
Jiangping Tu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619143/publications.pdf Version: 2024-02-01

Ιμνορινό Τι

#	Article	IF	CITATIONS
1	Ultrafast Synthesis of Iâ€Rich Lithium Argyrodite Glass–Ceramic Electrolyte with High Ionic Conductivity. Advanced Materials, 2022, 34, e2107346.	21.0	34
2	Optimizing quasi-solid-state sodium storage performance of Na3V2(PO4)2F2.5O0.5 cathode by structural design plus nitrogen doping. Chemical Engineering Journal, 2022, 433, 133557.	12.7	6
3	Ionic Liquid-Impregnated ZIF-8/Polypropylene Solid-like Electrolyte for Dendrite-free Lithium-Metal Batteries. ACS Applied Materials & Interfaces, 2022, 14, 6859-6868.	8.0	31
4	A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery. Chemical Engineering Journal, 2022, 435, 135030.	12.7	29
5	High Performance Single-Crystal Ni-Rich Cathode Modification via Crystalline LLTO Nanocoating for All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2022, 14, 726-735.	8.0	27
6	In-situ generated Li3N/Li-Al alloy in reduced graphene oxide framework optimizing ultra-thin lithium metal electrode for solid-state batteries. Energy Storage Materials, 2022, 49, 546-554.	18.0	24
7	Nitrogen doped vertical graphene as metal-free electrocatalyst for hydrogen evolution reaction. Materials Research Bulletin, 2021, 134, 111094.	5.2	30
8	<i>In situ</i> formation of a Li ₃ N-rich interface between lithium and argyrodite solid electrolyte enabled by nitrogen doping. Journal of Materials Chemistry A, 2021, 9, 13531-13539.	10.3	62
9	Sodium-storage behavior of electron-rich element-doped amorphous carbon. Applied Physics Reviews, 2021, 8, .	11.3	22
10	Selfâ€Healing Properties of Alkali Metals under "Highâ€Energy Conditions―in Batteries. Advanced Energy Materials, 2021, 11, 2100470.	19.5	13
11	Porous Composite Gel Polymer Electrolyte with Interfacial Transport Pathways for Flexible Quasi Solid Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 23743-23750.	8.0	18
12	A Stretchable and Safe Polymer Electrolyte with a Protecting‣ayer Strategy for Solidâ€State Lithium Metal Batteries. Advanced Science, 2021, 8, 2003241.	11.2	46
13	Robust Li ₆ PS ₅ I Interlayer to Stabilize the Tailored Electrolyte Li _{9.95} SnP ₂ S _{11.95} F _{0.05} /Li Metal Interface. ACS Applied Materials & Interfaces, 2021, 13, 30739-30745.	8.0	24
14	Ti2Nb10O29 anchored on Aspergillus Oryzae spore carbon skeleton for advanced lithium ion storage. Sustainable Materials and Technologies, 2021, 28, e00272.	3.3	7
15	A Versatile Li _{6.5} In _{0.25} P _{0.75} S ₅ I Sulfide Electrolyte Triggered by Ultimateâ€Energy Mechanical Alloying for Allâ€Solidâ€State Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2101521.	19.5	55
16	An intercalation compound for high-safe K metal batteries. Energy Storage Materials, 2021, 41, 606-613.	18.0	28
17	High-performance Na3V2(PO4)2F2.5O0.5 cathode: Hybrid reaction mechanism study via ex-situ XRD and sodium storage properties in solid-state batteries. Chemical Engineering Journal, 2021, 423, 130310.	12.7	10
18	Ionic-liquid-containing polymer interlayer modified PEO-based electrolyte for stable high-voltage solid-state lithium metal battery. Chemical Engineering Journal, 2021, 424, 130522.	12.7	42

#	Article	IF	CITATIONS
19	A mono-comb poly (siloxane-g-ethylene oxide) electrospun fiber membrane for solid-state sodium ion batteries. Chemical Engineering Journal, 2021, 426, 131901.	12.7	16
20	Singleâ€Crystalâ€Layered Niâ€Rich Oxide Modified by Phosphate Coating Boosting Interfacial Stability of Li ₁₀ SnP ₂ S ₁₂ â€Based Allâ€Solidâ€State Li Batteries. Small, 2021, 17, e2103830.	10.0	19
21	High Interfacial-Energy Interphase Promoting Safe Lithium Metal Batteries. Journal of the American Chemical Society, 2020, 142, 2438-2447.	13.7	195
22	Coupling a Sponge Metal Fibers Skeleton with In Situ Surface Engineering to Achieve Advanced Electrodes for Flexible Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e2003657.	21.0	86
23	Improved Ionic Conductivity and Li Dendrite Suppression Capability toward Li ₇ P ₃ S ₁₁ -Based Solid Electrolytes Triggered by Nb and O Cosubstitution. ACS Applied Materials & Interfaces, 2020, 12, 54662-54670.	8.0	50
24	Anchoring SnS ₂ on TiC/C Backbone to Promote Sodium Ion Storage by Phosphate Ion Doping. Small, 2020, 16, e2004072.	10.0	28
25	Exploring the Stability Effect of the Co-Substituted P2-Na _{0.67} [Mn _{0.67} Ni _{0.33}]O ₂ Cathode for Liquid- and Solid-State Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41477-41484.	8.0	21
26	Electrode Design for Lithium–Sulfur Batteries: Problems and Solutions. Advanced Functional Materials, 2020, 30, 1910375.	14.9	206
27	Sodium-rich manganese oxide porous microcubes with polypyrrole coating as a superior cathode for sodium ion full batteries. Journal of Colloid and Interface Science, 2020, 565, 218-226.	9.4	25
28	Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn–MnO2 batteries. Energy Storage Materials, 2020, 29, 52-59.	18.0	117
29	Low-strain titanium-based oxide electrodes for electrochemical energy storage devices: design, modification, and application. Materials Today Nano, 2020, 11, 100085.	4.6	21
30	Promotion effect of nitrogen-doped functional carbon nanodots on the early growth stage of plants. Oxford Open Materials Science, 2020, 1, .	1.8	5
31	Multiscale Porous Carbon Nanomaterials for Applications in Advanced Rechargeable Batteries. Batteries and Supercaps, 2019, 2, 9-36.	4.7	56
32	Nonâ€Newtonian Fluid State K–Na Alloy for a Stretchable Energy Storage Device. Small Methods, 2019, 3, 1900383.	8.6	39
33	Enhanced Liâ€&torage of Ni ₃ S ₂ Nanowire Arrays with Nâ€Doped Carbon Coating Synthesized by Oneâ€&tep CVD Process and Investigated Via Ex Situ TEM. Small, 2019, 15, e1904433.	10.0	18
34	Boosting Highâ€Rate Sodium Storage Performance of Nâ€Đoped Carbonâ€Encapsulated Na ₃ V ₂ (PO ₄) ₃ Nanoparticles Anchoring on Carbon Cloth. Small, 2019, 15, e1902432.	10.0	51
35	Ti ³⁺ Selfâ€Doped Li ₄ Ti ₅ O ₁₂ Anchored on Nâ€Doped Carbon Nanofiber Arrays for Ultrafast Lithiumâ€ion Storage. Small, 2019, 15, e1905296.	10.0	49
36	Directional construction of Cu2S branch arrays for advanced oxygen evolution reaction. Journal of Energy Chemistry, 2019, 39, 61-67.	12.9	45

#	Article	IF	CITATIONS
37	Smart construction of intimate interface between solid polymer electrolyte and 3D-array electrode for quasi-solid-state lithium ion batteries. Journal of Power Sources, 2019, 434, 226726.	7.8	10
38	Original growth mechanism for ultra-stable dendrite-free potassium metal electrode. Nano Energy, 2019, 62, 367-375.	16.0	93
39	Cobalt disulfide-modified cellular hierarchical porous carbon derived from bovine bone for application in high-performance lithium–sulfur batteries. Journal of Colloid and Interface Science, 2019, 551, 219-226.	9.4	33
40	Frontispiece: Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, .	3.3	0
41	Implanting Niobium Carbide into Trichoderma Spore Carbon: a New Advanced Host for Sulfur Cathodes. Advanced Materials, 2019, 31, e1900009.	21.0	168
42	Enhancement of the advanced Na storage performance of Na ₃ V ₂ (PO ₄) ₃ in a symmetric sodium full cell <i>via</i> a dual strategy design. Journal of Materials Chemistry A, 2019, 7, 10231-10238.	10.3	42
43	Multiscale Grapheneâ€Based Materials for Applications in Sodium Ion Batteries. Advanced Energy Materials, 2019, 9, 1803342.	19.5	215
44	Porous Carbon Hosts for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2019, 25, 3710-3725.	3.3	136
45	N-doped CoO nanowire arrays as efficient electrocatalysts for oxygen evolution reaction. Journal of Energy Chemistry, 2019, 37, 13-17.	12.9	49
46	Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries. Journal of Power Sources, 2019, 409, 31-37.	7.8	76
47	In Situ Solid Electrolyte Interphase from Spray Quenching on Molten Li: A New Way to Construct Highâ€Performance Lithiumâ€Metal Anodes. Advanced Materials, 2019, 31, e1806470.	21.0	133
48	A poly (vinylidene fluoride-hexafluoropropylene) based three-dimensional network gel polymer electrolyte for solid-state lithium-sulfur batteries. Chemical Engineering Journal, 2019, 358, 1047-1053.	12.7	116
49	A preeminent gel blending polymer electrolyte of poly(vinylidene fluoride-hexafluoropropylene) -poly(propylene carbonate) for solid-state lithium ion batteries. Electrochimica Acta, 2019, 296, 1064-1069.	5.2	54
50	Niobium doped tungsten oxide mesoporous film with enhanced electrochromic and electrochemical energy storage properties. Journal of Colloid and Interface Science, 2019, 535, 300-307.	9.4	46
51	High Capacity and Superior Rate Performances Coexisting in Carbon-Based Sodium-Ion Battery Anode. Research, 2019, 2019, 6930294.	5.7	9
52	A novel durable double-conductive core-shell structure applying to the synthesis of silicon anode for lithium ion batteries. Journal of Power Sources, 2018, 384, 207-213.	7.8	87
53	A superior composite gel polymer electrolyte of Li7La3Zr2O12- poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Over Materials Research Bulletin, 2018, 102, 412-417.	lock 10 Tf 5.2	50 107 Td (81
54	Pineâ€Needleâ€Like Cu–Co Skeleton Composited with Li ₄ Ti ₅ O ₁₂ Forming Core–Branch Arrays for Highâ€Rate Lithium Ion Storage. Small, 2018, 14, e1704339.	10.0	40

#	Article	IF	CITATIONS
55	Metal-Embedded Porous Graphitic Carbon Fibers Fabricated from Bamboo Sticks as a Novel Cathode for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13598-13605.	8.0	57
56	Confining Sulfur in Integrated Composite Scaffold with Highly Porous Carbon Fibers/Vanadium Nitride Arrays for Highâ€Performance Lithium–Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1706391.	14.9	350
57	Smart Construction of Integrated CNTs/Li ₄ Ti ₅ O ₁₂ Core/Shell Arrays with Superior Highâ€Rate Performance for Application in Lithiumâ€Ion Batteries. Advanced Science, 2018, 5, 1700786.	11.2	146
58	Hierarchical MoS2@Polypyrrole core-shell microspheres with enhanced electrochemical performances for lithium storage. Electrochimica Acta, 2018, 269, 632-639.	5.2	34
59	Recent Developments of Allâ€Solidâ€State Lithium Secondary Batteries with Sulfide Inorganic Electrolytes. Chemistry - A European Journal, 2018, 24, 6007-6018.	3.3	52
60	Rationally Designed Silicon Nanostructures as Anode Material for Lithiumâ€ion Batteries. Advanced Engineering Materials, 2018, 20, 1700591.	3.5	97
61	Popcorn Inspired Porous Macrocellular Carbon: Rapid Puffing Fabrication from Rice and Its Applications in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1701110.	19.5	361
62	Exploring hydrogen molybdenum bronze for sodium ion storage: Performance enhancement by vertical graphene core and conductive polymer shell. Nano Energy, 2018, 44, 265-271.	16.0	69
63	Composite Li metal anode with vertical graphene host for high performance Li-S batteries. Journal of Power Sources, 2018, 374, 205-210.	7.8	45
64	3D TiC/C Core/Shell Nanowire Skeleton for Dendriteâ€Free and Longâ€Life Lithium Metal Anode. Advanced Energy Materials, 2018, 8, 1702322.	19.5	237
65	Vertical graphene/Ti2Nb10O29/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Materials, 2018, 12, 137-144.	18.0	103
66	Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries. Journal of Power Sources, 2018, 374, 107-112.	7.8	71
67	Exploring Selfâ€Healing Liquid Na–K Alloy for Dendriteâ€Free Electrochemical Energy Storage. Advanced Materials, 2018, 30, e1804011.	21.0	112
68	Interface engineering of sulfide electrolytes for all-solid-state lithium batteries. Nano Energy, 2018, 53, 958-966.	16.0	227
69	Superior high-rate lithium-ion storage on Ti2Nb10O29 arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy, 2018, 54, 304-312.	16.0	80
70	Core-shell structure of porous silicon with nitrogen-doped carbon layer for lithium-ion batteries. Materials Research Bulletin, 2018, 108, 170-175.	5.2	25
71	Interfacial challenges and progress for inorganic all-solid-state lithium batteries. Electrochimica Acta, 2018, 284, 177-187.	5.2	95
72	Boosting sodium ion storage by anchoring MoO ₂ on vertical graphene arrays. Journal of Materials Chemistry A, 2018, 6, 15546-15552.	10.3	118

#	Article	IF	CITATIONS
73	Straw–Brick‣ike Carbon Fiber Cloth/Lithium Composite Electrode as an Advanced Lithium Metal Anode. Small Methods, 2018, 2, 1800035.	8.6	106
74	Hierarchical MoS ₂ /Carbon Composite Microspheres as Advanced Anodes for Lithium/Sodiumâ€lon Batteries. Chemistry - A European Journal, 2018, 24, 11220-11226.	3.3	65
75	Enhancing Ultrafast Lithium Ion Storage of Li ₄ Ti ₅ O ₁₂ by Tailored TiC/C Core/Shell Skeleton Plus Nitrogen Doping. Advanced Functional Materials, 2018, 28, 1802756.	14.9	145
76	Hybrid vertical graphene/lithium titanate–CNTs arrays for lithium ion storage with extraordinary performance. Journal of Materials Chemistry A, 2017, 5, 8916-8921.	10.3	71
77	Reconstruction of multidimensional carbon hosts with combined 0D, 1D and 2D networks for enhanced lithium-sulfur batteries. Journal of Power Sources, 2017, 342, 224-230.	7.8	37
78	Natural biomass-derived carbons for electrochemical energy storage. Materials Research Bulletin, 2017, 88, 234-241.	5.2	146
79	Rational construction of a metal core for smart combination with Li ₄ Ti ₅ O ₁₂ as integrated arrays with superior high-rate Li-ion storage performance. Journal of Materials Chemistry A, 2017, 5, 1394-1399.	10.3	64
80	Integration of Energy Harvesting and Electrochemical Storage Devices. Advanced Materials Technologies, 2017, 2, 1700182.	5.8	78
81	Hierarchical porous Ti ₂ Nb ₁₀ O ₂₉ nanospheres as superior anode materials for lithium ion storage. Journal of Materials Chemistry A, 2017, 5, 21134-21139.	10.3	111
82	A Newly Designed Composite Gel Polymer Electrolyte Based on Poly(Vinylidene) Tj ETQq0 0 0 rgBT /Overlock 10 - A European Journal, 2017, 23, 15203-15209.) Tf 50 387 3.3	Td (Fluorideá 117
83	Construction of Allâ€Solidâ€State Batteries based on a Sulfurâ€Graphene Composite and Li _{9.54} Si _{1.74} P _{1.44} S _{11.7} Cl _{0.3} Solid Electrolyte. Chemistry - A European Journal, 2017, 23, 13950-13956.	3.3	68
84	Construction of Nitrogenâ€Doped Carbonâ€Coated MoSe ₂ Microspheres with Enhanced Performance for Lithium Storage. Chemistry - A European Journal, 2017, 23, 12924-12929.	3.3	43
85	Performance Enhancement of a Sulfur/Carbon Cathode by Polydopamine as an Efficient Shell for Highâ€Performance Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 10610-10615.	3.3	21
86	Verticalâ€Aligned Li ₂ S–Graphene Encapsulated within a Carbon Shell as a Free‣tanding Cathode for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2017, 23, 11169-11174.	3.3	26
87	All-solid-state electrochromic devices based on WO3 NiO films: material developments and future applications. Science China Chemistry, 2017, 60, 3-12.	8.2	88
88	Exploring Advanced Sandwiched Arrays by Vertical Graphene and Nâ€Doped Carbon for Enhanced Sodium Storage. Advanced Energy Materials, 2017, 7, 1601804.	19.5	243
89	Carbon fiber-incorporated sulfur/carbon ternary cathode for lithium–sulfur batteries with enhanced performance. Journal of Solid State Electrochemistry, 2017, 21, 1203-1210.	2.5	22
90	Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Research, 2016, 9, 1618-1629.	10.4	152

#	Article	IF	CITATIONS
91	Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solid-state lithium ion batteries. Electrochimica Acta, 2016, 219, 235-240.	5.2	145
92	Nitrogen-doped carbon shell on metal oxides core arrays as enhanced anode for lithium ion batteries. Journal of Alloys and Compounds, 2016, 688, 729-735.	5.5	106
93	Perovskite solar cell powered electrochromic batteries for smart windows. Materials Horizons, 2016, 3, 588-595.	12.2	148
94	Self-supporting hierarchical rGO@Ni nanosheet@Co3O4 nanowire array and its application in high-rate batteries. Journal of Power Sources, 2016, 327, 281-288.	7.8	10
95	Facile synthesis of self-supported Ni2P nanosheet@Ni sponge composite for high-rate battery. Journal of Power Sources, 2016, 328, 405-412.	7.8	25
96	Conversion from Li2SO4 to Li2S@C on carbon paper matrix: A novel integrated cathode for lithium-sulfur batteries. Journal of Power Sources, 2016, 331, 475-480.	7.8	38
97	Facile and scalable synthesis of nanosized core–shell Li ₂ S@C composite for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2016, 4, 16653-16660.	10.3	26
98	Nitrogenâ€Doped Carbon Embedded MoS ₂ Microspheres as Advanced Anodes for Lithium―and Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 11617-11623.	3.3	104
99	Targeted Growth of Pt on 2D Atomic Layers of Ni-Al Hydroxide: Assembly of the Pt/Exfoliated Ni-Al Hydroxide sheet/Graphene Composite as Electrocatalysts for Methanol Oxidation Reactions. Electrochimica Acta, 2016, 222, 938-945.	5.2	20
100	Free-standing sulfur cathodes composited with carbon nanorods arrays for Li-S batteries application. Materials Research Bulletin, 2016, 83, 474-480.	5.2	22
101	A CNT cocoon on sodium manganate nanotubes forming a core/branch cathode coupled with a helical carbon nanofibre anode for enhanced sodium ion batteries. Journal of Materials Chemistry A, 2016, 4, 11207-11213.	10.3	85
102	Binder-free network-enabled MoS2-PPY-rGO ternary electrode for high capacity and excellent stability of lithium storage. Journal of Power Sources, 2016, 307, 510-518.	7.8	80
103	Li2S@C composite incorporated into 3D reduced graphene oxide as a cathode material for lithium-sulfur batteries. Journal of Power Sources, 2016, 313, 233-239.	7.8	57
104	Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. Journal of Colloid and Interface Science, 2016, 465, 112-120.	9.4	94
105	Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries. Electrochimica Acta, 2015, 156, 86-93.	5.2	87
106	Porous reduced graphene oxide sheet wrapped silicon composite fabricated by steam etching for lithium-ion battery application. Journal of Power Sources, 2015, 286, 431-437.	7.8	141
107	Integrated 3D porous C-MoS2/nitrogen-doped graphene electrode for high capacity and prolonged stability lithium storage. Journal of Power Sources, 2015, 296, 392-399.	7.8	90
108	High-energy cathode materials for Li-ion batteries: A review of recent developments. Science China Technological Sciences, 2015, 58, 1809-1828.	4.0	74

#	Article	IF	CITATIONS
109	Rational in-situ construction of three-dimensional reduced graphene oxide supported Li2S/C composite as enhanced cathode for rechargeable lithium–sulfur batteries. Journal of Power Sources, 2015, 299, 293-300.	7.8	65
110	Crystalline/amorphous tungsten oxide core/shell hierarchical structures and their synergistic effect for optical modulation. Journal of Colloid and Interface Science, 2015, 460, 200-208.	9.4	46
111	Binary conductive network for construction of Si/Ag nanowires/rGO integrated composite film by vacuum-filtration method and their application for lithium ion batteries. Electrochimica Acta, 2015, 180, 1068-1074.	5.2	38
112	An ex-situ nitridation route to synthesize Li 3 N-modified Li anodes for lithium secondary batteries. Journal of Power Sources, 2015, 277, 304-311.	7.8	174
113	Sulfur/three-dimensional graphene composite for high performance lithium–sulfur batteries. Journal of Power Sources, 2015, 275, 22-25.	7.8	155
114	Magnetron sputtering amorphous carbon coatings on metallic lithium: Towards promising anodes for lithium secondary batteries. Journal of Power Sources, 2014, 266, 43-50.	7.8	89
115	Hollow Li1.2Mn0.5Co0.25Ni0.05O2 microcube prepared by binary template as a cathode material for lithium ion batteries. Journal of Power Sources, 2014, 257, 198-204.	7.8	56
116	NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. Journal of Power Sources, 2014, 259, 98-105.	7.8	106
117	Growth of vertically aligned hierarchical WO3 nano-architecture arrays on transparent conducting substrates with outstanding electrochromic performance. Solar Energy Materials and Solar Cells, 2014, 124, 103-110.	6.2	114
118	Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Solar Energy Materials and Solar Cells, 2014, 122, 51-58.	6.2	121
119	Sulfur nanocrystals anchored graphene composite with highly improved electrochemical performance for lithium–sulfur batteries. Journal of Power Sources, 2014, 270, 1-8.	7.8	106
120	Constructed TiO ₂ /NiO Core/Shell Nanorod Array for Efficient Electrochromic Application. Journal of Physical Chemistry C, 2014, 118, 6690-6696.	3.1	90
121	Spinel Manganese–Nickel–Cobalt Ternary Oxide Nanowire Array for High-Performance Electrochemical Capacitor Applications. ACS Applied Materials & Interfaces, 2014, 6, 18040-18047.	8.0	172
122	Efficient electrochromic materials based on TiO2@WO3 core/shell nanorod arrays. Solar Energy Materials and Solar Cells, 2013, 117, 231-238.	6.2	114
123	Controllable Growth of Conducting Polymers Shell for Constructing High-Quality Organic/Inorganic Core/Shell Nanostructures and Their Optical-Electrochemical Properties. Nano Letters, 2013, 13, 4562-4568.	9.1	197
124	Graphene-coated mesoporous carbon/sulfur cathode with enhanced cycling stability. Electrochimica Acta, 2013, 113, 256-262.	5.2	79
125	Synthesis and electrochemical performance of LiVO3 cathode materials for lithium ion batteries. Journal of Power Sources, 2013, 236, 33-38.	7.8	39
126	Ultra fast electrochromic switching of nanostructured NiO films electrodeposited from choline chloride-based ionic liquid. Electrochimica Acta, 2013, 87, 341-347.	5.2	57

#	Article	IF	CITATIONS
127	Silicon/graphene-sheet hybrid film as anode for lithium ion batteries. Electrochemistry Communications, 2012, 23, 17-20.	4.7	65
128	Three-dimensional porous nano-Ni supported silicon composite film for high-performance lithium-ion batteries. Journal of Power Sources, 2012, 213, 106-111.	7.8	88
129	Graphene Sheet/Porous NiO Hybrid Film for Supercapacitor Applications. Chemistry - A European Journal, 2011, 17, 10898-10905.	3.3	266
130	Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells, 2011, 95, 2107-2112.	6.2	141
131	Fast electrochromic properties of self-supported Co3O4 nanowire array film. Solar Energy Materials and Solar Cells, 2010, 94, 386-389.	6.2	66
132	An all-solid-state electrochromic device based on NiO/WO3 complementary structure and solid hybrid polyelectrolyte. Solar Energy Materials and Solar Cells, 2009, 93, 1840-1845.	6.2	170