Francisco E Baralle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619462/publications.pdf

Version: 2024-02-01

83

all docs

82 9,931 46
papers citations h-index

83

docs citations

83 8763
times ranked citing authors

80

g-index

#	Article	IF	CITATIONS
1	Characterization and Functional Implications of the RNA Binding Properties of Nuclear Factor TDP-43, a Novel Splicing Regulator of CFTR Exon 9. Journal of Biological Chemistry, 2001, 276, 36337-36343.	3.4	577
2	Genomic variants in exons and introns: identifying the splicing spoilers. Nature Reviews Genetics, 2004, 5, 389-396.	16.3	512
3	Structural determinants of the cellular localization and shuttling of TDP-43. Journal of Cell Science, 2008, 121, 3778-3785.	2.0	493
4	TDP-43 regulates its mRNA levels through a negative feedback loop. EMBO Journal, 2011, 30, 277-288.	7.8	492
5	Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Frontiers in Bioscience - Landmark, 2008, 13, 867.	3.0	416
6	TDP-43 Binds Heterogeneous Nuclear Ribonucleoprotein A/B through Its C-terminal Tail. Journal of Biological Chemistry, 2005, 280, 37572-37584.	3.4	400
7	Influence of RNA Secondary Structure on the Pre-mRNA Splicing Process. Molecular and Cellular Biology, 2004, 24, 10505-10514.	2.3	370
8	Human, Drosophila, and C.elegans TDP43: Nucleic Acid Binding Properties and Splicing Regulatory Function. Journal of Molecular Biology, 2005, 348, 575-588.	4.2	315
9	Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nature Structural and Molecular Biology, 2013, 20, 1443-1449.	8.2	293
10	Coupling of Transcription with Alternative Splicing. Molecular Cell, 1999, 4, 251-258.	9.7	274
11	Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. Journal of Cell Biology, 2003, 162, 149-160.	5 . 2	274
12	Depletion of TDPâ€43 affects <i>Drosophila motoneurons</i> terminal synapsis and locomotive behavior. FEBS Letters, 2009, 583, 1586-1592.	2.8	266
13	An Essential Role for Fibronectin Extra Type III Domain A in Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 638-645.	5. 6	257
14	TDP-43 and FUS RNA-binding Proteins Bind Distinct Sets of Cytoplasmic Messenger RNAs and Differently Regulate Their Post-transcriptional Fate in Motoneuron-like Cells. Journal of Biological Chemistry, 2012, 287, 15635-15647.	3.4	233
15	TDP-43 regulates retinoblastoma protein phosphorylation through the repression of cyclin-dependent kinase 6 expression. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3785-3789.	7.1	214
16	Synonymous mutations in CFTR exon 12 affect splicing and are not neutral in evolution. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6368-6372.	7.1	212
17	Depletion of TDP 43 overrides the need for exonic and intronic splicing enhancers in the human apoA-II gene. Nucleic Acids Research, 2005, 33, 6000-6010.	14.5	204
18	A new type of mutation causes a splicing defect in ATM. Nature Genetics, 2002, 30, 426-429.	21.4	200

#	Article	IF	Citations
19	Functional mapping of the interaction between TDP-43 and hnRNP A2 in vivo. Nucleic Acids Research, 2009, 37, 4116-4126.	14.5	190
20	Defective splicing, disease and therapy: searching for master checkpoints in exon definition. Nucleic Acids Research, 2006, 34, 3494-3510.	14.5	189
21	Nuclear Factor TDP-43 Binds to the Polymorphic TG Repeats in CFTR Intron 8 and Causes Skipping of Exon 9: A Functional Link with Disease Penetrance. American Journal of Human Genetics, 2004, 74, 1322-1325.	6.2	176
22	New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12. Human Molecular Genetics, 2003, 12, 1111-1120.	2.9	171
23	Abnormal phosphorylation of Ser409/410 of TDPâ€43 in FTLDâ€U and ALS. FEBS Letters, 2008, 582, 2899-2904.	2.8	170
24	Splicing Factors Induce Cystic Fibrosis Transmembrane Regulator Exon 9 Skipping through a Nonevolutionary Conserved Intronic Element. Journal of Biological Chemistry, 2000, 275, 21041-21047.	3.4	160
25	TDP-43: gumming up neurons through protein–protein and protein–RNA interactions. Trends in Biochemical Sciences, 2012, 37, 237-247.	7.5	159
26	Autoregulation of TDP-43 mRNA levels involves interplay between transcription, splicing, and alternative polyA site selection. Genes and Development, 2012, 26, 1679-1684.	5.9	157
27	A role for exon sequences in alternative splicing of the human fibronection gene. Nucleic Acids Research, 1987, 15, 7725-7733.	14.5	156
28	Missense, Nonsense, and Neutral Mutations Define Juxtaposed Regulatory Elements of Splicing in Cystic Fibrosis Transmembrane Regulator Exon 9. Journal of Biological Chemistry, 2003, 278, 26580-26588.	3.4	125
29	Regulation of Fibronectin EDA Exon Alternative Splicing: Possible Role of RNA Secondary Structure for Enhancer Display. Molecular and Cellular Biology, 1999, 19, 2657-2671.	2.3	123
30	The TDPâ€43 Nâ€terminal domain structure at high resolution. FEBS Journal, 2016, 283, 1242-1260.	4.7	121
31	Functional analysis of the interaction between HCV 5'UTR and putative subunits of eukaryotic translation initiation factor elF3. Nucleic Acids Research, 1998, 26, 3179-3187.	14.5	111
32	TDP-43 Regulates Drosophila Neuromuscular Junctions Growth by Modulating Futsch/MAP1B Levels and Synaptic Microtubules Organization. PLoS ONE, 2011, 6, e17808.	2.5	108
33	Cellular Model of TAR DNA-binding Protein 43 (TDP-43) Aggregation Based on Its C-terminal Gln/Asn-rich Region. Journal of Biological Chemistry, 2012, 287, 7512-7525.	3.4	107
34	RNA Folding Affects the Recruitment of SR Proteins by Mouse and Human Polypurinic Enhancer Elements in the Fibronectin EDA Exon. Molecular and Cellular Biology, 2004, 24, 1387-1400.	2.3	106
35	Characterizing TDP-43 interaction with its RNA targets. Nucleic Acids Research, 2013, 41, 5062-5074.	14.5	92
36	Chapter 1 The Molecular Links Between TDPâ€43 Dysfunction and Neurodegeneration. Advances in Genetics, 2009, 66, 1-34.	1.8	84

#	Article	IF	CITATIONS
37	TDP43 depletion rescues aberrant CFTR exon 9 skipping. FEBS Letters, 2006, 580, 1339-1344.	2.8	73
38	An Intronic Polypyrimidine-rich Element Downstream of the Donor Site Modulates Cystic Fibrosis Transmembrane Conductance Regulator Exon 9 Alternative Splicing. Journal of Biological Chemistry, 2004, 279, 16980-16988.	3.4	72
39	TDP-43 loss of cellular function through aggregation requires additional structural determinants beyond its C-terminal Q/N prion-like domain. Human Molecular Genetics, 2015, 24, 9-20.	2.9	71
40	Functional properties and evolutionary splicing constraints on a composite exonic regulatory element of splicing in CFTR exon 12. Nucleic Acids Research, 2010, 38, 647-659.	14.5	67
41	"Structural characterization of the minimal segment of TDP-43 competent for aggregation― Archives of Biochemistry and Biophysics, 2014, 545, 53-62.	3.0	67
42	Point mutations in the N-terminal domain of transactive response DNA-binding protein 43 kDa (TDP-43) compromise its stability, dimerization, and functions. Journal of Biological Chemistry, 2017, 292, 11992-12006.	3.4	66
43	NF1mRNA biogenesis: Effect of the genomic milieu in splicing regulation of theNF1exon 37 region. FEBS Letters, 2006, 580, 4449-4456.	2.8	64
44	A Polar Mechanism Coordinates Different Regions of Alternative Splicing within a Single Gene. Molecular Cell, 2005, 19, 393-404.	9.7	63
45	The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochemical Society Transactions, 2013, 41, 1536-1540.	3.4	60
46	RNA structure is a key regulatory element in pathological ATM and CFTR pseudoexon inclusion events. Nucleic Acids Research, 2007, 35, 4369-4383.	14.5	53
47	SR protein-mediated inhibition of CFTR exon 9 inclusion: molecular characterization of the intronic splicing silencer. Nucleic Acids Research, 2007, 35, 4359-4368.	14.5	47
48	Prothrombotic Effects of Fibronectin Isoforms Containing the EDA Domain. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008, 28, 296-301.	2.4	46
49	Absence of regulated splicing of fibronectin EDA exon reduces atherosclerosis in mice. Atherosclerosis, 2008, 197, 534-540.	0.8	45
50	Role of selected mutations in the Q/N rich region of TDP-43 in EGFP-12xQ/N-induced aggregate formation. Brain Research, 2012, 1462, 139-150.	2.2	43
51	From transcriptomic to protein level changes in TDP-43 and FUS loss-of-function cell models. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 1398-1410.	1.9	38
52	The structural integrity of TDP-43ÂN-terminus is required for efficient aggregate entrapment and consequent loss of protein function. Prion, 2015, 9, 1-9.	1.8	37
53	Chronological requirements of TDP-43 function in synaptic organization and locomotive control. Neurobiology of Disease, 2014, 71, 95-109.	4.4	36
54	The intronic splicing code: multiple factors involved in ATM pseudoexon definition. EMBO Journal, 2010, 29, 749-760.	7.8	34

#	Article	IF	Citations
55	Predominance of spliceosomal complex formation over polyadenylation site selection in TDP-43 autoregulation. Nucleic Acids Research, 2014, 42, 3362-3371.	14.5	33
56	Regulation of 3′ Splice Site Selection in the 844ins68 Polymorphism of the Cystathionine β-Synthase Gene. Journal of Biological Chemistry, 2002, 277, 43821-43829.	3.4	32
57	The pathological splicing mutation c.6792C > G in <i>NF1</i> exon 37 causes a change of tenancy between antagonistic splicing factors. FEBS Letters, 2008, 582, 2231-2236.	2.8	31
58	Glial TDP-43 regulates axon wrapping, GluRIIA clustering and fly motility by autonomous and non-autonomous mechanisms. Human Molecular Genetics, 2015, 24, 6134-6145.	2.9	28
59	TDP-43 high throughput screening analyses in neurodegeneration: Advantages and pitfalls. Molecular and Cellular Neurosciences, 2013, 56, 465-474.	2.2	27
60	Mutually exclusive splicing regulates the Nav 1.6 sodium channel function through a combinatorial mechanism that involves three distinct splicing regulatory elements and their ligands. Nucleic Acids Research, 2012, 40, 6255-6269.	14.5	26
61	Targeting TDP-43 in neurodegenerative diseases. Expert Opinion on Therapeutic Targets, 2014, 18, 617-632.	3.4	25
62	An age-related reduction of brain TBPH/TDP-43 levels precedes the onset of locomotion defects in a Drosophila ALS model. Neuroscience, 2015, 311, 415-421.	2.3	25
63	Aggregate formation prevents dTDP-43 neurotoxicity in the Drosophila melanogaster eye. Neurobiology of Disease, 2014, 71, 74-80.	4.4	24
64	Immunoreactivity of chimeric proteins carrying the HIV-1 epitope IGPGRAF Correlation between predicted conformation and antigenicity. FEBS Letters, 1994, 353, 1-4.	2.8	21
65	Exon First Nucleotide Mutations in Splicing: Evaluation of In Silico Prediction Tools. PLoS ONE, 2014, 9, e89570.	2.5	17
66	Expression of RGD minus fibronectin that does not form extracellular matrix fibrils is sufficient to decrease tumor metastasis., 1998, 78, 233-241.		16
67	Another step forward for SELEXive splicing. Trends in Molecular Medicine, 2005, 11, 5-9.	6.7	16
68	From single splicing events to thousands: the ambiguous step forward in splicing research. Briefings in Functional Genomics, 2013, 12, 3-12.	2.7	16
69	A novel fly model of TDP-43 proteinopathies: N-terminus sequences combined with the Q/N domain induce protein functional loss and locomotion defects. DMM Disease Models and Mechanisms, 2016, 9, 659-69.	2.4	16
70	Can a â€~patch' in a skipped exon make the pre-mRNA splicing machine run better?. Trends in Molecular Medicine, 2003, 9, 229-232.	6.7	15
71	Interaction between the â^170 CRE and the â^150 CCAAT box is necessary for efficient activation of the fibronectin gene promoter by cAMP and ATF-2. FEBS Letters, 1999, 457, 445-451.	2.8	13
72	Cysteine residues in human lysosomal acid lipase are involved in selective cholesteryl esterase activity. Biochemical Journal, 1997, 326, 265-269.	3.7	12

#	Article	IF	CITATIONS
73	L273S missense substitution in human lysosomal acid lipase creates a newN-glycosylation site. FEBS Letters, 1996, 397, 79-82.	2.8	9
74	Alternative splicing of a previously unidentified CFTR exon introduces an in-frame stop codon 5' of the R region. FEBS Letters, 1993, 329, 159-162.	2.8	7
75	Physiological tissue-specific and age-related reduction of mouse TDP-43 levels is regulated by epigenetic modifications. DMM Disease Models and Mechanisms, 2022, , .	2.4	7
76	A novel anti-aldolase C antibody specifically interacts with residues 85–102 of the protein. MAbs, 2014, 6, 707-716.	5.2	6
77	Absence of <scp>TDP</scp> â€43 is difficult to digest. EMBO Journal, 2016, 35, 115-117.	7.8	6
78	Origin and evolution of the c.844_845ins68/c.833T>C mutations within the cystathionine βâ€synthase gene in great apes. FEBS Letters, 2008, 582, 423-426.	2.8	5
79	Thioridazine reverts the phenotype in cellular and Drosophila models of amyotrophic lateral sclerosis by enhancing TDP-43 aggregate clearance. Neurobiology of Disease, 2021, 160, 105515.	4.4	5
80	Analysis of Human Splicing Defects Using Hybrid Minigenes., 2010,, 155-169.		2
81	Evolutionary Connections between Coding and Splicing Regulatory Regions in the Fibronectin EDA Exon. Journal of Molecular Biology, 2011, 411, 1-15.	4.2	1
82	RNA and splicing regulation in neurodegeneration. Molecular and Cellular Neurosciences, 2013, 56, 404-405.	2.2	1