Renad N Alyautdin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4620714/publications.pdf

Version: 2024-02-01

62 3,784 18 47
papers citations h-index g-index

63 63 4138
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Targeted Delivery Methods for Anticancer Drugs. Cancers, 2022, 14, 622.	3.7	41
2	Rate Setting for Labour Costs Related to Pharmacovigilance System Inspections. Safety and Risk of Pharmacotherapy, 2022, 10, 13-18.	0.2	1
3	Russian pharmacovigilance: ways to improve efficiency. Vestnik of Russian Military Medical Academy, 2022, 24, 81-90.	0.3	1
4	Gastroprotective effect of on ethanol-induced gastric mucosal injury: Histopathological evaluations Avicenna Journal of Phytomedicine, 2022, 12, 30-41.	0.2	2
5	Temozolomide Efficacy and Metabolism: The Implicit Relevance of Nanoscale Delivery Systems. Molecules, 2022, 27, 3507.	3.8	5
6	Inductively Coupled Plasma-Atomic Emission Spectrometry for the Analysis of Heavy Metals and Arsenic in Tinctures. The Bulletin of the Scientific Centre for Expert Evaluation of Medicinal Products, 2022, 12, 173-182.	0.2	1
7	Assessment of Safety Signals for Aztreonam in Different Age Groups: National and International Drug Safety Monitoring. Safety and Risk of Pharmacotherapy, 2022, 10, 110-117.	0.2	O
8	Elaboration of regulatory approaches to managing the risk of the use of biomedical cell products in the Russian Federation. Farmatsiya-Moscow, 2021, 70, 5-14.	0.1	0
9	Limits for the Content of Heavy Metals and Arsenic as a Means of Ensuring Safe Use of Herbal Medicinal Products. Safety and Risk of Pharmacotherapy, 2021, 9, 61-68.	0.2	1
10	Comparative Analysis of International Databases of Adverse Drug Reactions. Safety and Risk of Pharmacotherapy, 2020, 8, 134-140.	0.2	0
11	Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats. Acta Neurobiologiae Experimentalis, 2020, 80, 1-18.	0.7	O
12	Nanoscale Therapeutic System: Safety Assessment Features. Safety and Risk of Pharmacotherapy, 2019, 7, 127-138.	0.2	5
13	Identification and Evaluation of Safety Signals of Drugs Currently under Development Using a Limited Data Set. Safety and Risk of Pharmacotherapy, 2019, 7, 216-220.	0.2	1
14	Application of nanoscale polymer colloid carriers for targeted delivery of the brain-derived neurotrophic factor through the blood-brain barrier in experimental parkinsonism. Bulletin of Russian State Medical University, 2019, , 107-112.	0.2	0
15	Vaccine Safety International Monitoring. Safety and Risk of Pharmacotherapy, 2019, 7, 6-14.	0.2	3
16	Drug Safety for Children â€" International Monitoring Data for 50 Years. Safety and Risk of Pharmacotherapy, 2019, 7, 57-64.	0.2	2
17	Preparation of a periodic safety update report. Safety and Risk of Pharmacotherapy, 2018, 6, 6-10.	0.2	1
18	SIGNAL AS A TOOL OF THE PHARMACOVIGILANCE. Safety and Risk of Pharmacotherapy, 2018, 6, 61-67.	0.2	5

#	Article	lF	CITATIONS
19	UNEXPECTED ADVERSE REACTIONS OF THE DRUGS OF THE GROUP OF INHIBITORS OF DIPEPTIDYL PEPTIDASE-4. Safety and Risk of Pharmacotherapy, 2018, 6, 54-60.	0.2	0
20	Signal Messages in Pediatric Practice. Safety and Risk of Pharmacotherapy, 2018, 6, 180-186.	0.2	0
21	Assessment of Pharmacovigilance Reporting in Russia. Safety and Risk of Pharmacotherapy, 2018, 6, 150-154.	0.2	1
22	Adverse Reactions of Drugs Containing Valeriana and Corvalol: Analysis of Spontaneous Reporting. Safety and Risk of Pharmacotherapy, 2018, 6, 162-173.	0.2	1
23	Interchangeability Criteria for Levofloxacin-Based Medicinal Products in the Russian Federation. Pharmaceutical Chemistry Journal, 2017, 50, 684-690.	0.8	2
24	Interchangeability Problems of Drugs with Narrow Therapeutic Indices. Pharmaceutical Chemistry Journal, 2017, 51, 722-725.	0.8	1
25	Optimization of poloxamer 188 concentration as media for nanoparticle dispersion: effect of concentration, nanoparticle size and in vitro penetration through blood brain barrier. International Journal of Pharma and Bio Sciences, 2017, 8, .	0.1	1
26	Liposomes in topical ophthalmic drug delivery: an update. Drug Delivery, 2016, 23, 1075-1091.	5.7	135
27	Analysis of Factors Influencing the Interchangeability of Antiepileptic Drugs. Pharmaceutical Chemistry Journal, 2016, 50, 181-184.	0.8	2
28	Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Drug Delivery, 2016, 23, 3520-3528.	5.7	91
29	Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes. Drug Delivery, 2016, 23, 2765-2771.	5.7	13
30	A mouse model of weight-drop closed head injury: emphasis on cognitive and neurological deficiency. Neural Regeneration Research, 2016, 11, 630.	3.0	27
31	Mechanism of the anticataract effect of liposomal MgT in galactose-fed rats. Molecular Vision, 2016, 22, 734-47.	1.1	7
32	Targeted delivery of brain-derived neurotrophic factor for the treatment of blindness and deafness. International Journal of Nanomedicine, 2015, 10, 3245.	6.7	42
33	Prospects of Using Brain-Derived Neurotrophic Factor for the Treatment of Optic-Nerve Neuropathy (A Review). Pharmaceutical Chemistry Journal, 2015, 48, 699-702.	0.8	0
34	Nanoscale drug delivery systems and the blood–brain barrier. International Journal of Nanomedicine, 2014, 9, 795.	6.7	155
35	Effects of topically applied tocotrienol on cataractogenesis and lens redox status in galactosemic rats. Molecular Vision, 2014, 20, 822-35.	1.1	17
36	The Mitochondria Free Iron Content to Limit an Isotope Effect of 25Mg2+ in ATP Synthesis: A caution. Cell Biochemistry and Biophysics, 2013, 66, 417-418.	1.8	11

3

#	Article	IF	Citations
37	The tissue-specific "ferromagnetic attack―on hyperactivation of ATP synthesis by magnesium-25 in mitochondria. Magnesium Research, 2012, 25, 177-181.	0.5	3
38	Perspectives of the development of pharmaceutical nanotechnology. Russian Journal of General Chemistry, 2012, 82, 519-526.	0.8	5
39	Employment of magnet-susceptible microparticles for the targeting of drugs. Journal of Pharmacy and Pharmacology, 2011, 41, 286-288.	2.4	16
40	Preparation and evaluation of bioavailability of gatifloxacine-loaded nanoparticles. Moscow University Chemistry Bulletin, 2011, 66, 129-132.	0.6	4
41	Cytotoxic Effect of Paclitaxel Incorporated in Nanoparticles Based on Lactic and Glycolic Acid Copolymer. Bulletin of Experimental Biology and Medicine, 2011, 151, 340-343.	0.8	1
42	The porphyrin–fullerene nanoparticles to promote the ATP overproduction in myocardium: 25Mg2+-magnetic isotope effect. European Journal of Medicinal Chemistry, 2009, 44, 1554-1569.	5.5	52
43	Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. Journal of Drug Targeting, 2009, 17, 564-574.	4.4	198
44	Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80. Bulletin of Experimental Biology and Medicine, 2008, 145, 259-262.	0.8	38
45	Fullerene–Interfaced Porphyrin Ligand in Affinity Chromatography of Membrane Proteins. Chromatographia, 2008, 68, 295-298.	1.3	3
46	A fullerene C60-based ligand in a stationary phase for affine chromatography of membrane porphyrin-binding proteins. Russian Journal of Physical Chemistry A, 2008, 82, 1952-1957.	0.6	0
47	Fullerene-based Low Toxic Nanocationite Particles (Porphyrin Adducts of Cyclohexyl Fullerene-C60) to Treat Hypoxia-induced Mitochondrial Dysfunction in Mammalian Heart Muscle. Archives of Medical Research, 2008, 39, 549-559.	3.3	36
48	NEW PORPHYRIN ADDUCT OF FULLERENE- C ₆₀ : A PROMISING NANOTOOL FOR MEDICINAL USE IN THE HEART MUSCLE HYPOXIA CASES. International Journal of Nanoscience, 2008, 07, 113-135.	0.7	13
49	Covalent Linkage of Apolipoprotein E to Albumin Nanoparticles Strongly Enhances Drug Transport into the Brain. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1246-1253.	2.5	325
50	Effects of apolipoproteins on dalargin transport across the blood-brain barrier. Bulletin of Experimental Biology and Medicine, 2006, 142, 703-706.	0.8	13
51	Amino Acid Composition of Nephrophyt, a New Complex Plant Preparation and Its Possible Role in Correction of Mercuric Chloride-Induced Acute Renal Failure in Rats. Bulletin of Experimental Biology and Medicine, 2004, 137, 167-170.	0.8	0
52	Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharmaceutical Research, 2003, 20, 409-416.	3.5	404
53	Apolipoprotein-mediated Transport of Nanoparticle-bound Drugs Across the Blood-Brain Barrier. Journal of Drug Targeting, 2002, 10, 317-325.	4.4	738
54	Application of magnetic liposomes for magnetically guided transport of muscle relaxants and anti-cancer photodynamic drugs. Journal of Magnetism and Magnetic Materials, 2001, 225, 95-100.	2.3	90

#	Article	IF	CITATION
55	Using Nanoparticles to Target Drugs to the Central Nervous System. , 2000, , .		6
56	Significant entry of tubocurarine into the brain of rats by adsorption to polysorbate 80–coated polybutylcyanoacrylate nanoparticles: An <i>in situ</i> brain perfusion study. Journal of Microencapsulation, 1998, 15, 67-74.	2.8	254
57	Influence of the type of surfactant on the analgesic effects induced by the peptide dalargin after its delivery across the blood–brain barrier using surfactant-coated nanoparticles. Journal of Controlled Release, 1997, 49, 81-87.	9.9	168
58	Delivery of loperamide across the blood-brain barrier with polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Pharmaceutical Research, 1997, 14, 325-328.	3.5	321
59	Passage of peptides through the blood-brain barrier with colloidal polymer particles (nanoparticles). Brain Research, 1995, 674, 171-174.	2.2	517
60	Experimental study of magnetically controlled transport of neuromuscular blocking agents diadonium and dipyronium in animals. Bulletin of Experimental Biology and Medicine, 1986, 102, 926-928.	0.8	0
61	Effect of leucine-enkephalin on interneuronal transmission of excitation. Bulletin of Experimental Biology and Medicine, 1979, 87, 582-584.	0.8	0
62	Ocular Tissue Distribution of Topically Applied PEGylated and Non-PEGylated Liposomes. Advanced Materials Research, 0, 832, 1-8.	0.3	4