Cyril Popov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4620044/publications.pdf

Version: 2024-02-01

430442 552369 64 855 18 26 citations h-index g-index papers 68 68 68 1056 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Optical and Spin Properties of NV Center Ensembles in Diamond Nano-Pillars. Nanomaterials, 2022, 12, 1516.	1.9	5
2	Recent Progress in Synthesis and Application of Nanosized and Hierarchical Mordeniteâ€"A Short Review. Catalysts, 2021, 11, 308.	1.6	22
3	Influence of surface termination of ultrananocrystalline diamond films coated on titanium on response of human osteoblast cells: A proteome study. Materials Science and Engineering C, 2021, 128, 112289.	3.8	5
4	Processing of high-grade zeolite nanocomposites from solid fuel combustion by-products as critical raw materials substitutes. Manufacturing Review, 2020, 7, 22.	0.9	4
5	Fabrication and Characterization of Single-Crystal Diamond Membranes for Quantum Photonics with Tunable Microcavities. Micromachines, 2020, 11, 1080.	1.4	8
6	Progress in the Utilization of Coal Fly Ash by Conversion to Zeolites with Green Energy Applications. Materials, 2020, 13, 2014.	1.3	24
7	Novel Ultra Localized and Dense Nitrogen Delta-Doping in Diamond for Advanced Quantum Sensing. Nano Letters, 2020, 20, 3192-3198.	4.5	16
8	Fabrication of Diamond AFM Tips for Quantum Sensing. NATO Science for Peace and Security Series B: Physics and Biophysics, 2020, , 171-185.	0.2	1
9	Enhanced Quantum Nano-Sources Based on Silicon-Vacancy Centers in Epitaxially Grown Diamond Nano-Pyramids. , 2019, , .		O
10	Development of a Planarization Process for the Fabrication of Nanocrystalline Diamond Based Photonic Structures. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900314.	0.8	3
11	Fabrication of Nanopillars on Nanocrystalline Diamond Membranes for the Incorporation of Color Centers. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1900233.	0.8	4
12	Antimicrobial propensity of ultrananocrystalline diamond films with embedded silver nanodroplets. Diamond and Related Materials, 2019, 93, 168-178.	1.8	10
13	Quantum Nano-Jewelry: Plasmonic Addressing of Single-Photon Emitters in High-Quality Diamond Nanostructures. , 2019, , .		O
14	Deterministic Arrays of Epitaxially Grown Diamond Nanopyramid <i>s</i> with Embedded Siliconâ€Vacancy Centers. Advanced Optical Materials, 2019, 7, 1800715.	3.6	20
15	Fabrication of highly dense arrays of nanocrystalline diamond nanopillars with integrated silicon-vacancy color centers during the growth. Optical Materials Express, 2019, 9, 4545.	1.6	8
16	High-quality Nanometric Quantum Source: Epitaxially Grown Diamond Nano-pyramids with Silicon-Vacancy Centers. , 2019, , .		0
17	Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach. Journal of Biological Rhythms, 2018, 33, 35-51.	1.4	24
18	Nanostructured modified ultrananocrystalline diamond surfaces as immobilization support for lipases. Diamond and Related Materials, 2018, 90, 32-39.	1.8	3

#	Article	IF	CITATIONS
19	Quantum Information Technology and Sensing Based on Color Centers in Diamond. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 193-214.	0.2	0
20	Enhancement of the light emission of color center containing nanodiamond structures. , 2018, , .		0
21	Homoepitaxial Diamond Structures with Incorporated SiV Centers. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800371.	0.8	9
22	Patterning of the surface termination of ultrananocrystalline diamond films for guided cell attachment and growth. Surface and Coatings Technology, 2017, 321, 229-235.	2.2	22
23	Strong attachment of circadian pacemaker neurons on modified ultrananocrystalline diamond surfaces. Materials Science and Engineering C, 2016, 64, 278-285.	3.8	11
24	Functionalization of nanocrystalline diamond films with phthalocyanines. Applied Surface Science, 2016, 379, 415-423.	3.1	3
25	Plasma surface fluorination of ultrananocrystalline diamond films. Surface and Coatings Technology, 2016, 302, 448-453.	2.2	12
26	Incorporation and study of SiV centers in diamond nanopillars. Diamond and Related Materials, 2016, 64, 64-69.	1.8	22
27	On the Mechanical Properties of Ultrananocrystalline Diamond/Amorphous Carbon Nanocomposite Films. Micro and Nanosystems, 2014, 6, 4-8.	0.3	0
28	Cell adhesion and growth on ultrananocrystalline diamond and diamond-like carbon films after different surface modifications. Applied Surface Science, 2014, 297, 95-102.	3.1	46
29	Investigation of diamond electrodes for photoâ€electrochemistry. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2333-2338.	0.8	9
30	Grafting of manganese phthalocyanine on nanocrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2048-2054.	0.8	12
31	Super-high-frequency SAW transducer utilizing AIN/ultrananocrystalline diamond architectures. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 1581-1586.	1.7	11
32	Reactive ion etching of nanocrystalline diamond for the fabrication of one-dimensional nanopillars. Diamond and Related Materials, 2013, 36, 58-63.	1.8	13
33	Investigation of NV centers in diamond nanocrystallites and nanopillars. Physica Status Solidi (B): Basic Research, 2013, 250, 48-50.	0.7	3
34	Comparison of the surface properties of <scp>DLC</scp> and ultrananocrystalline diamond films with respect to their bioâ€applications. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2106-2110.	0.8	12
35	Influence of the surface termination of ultrananocrystalline diamond/amorphous carbon composite films on their interaction with neurons. Diamond and Related Materials, 2012, 26, 60-65.	1.8	16
36	Low temperature growth of nanocrystalline and ultrananocrystalline diamond films: A comparison. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1664-1674.	0.8	24

#	Article	IF	Citations
37	Stability of the surface termination of differently modified ultrananocrystalline diamond/amorphous carbon composite films. Surface and Coatings Technology, 2012, 209, 184-189.	2.2	10
38	Nanocrystalline diamond containing hydrogels and coatings for acceleration of osteogenesis. Diamond and Related Materials, 2011, 20, 165-169.	1.8	17
39	Plasma amination of ultrananocrystalline diamond/amorphous carbon composite films for the attachment of biomolecules. Diamond and Related Materials, 2011, 20, 254-258.	1.8	24
40	Surface Development of (As2S3)1–x (AgI)x Thin Films for Gas Sensor Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 203-209.	0.2	0
41	UNCD/a-C nanocomposite films for biotechnological applications. Surface and Coatings Technology, 2011, 206, 667-675.	2.2	13
42	Tribological properties of ultrananocrystalline diamond films in various test atmosphere. Tribology International, 2011, 44, 2042-2049.	3.0	38
43	Optical studies of (AsSe)100â^'x Sb x thin films. Applied Physics A: Materials Science and Processing, 2011, 104, 959-962.	1.1	2
44	On the development of the morphology of ultrananocrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 70-80.	0.8	20
45	Nanocrystalline Diamond Films for Biosensor Applications. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 447-462.	0.2	3
46	Gas Sensor Based on Chalcohalide Agl-Containing Glasses. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 423-426.	0.2	0
47	Electrical properties of ultrananocrystalline diamond/amorphous carbon nanocomposite films. Diamond and Related Materials, 2010, 19, 449-452.	1.8	18
48	Ultrananocrystalline Diamond / Amorphous Carbon Composite Films – Deposition, Characterization and Applications. Solid State Phenomena, 2010, 159, 49-55.	0.3	0
49	Complex (As2S3)(100â^²)(AgI) chalcogenide glasses for gas sensors. Sensors and Actuators B: Chemical, 2009, 143, 395-399.	4.0	22
50	Structural and optical properties of ultrananocrystalline diamond / InGaAs/GaAs quantum dot structures. Thin Solid Films, 2009, 518, 1489-1492.	0.8	2
51	Spectroscopic studies of (AsSe)100â^'xAgx thin films. Applied Surface Science, 2009, 255, 9691-9694.	3.1	7
52	Characterization of pulsed laser deposited chalcogenide thin layers. Applied Surface Science, 2009, 255, 5318-5321.	3.1	16
53	Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films. Diamond and Related Materials, 2009, 18, 895-898.	1.8	29
54	Influence of the nucleation density on the structure and mechanical properties of ultrananocrystalline diamond films. Diamond and Related Materials, 2009, 18, 151-154.	1.8	15

#	Article	IF	CITATION
55	DLC coating of textile blood vessels using PLD. Applied Physics A: Materials Science and Processing, 2008, 93, 627-632.	1.1	27
56	Nanocrystalline diamond/amorphous carbon composite coatings for biomedical applications. Diamond and Related Materials, 2008, 17, 882-887.	1.8	18
57	Bioproperties of nanocrystalline diamond/amorphous carbon composite films. Diamond and Related Materials, 2007, 16, 735-739.	1.8	45
58	Some features of chalcohalide glassy Ge–S–AgI thin films. Journal of Physics and Chemistry of Solids, 2007, 68, 936-939.	1.9	3
59	Thin TiCN Films Prepared by Hybrid Magnetron-Laser Deposition. Plasma Processes and Polymers, 2007, 4, S651-S654.	1.6	6
60	On the growth mechanisms of nanocrystalline diamond films. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 203-219.	0.8	79
61	Influence of the Gas Phase Composition on Nanocrystalline Diamond Films Prepared by MWCVD. Journal of Metastable and Nanocrystalline Materials, 2005, 23, 31-34.	0.1	3
62	Synthesis of nitrogen-rich B–C–N materials from melamine and boron trichloride. Journal of Materials Science, 1998, 33, 1281-1286.	1.7	22
63	Chemical vapour deposition of BC2N films and their laser-induced etching with SF6. Thin Solid Films, 1998, 312, 99-105.	0.8	31
64	Design of Injection Feed Multiwafer Lowâ€Pressure Chemical Vapor Deposition Reactors. Journal of the Electrochemical Society, 1998, 145, 2494-2498.	1.3	1