
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/46197/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurology, The, 2017, 16, 987-1048.	4.9	1,571
2	Continuous Assessment of Cerebral Autoregulation With Near-Infrared Spectroscopy in Adults After Subarachnoid Hemorrhage. Stroke, 2010, 41, 1963-1968.	1.0	673
3	Use of drains versus no drains after burr-hole evacuation of chronic subdural haematoma: a randomised controlled trial. Lancet, The, 2009, 374, 1067-1073.	6.3	564
4	Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury*. Critical Care Medicine, 2012, 40, 2456-2463.	0.4	447
5	Diffusion limited oxygen delivery following head injury*. Critical Care Medicine, 2004, 32, 1384-1390.	0.4	396
6	Limbic hypometabolism in Alzheimer's disease and mild cognitive impairment. Annals of Neurology, 2003, 54, 343-351.	2.8	369
7	Real-Time Continuous Monitoring of Cerebral Blood Flow Autoregulation Using Near-Infrared Spectroscopy in Patients Undergoing Cardiopulmonary Bypass. Stroke, 2010, 41, 1951-1956.	1.0	357
8	Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain, 2011, 134, 484-494.	3.7	326
9	Hyperventilation following head injury: Effect on ischemic burden and cerebral oxidative metabolism*. Critical Care Medicine, 2007, 35, 568-578.	0.4	306
10	Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a European prospective, multicentre, longitudinal, cohort study. Lancet Neurology, The, 2019, 18, 923-934.	4.9	304
11	Effect of hyperventilation on cerebral blood flow in traumatic head injury: Clinical relevance and monitoring correlates*. Critical Care Medicine, 2002, 30, 1950-1959.	0.4	302
12	Severe traumatic brain injury: targeted management in the intensive care unit. Lancet Neurology, The, 2017, 16, 452-464.	4.9	277
13	Cerebrovascular Reactivity Measured by Near-Infrared Spectroscopy. Stroke, 2009, 40, 1820-1826.	1.0	269
14	Consensus statement from the 2014 International Microdialysis Forum. Intensive Care Medicine, 2015, 41, 1517-1528.	3.9	263
15	Transcranial Doppler Pulsatility Index: What it is and What it Isn't. Neurocritical Care, 2012, 17, 58-66.	1.2	227
16	Effect of decompressive craniectomy on intracranial pressure and cerebrospinal compensation following traumatic brain injury. Journal of Neurosurgery, 2008, 108, 66-73.	0.9	207
17	Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: Preliminary findings*. Critical Care Medicine, 2008, 36, 273-281.	0.4	207
18	Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury*. Critical Care Medicine, 2005, 33, 189-195.	0.4	203

#	Article	IF	CITATIONS
19	Impairment of Cerebral Autoregulation Predicts Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Stroke, 2012, 43, 3230-3237.	1.0	202
20	Cerebral perfusion in sepsis-associated delirium. Critical Care, 2008, 12, R63.	2.5	191
21	Defining Ischemic Burden after Traumatic Brain Injury Using 150 PET Imaging of Cerebral Physiology. Journal of Cerebral Blood Flow and Metabolism, 2004, 24, 191-201.	2.4	187
22	Assessment of Cerebrovascular Autoregulation in Head-Injured Patients. Stroke, 2003, 34, 2404-2409.	1.0	176
23	Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurgical Focus, 2008, 25, E2.	1.0	173
24	Near-Infrared Spectroscopy can Monitor Dynamic Cerebral Autoregulation in Adults. Neurocritical Care, 2009, 10, 122-128.	1.2	171
25	Clinical relevance of cerebral autoregulation following subarachnoid haemorrhage. Nature Reviews Neurology, 2013, 9, 152-163.	4.9	162
26	Predictive value of initial computerized tomography scan, intracranial pressure, and state of autoregulation in patients with traumatic brain injury. Journal of Neurosurgery, 2006, 104, 731-737.	0.9	152
27	Impaired Autoregulation of Cerebral Blood Flow During Rewarming from Hypothermic Cardiopulmonary Bypass and Its Potential Association with Stroke. Anesthesia and Analgesia, 2010, 110, 321-328.	1.1	147
28	Regulation of the cerebral circulation: bedside assessment and clinical implications. Critical Care, 2016, 20, 129.	2.5	146
29	Noninvasive Monitoring of Cerebrovascular Reactivity with Near Infrared Spectroscopy in Head-Injured Patients. Journal of Neurotrauma, 2010, 27, 1951-1958.	1.7	142
30	Optic nerve sheath diameter on computed tomography is correlated with simultaneously measured intracranial pressure in patients with severe traumatic brain injury. Intensive Care Medicine, 2014, 40, 1267-1274.	3.9	141
31	Monitoring of Spinal Cord Perfusion Pressure in Acute Spinal Cord Injury. Critical Care Medicine, 2014, 42, 646-655.	0.4	140
32	Reliability of the Blood Flow Velocity Pulsatility Index for Assessment of Intracranial and Cerebral Perfusion Pressures in Head-Injured Patients. Neurosurgery, 2012, 71, 853-861.	0.6	134
33	Assessment of Cerebral Autoregulation Using Carotid Artery Compression. Stroke, 1996, 27, 2197-2203.	1.0	126
34	Continuous Monitoring of Cerebrovascular Pressure Reactivity After Traumatic Brain Injury in Children. Pediatrics, 2009, 124, e1205-e1212.	1.0	122
35	Patient-specific thresholds of intracranial pressure in severe traumatic brain injury. Journal of Neurosurgery, 2014, 120, 893-900.	0.9	121
36	Predicting Delayed Ischemic Deficits after Aneurysmal Subarachnoid Hemorrhage Using a Transient Hyperemic Response Test of Cerebral Autoregulation. Neurosurgery, 2000, 47, 819-826.	0.6	118

#	Article	IF	CITATIONS
37	Individualizing Thresholds of Cerebral Perfusion Pressure Using Estimated Limits of Autoregulation. Critical Care Medicine, 2017, 45, 1464-1471.	0.4	116
38	Critical Thresholds for Transcranial Doppler Indices of Cerebral Autoregulation in Traumatic Brain Injury. Neurocritical Care, 2011, 14, 188-193.	1.2	115
39	Can Cerebrovascular Reactivity Be Measured With Near-Infrared Spectroscopy?. Stroke, 1995, 26, 2285-2292.	1.0	115
40	Impaired cerebral autoregulation: measurement and application to stroke. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 520-531.	0.9	114
41	The Relationship Between Cerebral Blood Flow Autoregulation and Cerebrovascular Pressure Reactivity After Traumatic Brain Injury. Neurosurgery, 2012, 71, 652-661.	0.6	111
42	Assessment of cerebrospinal fluid outflow resistance. Medical and Biological Engineering and Computing, 2007, 45, 719-735.	1.6	108
43	Cerebral blood flow and cerebrovascular autoregulation in a swine model of pediatric cardiac arrest and hypothermia*. Critical Care Medicine, 2011, 39, 2337-2345.	0.4	106
44	Optimal Cerebral Perfusion Pressure Management at Bedside: A Single-Center Pilot Study. Neurocritical Care, 2015, 23, 92-102.	1.2	103
45	Intracranial Pressure: More Than a Number. Neurosurgical Focus, 2007, 22, 1-7.	1.0	99
46	The Burden of Brain Hypoxia and Optimal Mean Arterial Pressure in Patients With Hypoxic Ischemic Brain Injury After Cardiac Arrest*. Critical Care Medicine, 2019, 47, 960-969.	0.4	97
47	Feasibility of individualised severe traumatic brain injury management using an automated assessment of optimal cerebral perfusion pressure: the COGiTATE phase II study protocol. BMJ Open, 2019, 9, e030727.	0.8	94
48	Twenty-Five Years of Intracranial Pressure Monitoring After Severe Traumatic Brain Injury: A Retrospective, Single-Center Analysis. Neurosurgery, 2019, 85, E75-E82.	0.6	92
49	Continuous Monitoring of Cerebrovascular Reactivity Using Pulse Waveform of Intracranial Pressure. Neurocritical Care, 2012, 17, 67-76.	1.2	91
50	Clinical Evaluation of Near-Infrared Spectroscopy for Testing Cerebrovascular Reactivity in Patients With Carotid Artery Disease. Stroke, 1997, 28, 331-338.	1.0	89
51	Targeting Autoregulation-Guided Cerebral Perfusion Pressure after Traumatic Brain Injury (COGiTATE): A Feasibility Randomized Controlled Clinical Trial. Journal of Neurotrauma, 2021, 38, 2790-2800.	1.7	88
52	Intersubject Variability and Reproducibility of 15O PET Studies. Journal of Cerebral Blood Flow and Metabolism, 2006, 26, 48-57.	2.4	85
53	What Shapes Pulse Amplitude of Intracranial Pressure?. Journal of Neurotrauma, 2010, 27, 317-324.	1.7	84
54	Monitoring cerebral autoregulation after head injury. Which component of transcranial Doppler flow velocity is optimal?. Neurocritical Care, 2012, 17, 211-218.	1.2	84

#	Article	IF	CITATIONS
55	Cerebral Autoregulation after Subarachnoid Hemorrhage: Comparison of Three Methods. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 449-456.	2.4	82
56	Critical Thresholds of Intracranial Pressure-Derived Continuous Cerebrovascular Reactivity Indices for Outcome Prediction in Noncraniectomized Patients with Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1107-1115.	1.7	77
57	Prospective Study on Noninvasive Assessment of Intracranial Pressure in Traumatic Brain-Injured Patients: Comparison of Four Methods. Journal of Neurotrauma, 2016, 33, 792-802.	1.7	74
58	Predictors of Outcome With Cerebral Autoregulation Monitoring: A Systematic Review and Meta-Analysis. Critical Care Medicine, 2017, 45, 695-704.	0.4	74
59	INDEX OF CEREBROSPINAL COMPENSATORY RESERVE IN HYDROCEPHALUS. Neurosurgery, 2009, 64, 494-502.	0.6	73
60	Complexity of intracranial pressure correlates with outcome after traumatic brain injury. Brain, 2012, 135, 2399-2408.	3.7	73
61	The Lower Limit of Cerebral Blood Flow Autoregulation Is Increased with Elevated Intracranial Pressure. Anesthesia and Analgesia, 2009, 108, 1278-1283.	1.1	72
62	The frequency response of cerebral autoregulation. Journal of Applied Physiology, 2013, 115, 52-56.	1.2	72
63	Responses of Posttraumatic Pericontusional Cerebral Blood Flow and Blood Volume to an Increase in Cerebral Perfusion Pressure. Journal of Cerebral Blood Flow and Metabolism, 2003, 23, 1371-1377.	2.4	71
64	Critical Closing Pressure Determined with a Model of Cerebrovascular Impedance. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 235-243.	2.4	71
65	Renovascular reactivity measured by near-infrared spectroscopy. Journal of Applied Physiology, 2012, 113, 307-314.	1.2	70
66	Comparison of Frequency and Time Domain Methods of Assessment of Cerebral Autoregulation in Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 248-256.	2.4	69
67	Continuous time-domain monitoring of cerebral autoregulation in neurocritical care. Medical Engineering and Physics, 2014, 36, 638-645.	0.8	68
68	Continuous Autoregulatory Indices Derived from Multi-Modal Monitoring: Each One Is Not Like the Other. Journal of Neurotrauma, 2017, 34, 3070-3080.	1.7	67
69	Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part II: A Scoping Review of Continuous Methods. Journal of Neurotrauma, 2017, 34, 3224-3237.	1.7	67
70	Magnetic field interactions in adjustable hydrocephalus shunts. Journal of Neurosurgery: Pediatrics, 2008, 2, 222-228.	0.8	64
71	Using the relationship between brain tissue regional saturation of oxygen and mean arterial pressure to determine the optimal mean arterial pressure in patients following cardiac arrest: A pilot proof-of-concept study. Resuscitation, 2016, 106, 120-125.	1.3	63
72	"Optimal Cerebral Perfusion Pressure―in Poor Grade Patients After Subarachnoid Hemorrhage. Neurocritical Care, 2010, 13, 17-23.	1.2	62

#	Article	IF	CITATIONS
73	Autonomic Impairment in Severe Traumatic Brain Injury: A Multimodal Neuromonitoring Study. Critical Care Medicine, 2016, 44, 1173-1181.	0.4	61
74	Internal and External Carotid Contributions to Near-Infrared Spectroscopy During Carotid Endarterectomy. Stroke, 1997, 28, 906-911.	1.0	60
75	Temporal profile of intracranial pressure and cerebrovascular reactivity in severe traumatic brain injury and association with fatal outcome: An observational study. PLoS Medicine, 2017, 14, e1002353.	3.9	59
76	The monitoring of relative changes in compartmental compliances of brain. Physiological Measurement, 2009, 30, 647-659.	1.2	58
77	The Limitations of Near-Infrared Spectroscopy to Assess Cerebrovascular Reactivity. Anesthesia and Analgesia, 2011, 113, 849-857.	1.1	58
78	Intraspinal pressure and spinal cord perfusion pressure after spinal cord injury: an observational study. Journal of Neurosurgery: Spine, 2015, 23, 763-771.	0.9	58
79	Impact of duration and magnitude of raised intracranial pressure on outcome after severe traumatic brain injury: A CENTER-TBI high-resolution group study. PLoS ONE, 2020, 15, e0243427.	1.1	58
80	Univariate comparison of performance of different cerebrovascular reactivity indices for outcome association in adult TBI: a CENTER-TBI study. Acta Neurochirurgica, 2019, 161, 1217-1227.	0.9	56
81	Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure–flow relation: The CARNet study. Medical Engineering and Physics, 2014, 36, 620-627.	0.8	53
82	Continuous cerebrovascular reactivity monitoring in moderate/severe traumatic brain injury: a narrative review of advances in neurocritical care. British Journal of Anaesthesia, 2020, 124, 440-453.	1.5	53
83	A comparison of non-invasive versus invasive measures of intracranial pressure in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation, 2019, 137, 221-228.	1.3	52
84	Noninvasive Autoregulation Monitoring in a Swine Model of Pediatric Cardiac Arrest. Anesthesia and Analgesia, 2012, 114, 825-836.	1.1	51
85	Monitoring of Cerebrovascular Reactivity for Determination of Optimal Blood Pressure in Preterm Infants. Journal of Pediatrics, 2015, 167, 86-91.	0.9	50
86	A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. Journal of Neurosurgery, 2015, 123, 638-648.	0.9	50
87	Pressure reactivity index: journey through the past 20Âyears. Acta Neurochirurgica, 2017, 159, 2063-2065.	0.9	50
88	Comparison of Performance of Different Optimal Cerebral Perfusion Pressure Parameters for Outcome Prediction in Adult Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. Journal of Neurotrauma, 2019, 36, 1505-1517.	1.7	50
89	Association between Cerebrovascular Reactivity Monitoring and Mortality Is Preserved When Adjusting for Baseline Admission Characteristics in Adult Traumatic Brain Injury: A CENTER-TBI Study. Journal of Neurotrauma, 2020, 37, 1233-1241.	1.7	50
90	Continuous Multimodality Monitoring in Children after Traumatic Brain Injury—Preliminary Experience. PLoS ONE, 2016, 11, e0148817.	1.1	49

#	Article	IF	CITATIONS
91	Sustained moderate reductions in arterial CO2 after brain trauma Time-course of cerebral blood flow velocity and intracranial pressure. Intensive Care Medicine, 2004, 30, 2180-2187.	3.9	48
92	Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: A retrospective study. PLoS Medicine, 2017, 14, e1002348.	3.9	48
93	Validation of Intracranial Pressure-Derived Cerebrovascular Reactivity Indices against the Lower Limit of Autoregulation, Part II: Experimental Model of Arterial Hypotension. Journal of Neurotrauma, 2018, 35, 2812-2819.	1.7	47
94	Patient-specific ICP Epidemiologic Thresholds in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. Journal of Neurosurgical Anesthesiology, 2021, 33, 28-38.	0.6	47
95	Validation of Pressure Reactivity and Pulse Amplitude Indices against the Lower Limit of Autoregulation, Part I: Experimental Intracranial Hypertension. Journal of Neurotrauma, 2018, 35, 2803-2811.	1.7	46
96	Monitoring of Optimal Cerebral Perfusion Pressure in Traumatic Brain Injured Patients Using a Multi-Window Weighting Algorithm. Journal of Neurotrauma, 2017, 34, 3081-3088.	1.7	45
97	Continuous Monitoring and Visualization of Optimum Spinal Cord Perfusion Pressure in Patients with Acute Cord Injury. Journal of Neurotrauma, 2017, 34, 2941-2949.	1.7	44
98	Cerebrovascular reactivity is not associated with therapeutic intensity in adult traumatic brain injury: a CENTER-TBI analysis. Acta Neurochirurgica, 2019, 161, 1955-1964.	0.9	44
99	Noninvasive Autoregulation Monitoring with and without Intracranial Pressure in the NaÃ ⁻ ve Piglet Brain. Anesthesia and Analgesia, 2010, 111, 191-195.	1.1	42
100	A Description of a New Continuous Physiological Index in Traumatic Brain Injury Using the Correlation between Pulse Amplitude of Intracranial Pressure and Cerebral Perfusion Pressure. Journal of Neurotrauma, 2018, 35, 963-974.	1.7	42
101	Cessation of Diastolic Cerebral Blood Flow Velocity: The Role of Critical Closing Pressure. Neurocritical Care, 2014, 20, 40-48.	1.2	41
102	Model-based Indices Describing Cerebrovascular Dynamics. Neurocritical Care, 2014, 20, 142-157.	1.2	41
103	Transcranial Doppler Systolic Flow Index and ICP-Derived Cerebrovascular Reactivity Indices in Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 314-322.	1.7	41
104	Bilateral Failure of Cerebral Autoregulation is Related to Unfavorable Outcome After Subarachnoid Hemorrhage. Neurocritical Care, 2015, 22, 65-73.	1.2	40
105	Clinical and Physiological Events That Contribute to the Success Rate of Finding "Optimal―Cerebral Perfusion Pressure in Severe Brain Trauma Patients. Critical Care Medicine, 2015, 43, 1952-1963.	0.4	38
106	Validation of a New Noninvasive Intracranial Pressure Monitoring Method by Direct Comparison with an Invasive Technique. Acta Neurochirurgica Supplementum, 2016, 122, 93-96.	0.5	38
107	Pressure Autoregulation Measurement Techniques in Adult Traumatic Brain Injury, Part I: A Scoping Review of Intermittent/Semi-Intermittent Methods. Journal of Neurotrauma, 2017, 34, 3207-3223.	1.7	38
108	The Effect of Red Blood Cell Transfusion on Cerebral Autoregulation in Patients with Severe Traumatic Brain Injury. Neurocritical Care, 2015, 23, 210-216.	1.2	37

#	Article	IF	CITATIONS
109	Reactivity of Brain Tissue Oxygen to Change in Cerebral Perfusion Pressure in Head Injured Patients. Neurocritical Care, 2009, 10, 274-279.	1.2	36
110	Positive end-expiratory pressure oscillation facilitates brain vascular reactivity monitoring. Journal of Applied Physiology, 2012, 113, 1362-1368.	1.2	36
111	Kidney-Brain Link in Traumatic Brain Injury Patients? A preliminary report. Neurocritical Care, 2015, 22, 192-201.	1.2	36
112	Short pressure reactivity index versus long pressure reactivity index in the management of traumatic brain injury. Journal of Neurosurgery, 2015, 122, 588-594.	0.9	36
113	Post-Traumatic Multimodal Brain Monitoring: Response to Hypertonic Saline. Journal of Neurotrauma, 2014, 31, 1872-1880.	1.7	35
114	Non-invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. Acta Neurochirurgica Supplementum, 2018, 126, 69-73.	0.5	35
115	Critical Closing Pressure During Intracranial Pressure Plateau Waves. Neurocritical Care, 2013, 18, 341-348.	1.2	34
116	Effect of frailty on 6-month outcome after traumatic brain injury: a multicentre cohort study with external validation. Lancet Neurology, The, 2022, 21, 153-162.	4.9	34
117	Effect of Hyper- and Hypocapnia on Cerebral Arterial Compliance in Normal Subjects. , 2011, 21, 121-125.		33
118	Cerebrovascular Signal Complexity Six Hours after Intensive Care Unit Admission Correlates with Outcome after Severe Traumatic Brain Injury. Journal of Neurotrauma, 2016, 33, 2011-2018.	1.7	33
119	Genetic drivers of cerebral blood flow dysfunction in TBI: a speculative synthesis. Nature Reviews Neurology, 2019, 15, 25-39.	4.9	33
120	Vasospasm Shortens Cerebral Arterial Time Constant. Neurocritical Care, 2012, 16, 213-218.	1.2	32
121	Doppler Non-invasive Monitoring of ICP in an Animal Model of Acute Intracranial Hypertension. Neurocritical Care, 2015, 23, 419-426.	1.2	32
122	Early Asymmetric Cardio-Cerebral Causality and Outcome after Severe Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 2743-2752.	1.7	31
123	Transcranial Doppler Monitoring of Intracranial Pressure Plateau Waves. Neurocritical Care, 2017, 26, 330-338.	1.2	31
124	Non-Invasively Estimated ICP Pulse Amplitude Strongly Correlates with Outcome After TBI. Acta Neurochirurgica Supplementum, 2012, 114, 121-125.	0.5	31
125	Pressures, Flow, and Brain Oxygenation During Plateau Waves of Intracranial Pressure. Neurocritical Care, 2014, 21, 124-132.	1.2	30
126	Optic nerve sheath diameter ultrasonography at admission as a predictor of intracranial hypertension in traumatic brain injured patients: a prospective observational study. Journal of Neurosurgery, 2020, 132, 1279-1285.	0.9	30

#	Article	IF	CITATIONS
127	Time Constant of the Cerebral Arterial Bed in Normal Subjects. Ultrasound in Medicine and Biology, 2012, 38, 1129-1137.	0.7	29
128	Enhanced Visualization of Optimal Cerebral Perfusion Pressure Over Time to Support Clinical Decision Making*. Critical Care Medicine, 2016, 44, e996-e999.	0.4	29
129	Intracranial and Extracranial Injury Burden as Drivers of Impaired Cerebrovascular Reactivity in Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 1569-1577.	1.7	29
130	Brain Tissue Oxygen and Cerebrovascular Reactivity in Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Exploratory Analysis of Insult Burden. Journal of Neurotrauma, 2020, 37, 1854-1863.	1.7	29
131	Serum metabolome associated with severity of acute traumatic brain injury. Nature Communications, 2022, 13, 2545.	5.8	29
132	Optimal Mean Arterial Blood Pressure in Extremely Preterm Infants within the First 24 Hours of Life. Journal of Pediatrics, 2018, 203, 242-248.	0.9	28
133	Optimal cerebral perfusion pressure via transcranial Doppler in TBI: application of robotic technology. Acta Neurochirurgica, 2018, 160, 2149-2157.	0.9	27
134	Non-Invasive Pressure Reactivity Index Using Doppler Systolic Flow Parameters: A Pilot Analysis. Journal of Neurotrauma, 2019, 36, 713-720.	1.7	27
135	Compliance of the cerebrospinal space: comparison of three methods. Acta Neurochirurgica, 2021, 163, 1979-1989.	0.9	27
136	A synopsis of brain pressures: which? when? are they all useful?. Neurological Research, 2007, 29, 672-679.	0.6	26
137	A comparison study of cerebral autoregulation assessed with transcranial Doppler and cortical laser Doppler flowmetry. Neurological Research, 2010, 32, 425-428.	0.6	26
138	An Association Between ICP-Derived Data and Outcome in TBI Patients: The Role of Sample Size. Neurocritical Care, 2017, 27, 103-107.	1.2	26
139	Estimating Pressure Reactivity Using Noninvasive Doppler-Based Systolic Flow Index. Journal of Neurotrauma, 2018, 35, 1559-1568.	1.7	26
140	Heart rate variability is associated with outcome in spontaneous intracerebral hemorrhage. Journal of Critical Care, 2018, 48, 85-89.	1.0	26
141	Continuous Monitoring of Cerebral Autoregulation in Children Supported by Extracorporeal Membrane Oxygenation: A Pilot Study. Neurocritical Care, 2021, 34, 935-945.	1.2	26
142	Time Constant of the Cerebral Arterial Bed. Acta Neurochirurgica Supplementum, 2012, 114, 17-21.	0.5	26
143	ICM+: A Versatile Software for Assessment of CSF Dynamics. Acta Neurochirurgica Supplementum, 2012, 114, 75-79.	0.5	25
144	Multimodality neuromonitoring in severe pediatric traumatic brain injury. Pediatric Research, 2018, 83, 41-49.	1.1	25

#	Article	IF	CITATIONS
145	Measurement of Intraspinal Pressure After Spinal Cord Injury: Technical Note from the Injured Spinal Cord Pressure Evaluation Study. Acta Neurochirurgica Supplementum, 2016, 122, 323-328.	0.5	24
146	Cerebral haemodynamics during experimental intracranial hypertension. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 694-705.	2.4	24
147	Impaired cerebral compensatory reserve is associated with admission imaging characteristics of diffuse insult in traumatic brain injury. Acta Neurochirurgica, 2018, 160, 2277-2287.	0.9	24
148	Integrated image analysis solutions for PET datasets in damaged brain. Journal of Clinical Monitoring and Computing, 2002, 17, 427-440.	0.7	23
149	Increased Blood Glucose is Related to Disturbed Cerebrovascular Pressure Reactivity After Traumatic Brain Injury. Neurocritical Care, 2015, 22, 20-25.	1.2	23
150	Statistical Cerebrovascular Reactivity Signal Properties after Secondary Decompressive Craniectomy in Traumatic Brain Injury: A CENTER-TBI Pilot Analysis. Journal of Neurotrauma, 2020, 37, 1306-1314.	1.7	23
151	Characterising the dynamics of cerebral metabolic dysfunction following traumatic brain injury: A microdialysis study in 619 patients. PLoS ONE, 2021, 16, e0260291.	1.1	23
152	Critical Closing Pressure: Comparison of Three Methods. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 987-993.	2.4	22
153	Relationship of Vascular Wall Tension and Autoregulation Following Traumatic Brain Injury. Neurocritical Care, 2014, 21, 266-274.	1.2	22
154	Principles of cerebral hemodynamics when intracranial pressure is raised. Journal of Hypertension, 2015, 33, 1233-1241.	0.3	22
155	Observation of Autoregulation Indices During Ventricular CSF Drainage After Aneurysmal Subarachnoid Hemorrhage: A Pilot Study. Neurocritical Care, 2015, 23, 347-354.	1.2	21
156	Complexity of brain signals is associated with outcome in preterm infants. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3368-3379.	2.4	21
157	Cerebral autoregulation monitoring in acute traumatic brain injury: what's the evidence?. Minerva Anestesiologica, 2017, 83, 844-857.	0.6	21
158	Relationship Between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute TBI Patients: an Exploratory Analysis. Neurocritical Care, 2020, 32, 373-382.	1.2	21
159	Transient Changes in Brain Tissue Oxygen in Response to Modifications of Cerebral Perfusion Pressure: An Observational Study. Anesthesia and Analgesia, 2010, 110, 165-173.	1.1	20
160	A Continuous Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity Reflects Cerebral Autoregulation Impairment During Intracranial Pressure Plateau Waves. Neurocritical Care, 2014, 21, 514-525.	1.2	20
161	Compensatory-reserve-weighted intracranial pressure versus intracranial pressure for outcome association in adult traumatic brain injury: a CENTER-TBI validation study. Acta Neurochirurgica, 2019, 161, 1275-1284.	0.9	20
162	Low-resolution pressure reactivity index and its derived optimal cerebral perfusion pressure in adult traumatic brain injury: a CENTER-TBI study. Critical Care, 2020, 24, 266.	2.5	20

#	Article	IF	CITATIONS
163	Determining Thresholds for Three Indices of Autoregulation to Identify the Lower Limit of Autoregulation During Cardiac Surgery*. Critical Care Medicine, 2021, 49, 650-660.	0.4	20
164	Reduced complexity of intracranial pressure observed in short time series of intracranial hypertension following traumatic brain injury in adults. Journal of Clinical Monitoring and Computing, 2013, 27, 395-403.	0.7	19
165	Assessment of cerebral autoregulation indices – a modelling perspective. Scientific Reports, 2020, 10, 9600.	1.6	19
166	Monitoring of the Association Between Cerebral Blood Flow Velocity and Intracranial Pressure. Acta Neurochirurgica Supplementum, 2012, 114, 147-151.	0.5	19
167	Title is missing!. Journal of Clinical Monitoring and Computing, 1997, 14, 185-198.	0.3	19
168	Elevated Diastolic Closing Margin Is Associated with Intraventricular Hemorrhage in Premature Infants. Journal of Pediatrics, 2016, 174, 52-56.	0.9	18
169	Wavelet pressure reactivity index: a validation study. Journal of Physiology, 2018, 596, 2797-2809.	1.3	18
170	Changes in hemodynamics, cerebral oxygenation and cerebrovascular reactivity during the early transitional circulation in preterm infants. Pediatric Research, 2019, 86, 247-253.	1.1	18
171	Observations on the Cerebral Effects of Refractory Intracranial Hypertension After Severe Traumatic Brain Injury. Neurocritical Care, 2020, 32, 437-447.	1.2	18
172	Cerebral autoregulation in the operating room and intensive care unit after cardiac surgery. British Journal of Anaesthesia, 2021, 126, 967-974.	1.5	18
173	Monitoring Cerebral Autoregulation After Subarachnoid Hemorrhage. Acta Neurochirurgica Supplementum, 2016, 122, 199-203.	0.5	18
174	Optimal Cerebral Perfusion Pressure in Centers With Different Treatment Protocols. Critical Care Medicine, 2018, 46, e235-e241.	0.4	17
175	Treatment targets based on autoregulation parameters in neurocritical care patients. Current Opinion in Critical Care, 2020, 26, 109-114.	1.6	17
176	Diffuse Intracranial Injury Patterns Are Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A CENTER-TBI Validation Study. Journal of Neurotrauma, 2020, 37, 1597-1608.	1.7	17
177	Predictive and Discriminative Power of Pressure Reactivity Indices in Traumatic Brain Injury. Neurosurgery, 2020, 87, 655-663.	0.6	17
178	Ontogeny of cerebrovascular critical closing pressure. Pediatric Research, 2015, 78, 71-75.	1.1	16
179	Critical thresholds for intracranial pressure vary over time in non-craniectomised traumatic brain injury patients. Acta Neurochirurgica, 2018, 160, 1315-1324.	0.9	16
180	Association Between Physiologic Signal Complexity and Outcomes in Moderate and Severe Traumatic Brain Injury: A CENTER-TBI Exploratory Analysis of Multiscale Entropy. Journal of Neurotrauma, 2021, 38, 272-282.	1.7	16

#	Article	IF	CITATIONS
181	Relationship between Measures of Cerebrovascular Reactivity and Intracranial Lesion Progression in Acute Traumatic Brain Injury Patients: A CENTER-TBI Study. Journal of Neurotrauma, 2020, 37, 1556-1565.	1.7	16
182	Novel index for predicting mortality during the first 24 hours after traumatic brain injury. Journal of Neurosurgery, 2019, 131, 1887-1895.	0.9	16
183	A computing system for the clinical and experimental investigation of cerebrovascular reactivity. Journal of Clinical Monitoring and Computing, 1997, 14, 185-198.	0.3	15
184	Changes in Cerebral Compartmental Compliances during Mild Hypocapnia in Patients with Traumatic Brain Injury. Journal of Neurotrauma, 2011, 28, 889-896.	1.7	15
185	Validation of a New Minimally Invasive Intracranial Pressure Monitoring Method by Direct Comparison with an Invasive Technique. Acta Neurochirurgica Supplementum, 2016, 122, 97-100.	0.5	15
186	Relationship Between Brain Pulsatility and Cerebral Perfusion Pressure: Replicated Validation Using Different Drivers of CPP Change. Neurocritical Care, 2017, 27, 392-400.	1.2	15
187	Medical Device Connectivity Challenges Outline the Technical Requirements and Standards For Promoting Big Data Research and Personalized Medicine in Neurocritical Care. Military Medicine, 2018, 183, 99-104.	0.4	15
188	Baroreflex sensitivity and heart rate variability are predictors of mortality in patients with aneurysmal subarachnoid haemorrhage. Journal of the Neurological Sciences, 2018, 394, 112-119.	0.3	15
189	Brain Temperature Influences Intracranial Pressure and Cerebral Perfusion Pressure After Traumatic Brain Injury: A CENTER-TBI Study. Neurocritical Care, 2021, 35, 651-661.	1.2	15
190	Patient-Specific Thresholds and Doses of Intracranial Hypertension in Severe Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2016, 122, 117-120.	0.5	14
191	Cerebrovascular assessment of patients undergoing shoulder surgery in beach chair position using a multiparameter transcranial Doppler approach. Journal of Clinical Monitoring and Computing, 2019, 33, 615-625.	0.7	14
192	Evaluation of the relationship between slow-waves of intracranial pressure, mean arterial pressure and brain tissue oxygen in TBI: a CENTER-TBI exploratory analysis. Journal of Clinical Monitoring and Computing, 2021, 35, 711-722.	0.7	14
193	Visualising the pressure-time burden of elevated intracranial pressure after severe traumatic brain injury: a retrospective confirmatory study. British Journal of Anaesthesia, 2021, 126, e15-e17.	1.5	14
194	Cerebral critical closing pressure in hydrocephalus patients undertaking infusion tests. Neurological Research, 2015, 37, 674-682.	0.6	13
195	Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves. Neurocritical Care, 2015, 23, 85-91.	1.2	13
196	Cerebral Vasospasm Affects Arterial Critical Closing Pressure. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 285-291.	2.4	13
197	Burden of hypoxia and intraventricular haemorrhage in extremely preterm infants. Archives of Disease in Childhood: Fetal and Neonatal Edition, 2020, 105, 242-247.	1.4	13
198	Descriptive analysis of low versus elevated intracranial pressure on cerebral physiology in adult traumatic brain injury: a CENTER-TBI exploratory study. Acta Neurochirurgica, 2020, 162, 2695-2706.	0.9	13

#	Article	IF	CITATIONS
199	Systemic Markers of Injury and Injury Response Are Not Associated with Impaired Cerebrovascular Reactivity in Adult Traumatic Brain Injury: A Collaborative European Neurotrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. Journal of Neurotrauma, 2021, 38, 870-878.	1.7	13
200	The Ontogeny of Cerebrovascular Pressure Autoregulation in Premature Infants. Acta Neurochirurgica Supplementum, 2016, 122, 151-155.	0.5	13
201	Noninvasive Assessment of ICP: Evaluation of New TBI Data. Acta Neurochirurgica Supplementum, 2016, 122, 69-73.	0.5	12
202	Applying time-frequency analysis to assess cerebral autoregulation during hypercapnia. PLoS ONE, 2017, 12, e0181851.	1.1	12
203	Baroreflex Impairment After Subarachnoid Hemorrhage Is Associated With Unfavorable Outcome. Stroke, 2018, 49, 1632-1638.	1.0	12
204	Signal Information Prediction of Mortality Identifies Unique Patient Subsets after Severe Traumatic Brain Injury: A Decision-Tree Analysis Approach. Journal of Neurotrauma, 2020, 37, 1011-1019.	1.7	12
205	Near-Infrared Spectroscopy to Assess Cerebral Autoregulation and Optimal Mean Arterial Pressure in Patients With Hypoxic-Ischemic Brain Injury: A Prospective Multicenter Feasibility Study. , 2020, 2, e0217.		12
206	An Update on the COGiTATE Phase II Study: Feasibility and Safety of Targeting an Optimal Cerebral Perfusion Pressure as a Patient-Tailored Therapy in Severe Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 143-147.	0.5	12
207	Correlation Between Cerebral Autoregulation and Carbon Dioxide Reactivity in Patients with Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2016, 122, 205-209.	0.5	12
208	Artifact removal from neurophysiological signals: impact on intracranial and arterial pressure monitoring in traumatic brain injury. Journal of Neurosurgery, 2020, 132, 1952-1960.	0.9	12
209	Static Autoregulation Is Intact Early After Severe Unilateral Brain Injury in a Neonatal Swine Model. Neurosurgery, 2012, 71, 138-145.	0.6	11
210	Further Controversies About Brain Tissue Oxygenation Pressure-Reactivity After Traumatic Brain Injury. Neurocritical Care, 2018, 28, 162-168.	1.2	11
211	Management of arterial partial pressure of carbon dioxide in the first week after traumatic brain injury: results from the CENTER-TBI study. Intensive Care Medicine, 2021, 47, 961-973.	3.9	11
212	Thresholds for identifying pathological intracranial pressure in paediatric traumatic brain injury. Scientific Reports, 2019, 9, 3537.	1.6	10
213	Estimation of pulsatile cerebral arterial blood volume based on transcranial doppler signals. Medical Engineering and Physics, 2019, 74, 23-32.	0.8	10
214	HDF5-Based Data Format for Archiving Complex Neuro-monitoring Data in Traumatic Brain Injury Patients. Acta Neurochirurgica Supplementum, 2018, 126, 121-125.	0.5	10
215	Causal relationship between slow waves of arterial, intracranial pressures and blood velocity in brain. Computers in Biology and Medicine, 2021, 139, 104970.	3.9	10
216	Outcome, Pressure Reactivity and Optimal Cerebral Perfusion Pressure Calculation in Traumatic Brain Injury: A Comparison of Two Variants. Acta Neurochirurgica Supplementum, 2016, 122, 221-223.	0.5	9

#	Article	IF	CITATIONS
217	Radiological Correlates of Raised Intracranial Pressure in Children: A Review. Frontiers in Pediatrics, 2018, 6, 32.	0.9	9
218	Feasibility of Hidden Markov Models for the Description of Time-Varying Physiologic State After Severe Traumatic Brain Injury. Critical Care Medicine, 2019, 47, e880-e885.	0.4	9
219	Changes in cardiac autonomic activity during intracranial pressure plateau waves in patients with traumatic brain injury. Clinical Autonomic Research, 2019, 29, 123-126.	1.4	9
220	Comparison of wavelet and correlation indices of cerebral autoregulation in a pediatric swine model of cardiac arrest. Scientific Reports, 2020, 10, 5926.	1.6	9
221	Lower Limit of Reactivity Assessed with PRx in an Experimental Setting. Acta Neurochirurgica Supplementum, 2021, 131, 275-278.	0.5	9
222	Plateau Waves of Intracranial Pressure and Multimodal Brain Monitoring. Acta Neurochirurgica Supplementum, 2016, 122, 143-146.	0.5	8
223	Heart rate entropy is associated with mortality after intracereberal hemorrhage. Journal of the Neurological Sciences, 2020, 418, 117033.	0.3	8
224	Ventricular Volume Load Reveals the Mechanoelastic Impact of Communicating Hydrocephalus on Dynamic Cerebral Autoregulation. PLoS ONE, 2016, 11, e0158506.	1.1	8
225	Visualisation of the â€~Optimal Cerebral Perfusion' Landscape in Severe Traumatic Brain Injury Patients. Acta Neurochirurgica Supplementum, 2018, 126, 55-58.	0.5	7
226	Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation?. Journal of Clinical Monitoring and Computing, 2020, 34, 461-468.	0.7	7
227	Optimal Cerebral Perfusion Pressure Assessed with a Multi-Window Weighted Approach Adapted for Prospective Use: A Validation Study. Acta Neurochirurgica Supplementum, 2021, 131, 181-185.	0.5	7
228	Impact of Arterial Carbon Dioxide and Oxygen Content on Cerebral Autoregulation Monitoring Among Children Supported by ECMO. Neurocritical Care, 2021, 35, 480-490.	1.2	7
229	The Diastolic Closing Margin Is Associated with Intraventricular Hemorrhage in Premature Infants. Acta Neurochirurgica Supplementum, 2016, 122, 147-150.	0.5	7
230	Change in Pulsatile Cerebral Arterial Pressure and Flow Waves as a Therapeutic Strategy?. Acta Neurochirurgica Supplementum, 2016, 122, 167-170.	0.5	7
231	Derangement of Cerebral Blood Flow Autoregulation During Intracranial Pressure Plateau Waves as Detected by Time and Frequency-Based Methods. Acta Neurochirurgica Supplementum, 2016, 122, 233-238.	0.5	7
232	Simultaneous Transients of Intracranial Pressure and Heart Rate in Traumatic Brain Injury: Methods of Analysis. Acta Neurochirurgica Supplementum, 2018, 126, 147-151.	0.5	7
233	Deriving the PRx and CPPopt from 0.2-Hz Data: Establishing Generalizability to Bedmaster Users. Acta Neurochirurgica Supplementum, 2018, 126, 179-182.	0.5	7
234	Robotic Semi-Automated Transcranial Doppler Assessment of Cerebrovascular Autoregulation in Post-Concussion Syndrome: Methodological Considerations. Neurotrauma Reports, 2020, 1, 218-231.	0.5	7

#	Article	IF	CITATIONS
235	Modeling Brain–Heart Crosstalk Information in Patients with Traumatic Brain Injury. Neurocritical Care, 2022, 36, 738-750.	1.2	7
236	Comparative effectiveness of intracranial hypertension management guided by ventricular versus intraparenchymal pressure monitoring: a CENTER-TBI study. Acta Neurochirurgica, 2022, 164, 1693-1705.	0.9	7
237	Cerebrospinal compensation of pulsating cerebral blood volume in hydrocephalus. Neurological Research, 2010, 32, 587-592.	0.6	6
238	Complexity of cerebral blood flow velocity and arterial blood pressure in subarachnoid hemorrhage using time-frequency analysis. , 2015, 2015, 7700-3.		6
239	Influence of mild-moderate hypocapnia on intracranial pressure slow waves activity in TBI. Acta Neurochirurgica, 2020, 162, 345-356.	0.9	6
240	Cardiovascular and cerebrovascular responses to cardioâ€respiratory events in preterm infants during the transitional period. Journal of Physiology, 2020, 598, 4107-4119.	1.3	6
241	Autonomic Nervous System Activity during Refractory Rise in Intracranial Pressure. Journal of Neurotrauma, 2021, 38, 1662-1669.	1.7	6
242	Cerebrovascular Consequences of Elevated Intracranial Pressure After Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 43-48.	0.5	6
243	Association of transcranial Doppler blood flow velocity slow waves with delayed cerebral ischemia in patients suffering from subarachnoid hemorrhage: a retrospective study. Intensive Care Medicine Experimental, 2021, 9, 11.	0.9	6
244	Comparison of different metrics of cerebral autoregulation in association with major morbidity and mortality after cardiac surgery. British Journal of Anaesthesia, 2022, 129, 22-32.	1.5	6
245	Continuous Monitoring of the Complexity of Intracranial Pressure After Head Injury. Acta Neurochirurgica Supplementum, 2016, 122, 33-35.	0.5	5
246	Computed Tomography Indicators of Deranged Intracranial Physiology in Paediatric Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2018, 126, 29-34.	0.5	5
247	Effect of Mild Hypocapnia on Critical Closing Pressure and Other Mechanoelastic Parameters of the Cerebrospinal System. Acta Neurochirurgica Supplementum, 2018, 126, 139-142.	0.5	5
248	Validation of non-invasive cerebrovascular pressure reactivity and pulse amplitude reactivity indices in traumatic brain injury. Acta Neurochirurgica, 2020, 162, 337-344.	0.9	5
249	Midline shift in patients with closed traumatic brain injury may be driven by cerebral perfusion pressure not intracranial pressure. Journal of Neurosurgical Sciences, 2021, 65, 383-390.	0.3	5
250	Clinical determinants of cerebrovascular reactivity in very preterm infants during the transitional period. Pediatric Research, 2022, 92, 135-141.	1.1	5
251	Cerebral Critical Closing Pressure During Infusion Tests. Acta Neurochirurgica Supplementum, 2016, 122, 215-220.	0.5	4
252	Glycemia Is Related to Impaired Cerebrovascular Autoregulation after Severe Pediatric Traumatic Brain Injury: A Retrospective Observational Study. Frontiers in Pediatrics, 2017, 5, 205.	0.9	4

#	Article	IF	CITATIONS
253	Critical Closing Pressure During a Controlled Increase in Intracranial Pressure. Acta Neurochirurgica Supplementum, 2018, 126, 133-137.	0.5	4
254	Increased ICP and Its Cerebral Haemodynamic Sequelae. Acta Neurochirurgica Supplementum, 2018, 126, 47-50.	0.5	4
255	Survey in expert clinicians on the validity of automated calculation of optimal cerebral perfusion pressure. Minerva Anestesiologica, 2018, 84, 40-48.	0.6	4
256	DeepClean: Self-Supervised Artefact Rejection for Intensive Care Waveform Data Using Deep Generative Learning. Acta Neurochirurgica Supplementum, 2021, 131, 235-241.	0.5	4
257	Inducing oscillations in positive end-expiratory pressure improves assessment of cerebrovascular pressure reactivity in patients with traumatic brain injury. Journal of Applied Physiology, 2022, 133, 585-592.	1.2	4
258	Critical Thresholds for Cerebrovascular Reactivity: Facts, No Fiction!. Neurocritical Care, 2012, 17, 152-153.	1.2	3
259	Brain Oxygen Relationship to Cerebral Perfusion Pressure Depends on Tip Location and Time Window: Can Brain O2 Be an Adjunctive Modality for Determining Optimal CPP?. Acta Neurochirurgica Supplementum, 2016, 122, 133-135.	0.5	3
260	Pre-hospital Predictors of Impaired ICP Trends in Continuous Monitoring of Paediatric Traumatic Brain Injury Patients. Acta Neurochirurgica Supplementum, 2018, 126, 7-10.	0.5	3
261	Transcranial Doppler-derived indices of cerebrovascular haemodynamics are independent of depth and angle of insonation. Journal of Clinical Neuroscience, 2020, 82, 115-121.	0.8	3
262	The Effect of Temperature Increases on Brain Tissue Oxygen Tension in Patients with Traumatic Brain Injury: A Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury Substudy. Therapeutic Hypothermia and Temperature Management, 2021, 11, 122-131.	0.3	3
263	Delay of cerebral autoregulation in traumatic brain injury patients. Clinical Neurology and Neurosurgery, 2021, 202, 106478.	0.6	3
264	CSF Dynamics for Shunt Prognostication and Revision in Normal Pressure Hydrocephalus. Journal of Clinical Medicine, 2021, 10, 1711.	1.0	3
265	External Hydrocephalus After Traumatic Brain Injury: Retrospective Study of 102 Patients. Acta Neurochirurgica Supplementum, 2021, 131, 35-38.	0.5	3
266	The Ontogeny of Cerebrovascular Critical Closing Pressure. Acta Neurochirurgica Supplementum, 2016, 122, 249-253.	0.5	3
267	Mathematical Modelling of CSF Pulsatile Flow in Aqueduct Cerebri. Acta Neurochirurgica Supplementum, 2018, 126, 233-236.	0.5	3
268	Can We Cluster ICU Treatment Strategies for Traumatic Brain Injury by Hospital Treatment Preferences?. Neurocritical Care, 2021, , 1.	1.2	3
269	In Reply. Neurosurgery, 2013, 72, E320.	0.6	2
270	Patient's Clinical Presentation and CPPopt Availability: Any Association?. Acta Neurochirurgica Supplementum, 2021, 131, 167-172.	0.5	2

#	Article	IF	CITATIONS
271	Visualization of Intracranial Pressure Insults After Severe Traumatic Brain Injury: Influence of Individualized Limits of Reactivity. Acta Neurochirurgica Supplementum, 2021, 131, 7-10.	0.5	2
272	Analysis of Cardio-Cerebral Crosstalk Events in an Adult Cohort from the CENTER-TBI Study. Acta Neurochirurgica Supplementum, 2021, 131, 39-42.	0.5	2
273	Optimal Cerebral Perfusion Pressure Based on Intracranial Pressure-Derived Indices of Cerebrovascular Reactivity: Which One Is Better for Outcome Prediction in Moderate/Severe Traumatic Brain Injury?. Acta Neurochirurgica Supplementum, 2021, 131, 173-179.	0.5	2
274	Relationship Between Baroreflex and Cerebral Autoregulation in Patients With Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. Frontiers in Neurology, 2021, 12, 740338.	1.1	2
275	Plateau Waves of Intracranial Pressure and Partial Pressure of Cerebral Oxygen. Acta Neurochirurgica Supplementum, 2016, 122, 177-179.	0.5	1
276	Can interhemispheric desynchronization of cerebral blood flow anticipate upcoming vasospasm in aneurysmal subarachnoid haemorrhage patients?. Journal of Neuroscience Methods, 2019, 325, 108358.	1.3	1
277	Reply to: Optic nerve sheath diameter measurement in hypoxic ischaemic brain injury after cardiac arrest. Resuscitation, 2019, 138, 308-309.	1.3	1
278	Continuous monitoring of cerebrovascular reactivity through pulse transit time and intracranial pressure. Physiological Measurement, 2019, 40, 01LT01.	1.2	1
279	Intracranial Pressure Monitoring in Head Injury. , 2020, , 110-131.		1
280	Comparison of Two Intracranial Pressure Calculation Methods and Their Effects on the Mean Intracranial Pressure and Intracranial Pressure Dose. Acta Neurochirurgica Supplementum, 2021, 131, 31-33.	0.5	1
281	Spectral Cerebral Blood Volume Accounting for Noninvasive Estimation of Changes in Cerebral Perfusion Pressure in Patients with Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 193-199.	0.5	1
282	Methodological Consideration on Monitoring Refractory Intracranial Hypertension and Autonomic Nervous System Activity. Acta Neurochirurgica Supplementum, 2021, 131, 211-215.	0.5	1
283	Do ICP-Derived Parameters Differ in Vegetative State from Other Outcome Groups After Traumatic Brain Injury?. Acta Neurochirurgica Supplementum, 2018, 126, 17-20.	0.5	1
284	The Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity During ICP Plateau Waves. Acta Neurochirurgica Supplementum, 2016, 122, 81-83.	0.5	1
285	Technical considerations on the use of Granger causality in neuromonitoring. Brain Multiphysics, 2022, 3, 100044.	0.8	1
286	Feasibility of non-invasive neuromonitoring in general intensive care patients using a multi-parameter transcranial Doppler approach. Journal of Clinical Monitoring and Computing, 2022, 36, 1805-1815.	0.7	1
287	The authors reply. Critical Care Medicine, 2018, 46, e176.	0.4	0
288	Introducing brain-heart crosstalks information in clinical decision support systems for TBI patients, through ICM+. , 2020, , .		0

#	Article	IF	CITATIONS
289	Errors and Consequences of Inaccurate Estimation of Mean Blood Flow Velocity in Cerebral Arteries. Acta Neurochirurgica Supplementum, 2021, 131, 23-25.	0.5	0
290	Automatic Pulse Classification for Artefact Removal Using SAX Strings, a CENTER-TBI Study. Acta Neurochirurgica Supplementum, 2021, 131, 231-234.	0.5	0
291	Usability of Noninvasive Counterparts of Traditional Autoregulation Indices in Traumatic Brain Injury. Acta Neurochirurgica Supplementum, 2021, 131, 163-166.	0.5	0
292	Python-Embedded Plugin Implementation in ICM+: Novel Tools for Neuromonitoring Time Series Analysis with Examples Using CENTER-TBI Datasets. Acta Neurochirurgica Supplementum, 2021, 131, 255-260.	0.5	0
293	Cardiorespiratory Events in Infants Born Preterm during the Transitional Period. Journal of Pediatrics, 2020, 221, 32-38.e2.	0.9	0
294	Title is missing!. , 2020, 15, e0243427.		0
295	Title is missing!. , 2020, 15, e0243427.		0
296	Title is missing!. , 2020, 15, e0243427.		0
297	Title is missing!. , 2020, 15, e0243427.		0