
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4619001/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Key roles of adjuvants in modern vaccines. Nature Medicine, 2013, 19, 1597-1608.	15.2	1,091
2	Use of defined TLR ligands as adjuvants within human vaccines. Immunological Reviews, 2011, 239, 178-196.	2.8	356
3	Development and Characterization of Synthetic Glucopyranosyl Lipid Adjuvant System as a Vaccine Adjuvant. PLoS ONE, 2011, 6, e16333.	1.1	281
4	Optimizing the utilization of aluminum adjuvants in vaccines: you might just get what you want. Npj Vaccines, 2018, 3, 51.	2.9	252
5	Different human vaccine adjuvants promote distinct antigen-independent immunological signatures tailored to different pathogens. Scientific Reports, 2016, 6, 19570.	1.6	205
6	Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses. Nature, 2021, 594, 553-559.	13.7	199
7	Squalene Emulsions for Parenteral Vaccine and Drug Delivery. Molecules, 2009, 14, 3286-3312.	1.7	164
8	An update on safety and immunogenicity of vaccines containing emulsion-based adjuvants. Expert Review of Vaccines, 2013, 12, 747-758.	2.0	129
9	New generation adjuvants – From empiricism to rational design. Vaccine, 2015, 33, B14-B20.	1.7	126
10	Detecting Phase Transitions in Phosphatidylcholine Vesicles by Raman Microscopy and Self-Modeling Curve Resolution. Journal of Physical Chemistry B, 2007, 111, 11428-11436.	1.2	116
11	A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika. Molecular Therapy, 2018, 26, 2507-2522.	3.7	109
12	Adjuvant formulation structure and composition are critical for the development of an effective vaccine against tuberculosis. Journal of Controlled Release, 2013, 172, 190-200.	4.8	101
13	Physicochemical characterization and biological activity of synthetic TLR4 agonist formulations. Colloids and Surfaces B: Biointerfaces, 2010, 75, 123-132.	2.5	97
14	Reprogramming the adjuvant properties of aluminum oxyhydroxide with nanoparticle technology. Npj Vaccines, 2019, 4, 1.	2.9	91
15	Working together: interactions between vaccine antigens and adjuvants. Therapeutic Advances in Vaccines, 2013, 1, 7-20.	2.7	90
16	3M-052, a synthetic TLR-7/8 agonist, induces durable HIV-1 envelope–specific plasma cells and humoral immunity in nonhuman primates. Science Immunology, 2020, 5, .	5.6	90
17	Mimicry of an HIV broadly neutralizing antibody epitope with a synthetic glycopeptide. Science Translational Medicine, 2017, 9, .	5.8	81
18	Initiation of HIV neutralizing B cell lineages with sequential envelope immunizations. Nature Communications, 2017, 8, 1732.	5.8	76

#	Article	IF	CITATIONS
19	Monitoring the effects of component structure and source on formulation stability and adjuvant activity of oil-in-water emulsions. Colloids and Surfaces B: Biointerfaces, 2008, 65, 98-105.	2.5	75
20	SARS-CoV-2 RBD trimer protein adjuvanted with Alum-3M-052 protects from SARS-CoV-2 infection and immune pathology in the lung. Nature Communications, 2021, 12, 3587.	5.8	71
21	Detection of Drugâ^'Membrane Interactions in Individual Phospholipid Vesicles by Confocal Raman Microscopy. Analytical Chemistry, 2006, 78, 4918-4924.	3.2	68
22	A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines. Scientific Reports, 2017, 7, 46426.	1.6	66
23	A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. Journal of Nanobiotechnology, 2014, 12, 17.	4.2	65
24	Squalene emulsion potentiates the adjuvant activity of the TLR4 agonist, GLA, via inflammatory caspases, ILâ€18, and IFNâ€Î³. European Journal of Immunology, 2015, 45, 407-417.	1.6	65
25	Adjuvants for Leishmania vaccines: from models to clinical application. Frontiers in Immunology, 2012, 3, 144.	2.2	64
26	The Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission-Blocking Vaccines. Infection and Immunity, 2017, 85, .	1.0	64
27	A Dual TLR Agonist Adjuvant Enhances the Immunogenicity and Protective Efficacy of the Tuberculosis Vaccine Antigen ID93. PLoS ONE, 2014, 9, e83884.	1.1	60
28	A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2 – A GLURP–MSP3 fusion protein malaria vaccine candidate. Vaccine, 2011, 29, 3284-3292.	1.7	59
29	Immunomodulatory and physical effects of oil composition in vaccine adjuvant emulsions. Vaccine, 2011, 29, 9563-9572.	1.7	59
30	Adsorption of a synthetic TLR7/8 ligand to aluminum oxyhydroxide for enhanced vaccine adjuvant activity: A formulation approach. Journal of Controlled Release, 2016, 244, 98-107.	4.8	57
31	Synthetic and Natural TLR4 Agonists as Safe and Effective Vaccine Adjuvants. Sub-Cellular Biochemistry, 2010, 53, 303-321.	1.0	56
32	Effects on Immunogenicity by Formulations of Emulsion-Based Adjuvants for Malaria Vaccines. Vaccine Journal, 2012, 19, 1633-1640.	3.2	55
33	Mucosal delivery switches the response to an adjuvanted tuberculosis vaccine from systemic TH1 to tissue-resident TH17 responses without impacting the protective efficacy. Vaccine, 2015, 33, 6570-6578.	1.7	53
34	A yeast-expressed RBD-based SARS-CoV-2 vaccine formulated with 3M-052-alum adjuvant promotes protective efficacy in non-human primates. Science Immunology, 2021, 6, .	5.6	53
35	Elimination of the cold-chain dependence of a nanoemulsion adjuvanted vaccine against tuberculosis by lyophilization. Journal of Controlled Release, 2014, 177, 20-26.	4.8	51
36	In vitro evaluation of TLR4 agonist activity: Formulation effects. Colloids and Surfaces B: Biointerfaces, 2014, 113, 312-319.	2.5	47

#	Article	IF	CITATIONS
37	A structureâ€function approach to optimizing TLR4 ligands for human vaccines. Clinical and Translational Immunology, 2016, 5, e108.	1.7	44
38	Confocal Raman microscopy for simultaneous monitoring of partitioning and disordering of tricyclic antidepressants in phospholipid vesicle membranes. Journal of Raman Spectroscopy, 2010, 41, 498-507.	1.2	43
39	A Full-Length Plasmodium falciparum Recombinant Circumsporozoite Protein Expressed by Pseudomonas fluorescens Platform as a Malaria Vaccine Candidate. PLoS ONE, 2014, 9, e107764.	1.1	43
40	Single-Molecule Fluorescence Imaging of Peptide Binding to Supported Lipid Bilayers. Analytical Chemistry, 2009, 81, 5130-5138.	3.2	42
41	Temperature-Controlled Confocal Raman Microscopy to Detect Phase Transitions in Phospholipid Vesicles. Applied Spectroscopy, 2007, 61, 465-469.	1.2	39
42	Control of Heterologous Simian Immunodeficiency Virus SIV _{smE660} Infection by DNA and Protein Coimmunization Regimens Combined with Different Toll-Like-Receptor-4-Based Adjuvants in Macaques. Journal of Virology, 2018, 92, .	1.5	39
43	Adjuvant-Dependent Enhancement of HIV Env-Specific Antibody Responses in Infant Rhesus Macaques. Journal of Virology, 2018, 92, .	1.5	39
44	Synthetic TLR4 agonists enhance functional antibodies and CD4+ T-cell responses against the Plasmodium falciparum GMZ2.6C multi-stage vaccine antigen. Vaccine, 2016, 34, 2207-2215.	1.7	37
45	Effective Combination Adjuvants Engage Both TLR and Inflammasome Pathways To Promote Potent Adaptive Immune Responses. Journal of Immunology, 2018, 201, 98-112.	0.4	37
46	Correlates of GLA family adjuvants' activities. Seminars in Immunology, 2018, 39, 22-29.	2.7	35
47	Development of a thermostable nanoemulsion adjuvanted vaccine against tuberculosis using a design-of-experiments approach. International Journal of Nanomedicine, 2018, Volume 13, 3689-3711.	3.3	35
48	SARS-CoV-2 vaccines elicit durable immune responses in infant rhesus macaques. Science Immunology, 2021, 6, .	5.6	34
49	Increased potency of an inactivated trivalent polio vaccine with oil-in-water emulsions. Vaccine, 2011, 29, 644-649.	1.7	33
50	A flexible, thermostable nanostructured lipid carrier platform for RNA vaccine delivery. Molecular Therapy - Methods and Clinical Development, 2022, 25, 205-214.	1.8	33
51	IL-18 and Subcapsular Lymph Node Macrophages are Essential for Enhanced B Cell Responses with TLR4 Agonist Adjuvants. Journal of Immunology, 2016, 197, 4351-4359.	0.4	31
52	Evaluation of immune responses to a Plasmodium vivax CSP-based recombinant protein vaccine candidate in combination with second-generation adjuvants in mice. Vaccine, 2012, 30, 3311-3319.	1.7	30
53	TLR4 ligand formulation causes distinct effects on antigen-specific cell-mediated and humoral immune responses. Vaccine, 2013, 31, 5848-5855.	1.7	29
54	Adjuvant composition and delivery route shape immune response quality and protective efficacy of a recombinant vaccine for Entamoeba histolytica. Npj Vaccines, 2018, 3, 22.	2.9	29

#	Article	IF	CITATIONS
55	Development of a formulation platform for a spray-dried, inhalable tuberculosis vaccine candidate. International Journal of Pharmaceutics, 2021, 593, 120121.	2.6	29
56	A Novel Synthetic TLR-4 Agonist Adjuvant Increases the Protective Response to a Clinical-Stage West Nile Virus Vaccine Antigen in Multiple Formulations. PLoS ONE, 2016, 11, e0149610.	1.1	28
57	Microscopic Rates of Peptide–Phospholipid Bilayer Interactions from Single-Molecule Residence Times. Journal of the American Chemical Society, 2012, 134, 19652-19660.	6.6	27
58	Cryogenic transmission electron microscopy of recombinant tuberculosis vaccine antigen with anionic liposomes reveals formation of flattened liposomes. International Journal of Nanomedicine, 2014, 9, 1367.	3.3	27
59	Effects of emulsifier concentration, composition, and order of addition in squalene-phosphatidylcholine oil-in-water emulsions. Pharmaceutical Development and Technology, 2011, 16, 511-519.	1.1	24
60	Are we entering a new age for human vaccine adjuvants?. Expert Review of Vaccines, 2015, 14, 909-911.	2.0	24
61	Nanoformulation of synergistic TLR ligands to enhance vaccination against Entamoeba histolytica. Vaccine, 2017, 35, 916-922.	1.7	22
62	Microparticle encapsulation of a tuberculosis subunit vaccine candidate containing a nanoemulsion adjuvant via spray drying. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 163, 23-37.	2.0	22
63	Immunomodulatory and Physical Effects of Phospholipid Composition in Vaccine Adjuvant Emulsions. AAPS PharmSciTech, 2012, 13, 498-506.	1.5	21
64	Adjuvanted pandemic influenza vaccine: variation of emulsion components affects stability, antigen structure, and vaccine efficacy. Influenza and Other Respiratory Viruses, 2013, 7, 815-826.	1.5	21
65	A molecular atlas of innate immunity to adjuvanted and live attenuated vaccines, in mice. Nature Communications, 2022, 13, 549.	5.8	21
66	Prophylactic efficacy against Mycobacterium tuberculosis using ID93 and lipid-based adjuvant formulations in the mouse model. PLoS ONE, 2021, 16, e0247990.	1.1	20
67	Selfâ€Assembly of a Triangleâ€Shaped, Hexaplatinumâ€Incorporated, Supramolecular Amphiphile in Solution and at Interfaces. Chemistry - A European Journal, 2009, 15, 8566-8577.	1.7	18
68	Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania. Vaccine, 2013, 31, 1633-1640.	1.7	18
69	Broadened immunity and protective responses with emulsion-adjuvanted H5 COBRA-VLP vaccines. Vaccine, 2017, 35, 5209-5216.	1.7	18
70	Physicochemical structure of a polyacrylic acid stabilized nanoparticle alum (nanoalum) adjuvant governs TH1 differentiation of CD4+ T cells. Nanoscale, 2020, 12, 2515-2523.	2.8	18
71	Characterization of TLR4 Agonist Effects on Alhydrogel® Sedimentation: A Novel Application of Laser Scattering Optical Profiling. Journal of Pharmaceutical Sciences, 2012, 101, 4357-4364.	1.6	16
72	Evaluation of the stability of a spray-dried tuberculosis vaccine candidate designed for dry powder respiratory delivery. Vaccine, 2021, 39, 5025-5036.	1.7	16

#	Article	IF	CITATIONS
73	Development of COVID-19 vaccine using a dual Toll-like receptor ligand liposome adjuvant. Npj Vaccines, 2021, 6, 137.	2.9	15
74	A combination of TLR-4 agonist and saponin adjuvants increases antibody diversity and protective efficacy of a recombinant West Nile Virus antigen. Npj Vaccines, 2018, 3, 39.	2.9	14
75	Molecular Design of Squalene/Squalane Countertypes via the Controlled Oligomerization of Isoprene and Evaluation of Vaccine Adjuvant Applications. Biomacromolecules, 2016, 17, 165-172.	2.6	12
76	Technology transfer of oil-in-water emulsion adjuvant manufacturing for pandemic influenza vaccine production in Romania: Preclinical evaluation of split virion inactivated H5N1 vaccine with adjuvant. Human Vaccines and Immunotherapeutics, 2016, 12, 1009-1026.	1.4	12
77	Optimizing a Multi-Component Intranasal Entamoeba Histolytica Vaccine Formulation Using a Design of Experiments Strategy. Frontiers in Immunology, 2021, 12, 683157.	2.2	11
78	Confocal Raman microscopy for monitoring the membrane polymerization and thermochromism of individual, optically trapped diacetylenic phospholipid vesicles. Journal of Raman Spectroscopy, 2012, 43, 351-359.	1.2	10
79	Vaccine adjuvant activity of emulsified oils from species of the Pinaceae family. Phytomedicine, 2019, 64, 152927.	2.3	10
80	Development of thermostable vaccine adjuvants. Expert Review of Vaccines, 2021, 20, 497-517.	2.0	10
81	Charged aerosol detection to characterize components of dispersed-phase formulations. Advances in Colloid and Interface Science, 2013, 199-200, 59-65.	7.0	9
82	Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity. Journal of Nanobiotechnology, 2013, 11, 43.	4.2	8
83	A Two-Step Orthogonal Chromatographic Process for Purifying the Molecular Adjuvant QS-21 with High Purity and Yield. Journal of Chromatography A, 2021, 1635, 461705.	1.8	8
84	Modulating Potency: Physicochemical Characteristics are a Determining Factor of TLR4-Agonist Nanosuspension Activity. Journal of Pharmaceutical Sciences, 2014, 103, 879-889.	1.6	7
85	HIV-1 Envelope Mimicry of Host Enzyme Kynureninase Does Not Disrupt Tryptophan Metabolism. Journal of Immunology, 2016, 197, 4663-4673.	0.4	6
86	Squalene Emulsion Manufacturing Process Scale-Up for Enhanced Global Pandemic Response. Pharmaceuticals, 2020, 13, 168.	1.7	6
87	Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Frontiers in Pharmacology, 2021, 12, 799034.	1.6	6
88	Quantitative Measurement of Toll-like Receptor 4 Agonists Adsorbed to Alhydrogel® by Fourier Transform Infrared-Attenuated Total Reflectance Spectroscopy. Journal of Pharmaceutical Sciences, 2015, 104, 768-774.	1.6	5
89	Lyophilization of an Adjuvanted Mycobacterium tuberculosis Vaccine in a Single-Chamber Pharmaceutical Cartridge. AAPS PharmSciTech, 2017, 18, 2077-2084.	1.5	5
90	Preparedness against pandemic influenza: Production of an oil-in-water emulsion adjuvant in Brazil. PLoS ONE, 2020, 15, e0233632.	1.1	4

CHRISTOPHER B FOX

#	Article	IF	Citations
91	Controlled Covalent Conjugation of a Tuberculosis Subunit Antigen (ID93) to Liposome Improved In Vitro Th1-Type Cytokine Recall Responses in Human Whole Blood. ACS Omega, 2020, 5, 31306-31313.	1.6	4
92	Accounting for adjuvant-induced artifacts in the characterization of vaccine formulations by polyacrylamide gel electrophoresis. Therapeutic Advances in Vaccines, 2017, 5, 31-38.	2.7	3
93	It is time to accelerate building local vaccine adjuvant manufacturing capacity. , 2017, 5, 111-113.	1.4	3
94	ASO3 stresses out macrophages: Commentary on â€~Activation of the endoplasmic reticulum stress sensor IRE1α by the vaccine adjuvant ASO3 contributes to its immunostimulatory properties'. Npj Vaccines, 2018, 3, 27.	2.9	2
95	Early Post-Vaccination Gene Signatures Correlate With the Magnitude and Function of Vaccine-Induced HIV Envelope-Specific Plasma Antibodies in Infant Rhesus Macaques. Frontiers in Immunology, 2022, 13, 840976.	2.2	1
96	Enhancing and Tailoring the Immunogenicity of Vaccines with Novel Adjuvants. , 2012, , 45-72.		0