
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4618615/publications.pdf Version: 2024-02-01

DETDA DITTED

#	Article	IF	CITATIONS
1	Dynamic primitives of brain network interaction. NeuroImage, 2022, 250, 118928.	2.1	18
2	Personalized Connectome-Based Modeling in Patients with Semi-Acute Phase TBI: Relationship to Acute Neuroimaging and 6 Month Follow-Up. ENeuro, 2022, 9, ENEURO.0075-21.2022.	0.9	6
3	Unimanual sensorimotor learning—A simultaneous <scp>EEGâ€fMRI</scp> aging study. Human Brain Mapping, 2022, 43, 2348-2364.	1.9	2
4	Brain simulation as a cloud service: The Virtual Brain on EBRAINS. Neurolmage, 2022, 251, 118973.	2.1	42
5	Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with The Virtual Brain. Experimental Neurology, 2022, 354, 114111.	2.0	27
6	Brain simulation augments machineâ€learning–based classification of dementia. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, .	1.8	10
7	Brain Network Simulations Indicate Effects of Neuregulin-1 Genotype on Excitation-Inhibition Balance in Cortical Dynamics. Cerebral Cortex, 2021, 31, 2013-2025.	1.6	4
8	Bridging Scales in Alzheimer's Disease: Biological Framework for Brain Simulation With The Virtual Brain. Frontiers in Neuroinformatics, 2021, 15, 630172.	1.3	20
9	Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel. Alzheimer's and Dementia, 2021, 17, 1528-1553.	0.4	64
10	Virtual connectomic datasets in Alzheimer's Disease and aging using whole-brain network dynamics modelling. ENeuro, 2021, 8, ENEURO.0475-20.2021.	0.9	14
11	EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel. Neurobiology of Aging, 2021, 103, 78-97.	1.5	9
12	NFDI-Neuro: building a community for neuroscience research data management in Germany. Neuroforum, 2021, .	0.2	6
13	Research data management in clinical neuroscience: the national research data infrastructure initiative. Neuroforum, 2021, .	0.2	2
14	Complexity Matching: Brain Signals Mirror Environment Information Patterns during Music Listening and Reward. Journal of Cognitive Neuroscience, 2020, 32, 734-745.	1.1	8
15	Dynamic Functional Connectivity between order and randomness and its evolution across the human adult lifespan. NeuroImage, 2020, 222, 117156.	2.1	67
16	The Importance of Cerebellar Connectivity on Simulated Brain Dynamics. Frontiers in Cellular Neuroscience, 2020, 14, 240.	1.8	14
17	Movement disorders after hypoxic brain injury following cardiac arrest in adults. European Journal of Neurology, 2020, 27, 1937-1947.	1.7	10
18	Investigating the Effect of the Neuregulin-1 Genotype on Brain Function Using Brain Network Simulations. Biological Psychiatry, 2020, 87, S38.	0.7	1

#	Article	IF	CITATIONS
19	Are unimanual movements bilateral?. Neuroscience and Biobehavioral Reviews, 2020, 113, 39-50.	2.9	35
20	Modeling brain dynamics after tumor resection using The Virtual Brain. NeuroImage, 2020, 213, 116738.	2.1	41
21	Linking Molecular Pathways and Large-Scale Computational Modeling to Assess Candidate Disease Mechanisms and Pharmacodynamics in Alzheimer's Disease. Frontiers in Computational Neuroscience, 2019, 13, 54.	1.2	83
22	A macaque connectome for large-scale network simulations in TheVirtualBrain. Scientific Data, 2019, 6, 123.	2.4	56
23	The Importance of Standards for Sharing of Computational Models and Data. Computational Brain & Behavior, 2019, 2, 229-232.	0.9	9
24	Stereotypical modulations in dynamic functional connectivity explained by changes in BOLD variance. NeuroImage, 2018, 171, 40-54.	2.1	14
25	Differentiation of Alzheimer's disease based on local and global parameters in personalized Virtual Brain models. NeuroImage: Clinical, 2018, 19, 240-251.	1.4	69
26	Inferring multi-scale neural mechanisms with brain network modelling. ELife, 2018, 7, .	2.8	137
27	Neurological Biomarkers and Neuroinformatics. , 2018, , 3-30.		5
28	Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain. ENeuro, 2018, 5, ENEURO.0083-18.2018.	0.9	42
29	Mapping complementary features of crossâ€species structural connectivity to construct realistic "Virtual Brains― Human Brain Mapping, 2017, 38, 2080-2093.	1.9	22
30	Resting state networks in empirical and simulated dynamic functional connectivity. NeuroImage, 2017, 159, 388-402.	2.1	33
31	The dynamics of resting fluctuations in the brain: metastability and its dynamical cortical core. Scientific Reports, 2017, 7, 3095.	1.6	356
32	Multiregional integration in the brain during resting-state fMRI activity. PLoS Computational Biology, 2017, 13, e1005410.	1.5	10
33	Estimation of Directed Effective Connectivity from fMRI Functional Connectivity Hints at Asymmetries of Cortical Connectome. PLoS Computational Biology, 2016, 12, e1004762.	1.5	137
34	Linking connectomics and dynamics in the human brain. E-Neuroforum, 2016, 22, .	0.2	2
35	Recovery of directed intracortical connectivity from fMRI data. AIP Conference Proceedings, 2016, , .	0.3	0
36	How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models?. NeuroImage, 2016, 142, 135-149.	2.1	103

#	Article	IF	CITATIONS
37	Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder. Human Brain Mapping, 2016, 37, 2918-2930.	1.9	186
38	Linking connectomics and dynamics in the human brain. E-Neuroforum, 2016, 7, 64-70.	0.2	8
39	Structural architecture supports functional organization in the human aging brain at a regionwise and network level. Human Brain Mapping, 2016, 37, 2645-2661.	1.9	88
40	Analytical Operations Relate Structural and Functional Connectivity in the Brain. PLoS ONE, 2016, 11, e0157292.	1.1	41
41	State-dependencies of learning across brain scales. Frontiers in Computational Neuroscience, 2015, 9, 1.	1.2	104
42	Editorial: State-dependent brain computation. Frontiers in Computational Neuroscience, 2015, 9, 77.	1.2	9
43	TVB-EduPack—An Interactive Learning and Scripting Platform for The Virtual Brain. Frontiers in Neuroinformatics, 2015, 9, 27.	1.3	7
44	Relating Alpha Power and Phase to Population Firing and Hemodynamic Activity Using a Thalamo-cortical Neural Mass Model. PLoS Computational Biology, 2015, 11, e1004352.	1.5	46
45	An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. NeuroImage, 2015, 117, 343-357.	2.1	132
46	The Rediscovery of Slowness: Exploring the Timing of Cognition. Trends in Cognitive Sciences, 2015, 19, 616-628.	4.0	98
47	â€`My Virtual Dream': Collective Neurofeedback in an Immersive Art Environment. PLoS ONE, 2015, 10, e0130129.	1.1	65
48	The role of alpha-rhythm states in perceptual learning: insights from experiments and computational models. Frontiers in Computational Neuroscience, 2014, 8, 36.	1.2	56
49	Using the Virtual Brain to Reveal the Role of Oscillations and Plasticity in Shaping Brain's Dynamical Landscape. Brain Connectivity, 2014, 4, 791-811.	0.8	47
50	The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging. Brain Connectivity, 2013, 3, 121-145.	0.8	218
51	State-Dependent Perceptual Learning. Journal of Neuroscience, 2013, 33, 2900-2907.	1.7	54
52	A Canonical Model of Multistability and Scale-Invariance in Biological Systems. PLoS Computational Biology, 2012, 8, e1002634.	1.5	154
53	Repetitive tactile stimulation changes resting-state functional connectivity—implications for treatment of sensorimotor decline. Frontiers in Human Neuroscience, 2012, 6, 144.	1.0	52
54	Exploiting the potential of three dimensional spatial wavelet analysis to explore nesting of temporal oscillations and spatial variance in simultaneous EEG-fMRI data. Progress in Biophysics and Molecular Biology, 2011, 105, 67-79.	1.4	18

#	Article	IF	CITATIONS
55	BrainModes: The role of neuronal oscillations in health and disease. Progress in Biophysics and Molecular Biology, 2011, 105, 1-4.	1.4	7
56	Biophysical Mechanisms of Multistability in Resting-State Cortical Rhythms. Journal of Neuroscience, 2011, 31, 6353-6361.	1.7	252
57	How Ongoing Neuronal Oscillations Account for Evoked fMRI Variability. Journal of Neuroscience, 2011, 31, 11016-11027.	1.7	131
58	Bistability and Non-Gaussian Fluctuations in Spontaneous Cortical Activity. Journal of Neuroscience, 2009, 29, 8512-8524.	1.7	161
59	Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRlâ€BOLD signal in primary somatosensory and motor cortex. Human Brain Mapping, 2009, 30, 1168-1187.	1.9	361
60	Background and evoked activity and their interaction in the human brain. Magnetic Resonance Imaging, 2009, 27, 1140-1150.	1.0	19
61	Oscillatory brain states interact with late cognitive components of the somatosensory evoked potential. Journal of Neuroscience Methods, 2009, 183, 49-56.	1.3	34
62	BrainModes: A principled approach to modeling and measuring large-scale neuronal activity. Journal of Neuroscience Methods, 2009, 183, 1-4.	1.3	3
63	Detecting alpha rhythm phase reset by phase sorting: Caveats to consider. NeuroImage, 2009, 47, 1-4.	2.1	33
64	Ultrahigh-frequency EEG during fMRI: Pushing the limits of imaging-artifact correction. NeuroImage, 2009, 48, 94-108.	2.1	64
65	EEG Quality:The Image Acquisition Artefact. , 2009, , 153-171.		10
66	Visual System. , 2009, , 401-417.		1
67	Influence of ongoing alpha rhythm on the visual evoked potential. NeuroImage, 2008, 39, 707-716.	2.1	82
68	High-frequency (600ÂHz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. NeuroImage, 2008, 42, 483-490.	2.1	40
69	Spatial Attention Related SEP Amplitude Modulations Covary with BOLD Signal in S1—A Simultaneous EEG—fMRI Study. Cerebral Cortex, 2008, 18, 2686-2700.	1.6	118
70	Evaluating gradient artifact correction of EEG data acquired simultaneously with fMRI. Magnetic Resonance Imaging, 2007, 25, 923-932.	1.0	69
71	Simultaneous EEG–fMRI. Neuroscience and Biobehavioral Reviews, 2006, 30, 823-838.	2.9	232
72	Visual evoked potentials recovered from fMRI scan periods. Human Brain Mapping, 2005, 26, 221-230.	1.9	73

#	Article	IF	CITATIONS
73	Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neurolmage, 2003, 20, 145-158.	2.1	543
74	Imperceptible Stimuli and Sensory Processing Impediment. Science, 2003, 299, 1864-1864.	6.0	86
75	Inhibition and functional magnetic resonance imaging. International Congress Series, 2002, 1235, 213-222.	0.2	11
76	Linear Aspects of Changes in Deoxygenated Hemoglobin Concentration and Cytochrome Oxidase Oxidation during Brain Activation. NeuroImage, 2001, 13, 520-530.	2.1	107
77	Saccadic Suppression Induces Focal Hypooxygenation in the Occipital Cortex. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1103-1110.	2.4	67
78	Near-infrared spectroscopy: does it function in functional activation studies of the adult brain?. International Journal of Psychophysiology, 2000, 35, 125-142.	0.5	239