Dattakumar Mhamane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619705/publications.pdf

Version: 2024-02-01

22 papers 1,239 citations

471509 17 h-index 677142 22 g-index

22 all docs 22 docs citations 22 times ranked 2599 citing authors

#	Article	IF	Citations
1	Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag ⁺ ions. Nanoscale, 2014, 6, 11664-11670.	5.6	192
2	From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chemistry, 2011, 13, 1990.	9.0	146
3	Superior lithium storage properties of α-Fe2O3 nano-assembled spindles. Nano Energy, 2013, 2, 890-896.	16.0	133
4	Doubling of photocatalytic H2 evolution from g-C3N4 via its nanocomposite formation with multiwall carbon nanotubes: Electronic and morphological effects. International Journal of Hydrogen Energy, 2012, 37, 9584-9589.	7.1	127
5	Nonaqueous Lithiumâ€lon Capacitors with High Energy Densities using Trigolâ€Reduced Graphene Oxide Nanosheets as Cathodeâ€Active Material. ChemSusChem, 2013, 6, 2240-2244.	6.8	96
6	TiO2-reduced graphene oxide nanocomposites by microwave-assisted forced hydrolysis as excellent insertion anode for Li-ion battery and capacitor. Journal of Power Sources, 2016, 327, 171-177.	7.8	93
7	Triple nanocomposites of CoMn2O4, Co3O4 and reduced graphene oxide for oxidation of aromatic alcohols. Catalysis Science and Technology, 2014, 4, 1771.	4.1	79
8	Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. Journal of Materials Chemistry A, 2016, 4, 5578-5591.	10.3	60
9	Rusted iron wire waste into high performance anode (α-Fe ₂ O ₃) for Li-ion batteries: an efficient waste management approach. Green Chemistry, 2016, 18, 1395-1404.	9.0	39
10	Trigol based reduction of graphite oxide to graphene with enhanced charge storage activity. Journal of Materials Chemistry, 2012, 22, 11140.	6.7	33
11	Hierarchically Nanoperforated Graphene as a High Performance Electrode Material for Ultracapacitors. Small, 2013, 9, 2801-2809.	10.0	33
12	Three-dimensional graphene-based spheres and crumpled balls: micro- and nano-structures, synthesis strategies, properties and applications. RSC Advances, 2016, 6, 50941-50967.	3.6	33
13	Surfactant free gram scale synthesis of mesoporous Ni(OH) ₂ â€"r-GO nanocomposite for high rate pseudocapacitor application. RSC Advances, 2014, 4, 39875.	3.6	30
14	Synthesis of LiFePO4/graphene microspheres while avoiding restacking of graphene sheet's for high-rate lithium-ion batteries. Journal of Industrial and Engineering Chemistry, 2017, 52, 251-259.	5.8	28
15	Indanthrone derived disordered graphitic carbon as promising insertion anode for sodium ion battery with long cycle life. Electrochimica Acta, 2014, 146, 218-223.	5.2	23
16	Excellent performance of Fe3O4-perforated graphene composite as promising anode in practical Li-ion configuration with LiMn2O4. Energy Storage Materials, 2015, 1, 152-157.	18.0	23
17	A comparative evaluation of differently synthesized high surface area carbons for Li-ion hybrid electrochemical supercapacitor application: Pore size distribution holds the key. Applied Materials Today, 2016, 2, 1-6.	4.3	23
18	Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Advances, 2013, 3, .	1.3	16

#	Article	IF	CITATIONS
19	Orderly meso-perforated spherical and apple-shaped 3D carbon microstructures for high-energy supercapacitors and high-capacity Li-ion battery anodes. Journal of Materials Chemistry A, 2018, 6, 6422-6434.	10.3	15
20	Graphene based nanocomposites for alloy (SnO2), and conversion (Fe3O4) type efficient anodes for Li-ion battery applications. Composites Science and Technology, 2016, 130, 88-95.	7.8	14
21	Zirconyl Nitrate as an Efficient Catalyst for Facile Synthesis of 2-Aryl-2,3-dihydroquinolin-4(1H)-one Derivatives in Aqueous ÂMedium. Synlett, 2018, 29, 235-237.	1.8	2
22	Bulk metal-derived metal oxide nanoparticles on oxidized carbon surface. Journal of Alloys and Compounds, 2018, 752, 198-205.	5.5	1