
Tomas Gonzalez-Fernandez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619840/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	3D Bioprinting for Cartilage and Osteochondral Tissue Engineering. Advanced Healthcare Materials, 2017, 6, 1700298.	3.9	238
2	Nano-particle mediated M2 macrophage polarization enhances bone formation and MSC osteogenesis in an IL-10 dependent manner. Biomaterials, 2020, 239, 119833.	5.7	207
3	Gene Delivery of TGF-β3 and BMP2 in an MSC-Laden Alginate Hydrogel for Articular Cartilage and Endochondral Bone Tissue Engineering. Tissue Engineering - Part A, 2016, 22, 776-787.	1.6	105
4	Three-Dimensional Bioprinting of Polycaprolactone Reinforced Gene Activated Bioinks for Bone Tissue Engineering. Tissue Engineering - Part A, 2017, 23, 891-900.	1.6	98
5	Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. Journal of Controlled Release, 2019, 301, 13-27.	4.8	93
6	Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomaterialia, 2017, 55, 226-238.	4.1	65
7	Tunable fibrin-alginate interpenetrating network hydrogels to support cell spreading and network formation. Acta Biomaterialia, 2020, 108, 142-152.	4.1	55
8	Alginate-Based Bioinks for 3D Bioprinting and Fabrication of Anatomically Accurate Bone Grafts. Tissue Engineering - Part A, 2021, 27, 1168-1181.	1.6	49
9	Dual non-viral gene delivery from microparticles within 3D high-density stem cell constructs for enhanced bone tissue engineering. Biomaterials, 2018, 161, 240-255.	5.7	46
10	Bio-instructive materials for musculoskeletal regeneration. Acta Biomaterialia, 2019, 96, 20-34.	4.1	36
11	Osteogenic preconditioning in perfusion bioreactors improves vascularization and bone formation by human bone marrow aspirates. Science Advances, 2020, 6, eaay2387.	4.7	35
12	Hypoxia mimicking hydrogels to regulate the fate of transplanted stem cells. Acta Biomaterialia, 2019, 88, 314-324.	4.1	31
13	Defining hydrogel properties to instruct lineage- and cell-specific mesenchymal differentiation. Biomaterials, 2019, 189, 1-10.	5.7	29
14	Multi-peptide presentation and hydrogel mechanics jointly enhance therapeutic duo-potential of entrapped stromal cells. Biomaterials, 2020, 245, 119973.	5.7	27
15	Engineered Cell‣ecreted Extracellular Matrix Modulates Cell Spheroid Mechanosensing and Amplifies Their Response to Inductive Cues for the Formation of Mineralized Tissues. Advanced Healthcare Materials, 2022, 11, e2102337.	3.9	21
16	RALA complexed α-TCP nanoparticle delivery to mesenchymal stem cells induces bone formation in tissue engineered constructs in vitro and in vivo. Journal of Materials Chemistry B, 2017, 5, 1753-1764.	2.9	19
17	Controlled Nonâ€Viral Gene Delivery in Cartilage and Bone Repair: Current Strategies and Future Directions. Advanced Therapeutics, 2018, 1, 1800038.	1.6	18
18	Three-Dimensional Printed Stamps for the Fabrication of Patterned Microwells and High-Throughput Production of Homogeneous Cell Spheroids. 3D Printing and Additive Manufacturing, 2020, 7, 139-147.	1.4	11