low-loss silicon on-chip spectral shaper <i>Optics Letters</i> , 2022 , 47, 1077-1080	3	O
21	2D profiling of tumor chemotactic and molecular phenotype at single cell resolution using a SERS-microfluidic chip. <i>Nano Research</i> ,1	10	O
20	Investigation of optical properties for N- and F-doped triangular shaped carbon molecules. <i>Journal of Molecular Modeling</i> , 2021 , 27, 154	2	0
19	Impact of composite last quantum barrier on the performance of AlGaN-based deep ultraviolet light-emitting diode. <i>Journal of Materials Science: Materials in Electronics</i> , 2021 , 32, 18138-18144	2.1	O

18	In Situ-Prepared Attachable Transparent Luminescent Solar Concentrators for Photovoltaic with Polymer Antireflection/Barrier Layer. <i>Solar Rrl</i> , 2021 , 5, 2100491	7.1	0
17	Enhanced structural and electrical properties of nonpolar a-plane p-type AlGaN/GaN superlattices. <i>Superlattices and Microstructures</i> , 2019 , 125, 310-314	2.8	O
16	Nano-particle transport and the prediction of a valid area to be trapped based on a plasmonic antenna array <i>RSC Advances</i> , 2021 , 11, 12102-12106	3.7	0
15	Fano resonance in directly coupled microresonators and its high-sensitivity refractometric sensing. IEEE Photonics Technology Letters, 2022, 1-1	2.2	O
14	Triple-color fluorescence co-localization of PD-L1-overexpressing cancer exosomes <i>Mikrochimica Acta</i> , 2022 , 189, 182	5.8	0
13	Design and theoretical investigation of a silicon-on-insulator based electro-optical logic gate device. <i>Optical Engineering</i> , 2016 , 55, 106111	1.1	
12	Modeling and Simulation of Bonding and Optical Characters of Ternary Nanocrystals. <i>Journal of Cluster Science</i> , 2013 , 24, 439-447	3	
11	Bonding characters of M-Cd4Te4 and M-Cd3Te3 (M = Cr, Cu, Ag, Al, Cd, and Zn) clusters. International Journal of Quantum Chemistry, 2011 , 111, 3167-3173	2.1	
10	A Green Method for Recycling 2-Propanol from Water during Purification Process of Aqueous Nanocrystals. <i>Chinese Journal of Chemistry</i> , 2011 , 29, 1389-1394	4.9	
9	Localizable imaging study for the noninvasive diagnosis of lesions with the backscattering polarized light. <i>Journal of Modern Optics</i> , 2010 , 57, 1640-1647	1.1	
8	Second harmonic generation of a new nonlinear optical material: urea L-malic acid. <i>Optoelectronics Letters</i> , 2006 , 2, 112-114	0.7	
7	Valley-dependent Topological Photonic Crystals with Heterogeneous Bearded Interfaces for SOI-based Integrated Optical Devices. <i>Journal of Lightwave Technology</i> , 2022 , 1-1	4	
6	Degradation behaviors of photoelectrical properties of mixed cation perovskite solar cells under equivalent 1 MeV electron irradiation. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 065103	3	
5	A Narrow-Linewidth Optical Parametric Oscillator Inserted with Fabry Perot Etalon. <i>Photonics</i> , 2021 , 8, 528	2.2	
4	Imaging Exosomes using Super Resolution Microscopy. FASEB Journal, 2018, 32, 801.4	0.9	
3	P-Glycoprotein Detection for Multidrug Resistance of Leukemia Using SERS Immunoassay. <i>Blood</i> , 2018 , 132, 2218-2218	2.2	
2	Synthesis of Mn-doped CsPbClxBr3\(\text{P}\) perovskite nanocrystals using ultrasonic irradiation-promoted with decrease of reaction order. <i>Nano Express</i> , 2020 , 1, 010056	2	
1	A plasmon modulator by directly controlling the couple of photon and electron <i>Scientific Reports</i> , 2022 , 12, 5229	4.9	