
Anantha M Prasad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological analysis of intraspecific variability of eastern white pine (Pinus strobus) under climate change by combining provenance and demographic data. Landscape Ecology, 2022, 37, 109-128.	1.9	4
2	Defining landscape-level forest types: application of latent Dirichlet allocation to species distribution models. Landscape Ecology, 2022, 37, 1819-1837.	1.9	2
3	Spring phenological variability promoted by topography and vegetation assembly processes in a temperate forest landscape. Agricultural and Forest Meteorology, 2021, 308-309, 108578.	1.9	4
4	Combining US and Canadian forest inventories to assess habitat suitability and migration potential of 25 tree species under climate change. Diversity and Distributions, 2020, 26, 1142-1159.	1.9	33
5	Mapping Forest Composition with Landsat Time Series: An Evaluation of Seasonal Composites and Harmonic Regression. Remote Sensing, 2020, 12, 610.	1.8	30
6	Comment on $\hat{a} \in \infty$ The global tree restoration potential $\hat{a} \in \mathbf{S}$ Science, 2019, 366, .	6.0	20
7	Utilizing the density of inventory samples to define a hybrid lattice for species distribution models: DISTRIBâ€₦ for 135 eastern U.S. trees. Ecology and Evolution, 2019, 9, 8876-8899.	0.8	13
8	Analysis of Climate Change Impacts on Tree Species of the Eastern US: Results of DISTRIB-II Modeling. Forests, 2019, 10, 302.	0.9	36
9	Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests, 2019, 10, 989.	0.9	28
10	Mapping floristic gradients of forest composition using an ordination-regression approach with landsat OLI and terrain data in the Central Hardwoods region. Forest Ecology and Management, 2019, 434, 87-98.	1.4	15
11	Machine Learning for Macroscale Ecological Niche Modeling - a Multi-Model, Multi-Response Ensemble Technique for Tree Species Management Under Climate Change. , 2018, , 123-139.		6
12	Macro-scale assessment of demographic and environmental variation within genetically derived evolutionary lineages of eastern hemlock (Tsuga canadensis), an imperiled conifer of the eastern United States. Biodiversity and Conservation, 2017, 26, 2223-2249.	1.2	12
13	Multi-model comparison on the effects of climate change on tree species in the eastern U.S.: results from an enhanced niche model and process-based ecosystem and landscape models. Landscape Ecology, 2017, 32, 1327-1346.	1.9	47
14	A multistage decision support framework to guide tree species management under climate change via habitat suitability and colonization models, and a knowledge-based scoring system. Landscape Ecology, 2016, 31, 2187-2204.	1.9	20
15	Macroscale intraspecific variation and environmental heterogeneity: analysis of cold and warm zone abundance, mortality, and regeneration distributions of four eastern US tree species. Ecology and Evolution, 2015, 5, 5033-5048.	0.8	11
16	Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change. Global Change Biology, 2013, 19, 2196-2208.	4.2	41
17	Modeling tsunami damage in Aceh: a reply. Landscape Ecology, 2008, 23, 7-10.	1.9	41
18	Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management, 2008, 254, 390-406.	1.4	560

ANANTHA M PRASAD

#	Article	IF	CITATIONS
19	Using landscape analysis to assess and model tsunami damage in Aceh province, Sumatra. Landscape Ecology, 2007, 22, 323-331.	1.9	57
20	Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction. Ecosystems, 2006, 9, 181-199.	1.6	1,665
21	Predicting Potential Changes in Suitable Habitat and Distribution by 2100 for Tree Species of the Eastern United States. J Agricultural Meteorology, 2005, 61, 29-37.	0.8	21
22	How fast and far might tree species migrate in the eastern United States due to climate change?. Global Ecology and Biogeography, 2004, 13, 209-219.	2.7	232
23	Potential Changes in Tree Species Richness and Forest Community Types following Climate Change. Ecosystems, 2001, 4, 186-199.	1.6	202
24	Predicting the Potential Future Distribution of Four Tree Species in Ohio Using Current Habitat Availability and Climatic Forcing. Ecosystems, 2001, 4, 568-581.	1.6	65
25	PREDICTING ABUNDANCE OF 80 TREE SPECIES FOLLOWING CLIMATE CHANGE IN THE EASTERN UNITED STATES. Ecological Monographs, 1998, 68, 465-485.	2.4	579
26	Title is missing!. Landscape Ecology, 1997, 12, 331-348.	1.9	235
27	Use of GIS for Estimating Potential and Actual Forest Biomass for Continental South and Southeast Asia. Ecological Studies, 1994, , 67-116.	0.4	33