List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461845/publications.pdf Version: 2024-02-01

RAIA CHOSH

#	Article	lF	CITATIONS
1	Protein separation using membrane chromatography: opportunities and challenges. Journal of Chromatography A, 2002, 952, 13-27.	1.8	500
2	Effect of module design on the efficiency of membrane chromatographic separation processes. Journal of Membrane Science, 2006, 281, 532-540.	4.1	84
3	Lysozyme separation by hollow-fibre ultrafiltration. Biochemical Engineering Journal, 2000, 6, 19-24.	1.8	74
4	Separation of proteins using hydrophobic interaction membrane chromatography. Journal of Chromatography A, 2001, 923, 59-64.	1.8	67
5	Extraction, purification and applications of curcumin from plant materials-A comprehensive review. Trends in Food Science and Technology, 2021, 112, 419-430.	7.8	64
6	Thermo-Responsive Hydrogels for Stimuli-Responsive Membranes. Processes, 2013, 1, 238-262.	1.3	57
7	Fractionation of BSA and lysozyme using ultrafiltration: Effect of gas sparging. AICHE Journal, 1998, 44, 61-67.	1.8	54
8	High-resolution plasma protein fractionation using ultrafiltration. Desalination, 2002, 144, 301-306.	4.0	49
9	A laterally-fed membrane chromatography module. Journal of Membrane Science, 2015, 487, 173-179.	4.1	49
10	Study of membrane fouling by BSA using pulsed injection technique. Journal of Membrane Science, 2002, 195, 115-123.	4.1	47
11	Open-Source Low-Cost Wireless Potentiometric Instrument for pH Determination Experiments. Journal of Chemical Education, 2018, 95, 326-330.	1.1	45
12	Purification of humanized monoclonal antibody by hydrophobic interaction membrane chromatography. Journal of Chromatography A, 2006, 1107, 104-109.	1.8	44
13	Recovery and isolation of recombinant human monoclonal antibody from transgenic tobacco plants. Biochemical Engineering Journal, 2011, 54, 103-108.	1.8	43
14	Fractionation of biological macromolecules using carrier phase ultrafiltration. Biotechnology and Bioengineering, 2001, 74, 1-11.	1.7	40
15	Cascade ultrafiltration systems—Integrated processes for purification and concentration of lysozyme. Journal of Membrane Science, 2010, 347, 150-158.	4.1	40
16	On the workings of laterally-fed membrane chromatography. Journal of Membrane Science, 2016, 516, 26-32.	4.1	40
17	Enhancement of membrane permeability by gas-sparging in submerged hollow fibre ultrafiltration of macromolecular solutions: Role of module design. Journal of Membrane Science, 2006, 274, 73-82.	4.1	39
18	Characterization and theoretical analysis of protein fouling of cellulose acetate membrane during constant flux dead-end microfiltration. Journal of Membrane Science, 2008, 320, 372-380.	4.1	38

#	Article	IF	CITATIONS
19	Parameter scanning ultrafiltration: Rapid optimisation of protein separation. Biotechnology and Bioengineering, 2003, 81, 673-682.	1.7	37
20	Reversible and irreversible membrane fouling during in-line microfiltration of concentrated protein solutions. Journal of Membrane Science, 2008, 315, 1-10.	4.1	37
21	Novel tangential-flow countercurrent cascade ultrafiltration configuration for continuous purification of humanized monoclonal antibody. Journal of Membrane Science, 2008, 307, 117-125.	4.1	37
22	High-resolution protein separation using a laterally-fed membrane chromatography device. Journal of Membrane Science, 2016, 499, 126-133.	4.1	37
23	Analysis of protein transport and polarization through membranes using pulsed sample injection technique. Journal of Membrane Science, 2000, 175, 75-84.	4.1	36
24	Purification of a human immunoglobulin G1 monoclonal antibody from transgenic tobacco using membrane chromatographic processes. Journal of Chromatography A, 2008, 1187, 128-137.	1.8	34
25	Temperature-responsive membrane for hydrophobic interaction based chromatographic separation of proteins in bind-and-elute mode. Journal of Membrane Science, 2014, 471, 56-64.	4.1	33
26	Purification of lysozyme by microporous PVDF membrane-based chromatographic process. Biochemical Engineering Journal, 2003, 14, 109-116.	1.8	32
27	Non-Size-Based Membrane Chromatographic Separation and Analysis of Monoclonal Antibody Aggregates. Analytical Chemistry, 2006, 78, 6863-6867.	3.2	32
28	Purification of Plant-Derived Antibodies through Direct Immobilization of Affinity Ligands on Cellulose. Journal of Agricultural and Food Chemistry, 2010, 58, 3451-3459.	2.4	30
29	Purification of PEGylated Protein Using Membrane Chromatography. Journal of Pharmaceutical Sciences, 2010, 99, 3326-3333.	1.6	29
30	A constant flux based mathematical model for predicting permeate flux decline in constant pressure protein ultrafiltration. Journal of Membrane Science, 2007, 290, 207-215.	4.1	28
31	Fractionation of monoclonal antibody aggregates using membrane chromatography. Journal of Membrane Science, 2008, 318, 311-316.	4.1	28
32	Separation of monoclonal antibody alemtuzumab monomer and dimers using ultrafiltration. Biotechnology and Bioengineering, 2005, 90, 422-432.	1.7	27
33	Paper-Based, Hand-Drawn Free Chlorine Sensor with Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate). Analytical Chemistry, 2016, 88, 10384-10389.	3.2	25
34	High-resolution, preparative purification of PEGylated protein using a laterally-fed membrane chromatography device. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1035, 1-7.	1.2	25
35	Ultrafast Separation and Analysis of Monoclonal Antibody Aggregates Using Membrane Chromatography. Analytical Chemistry, 2017, 89, 4716-4720.	3.2	25
36	Paperâ€₽EGâ€based membranes for hydrophobic interaction chromatography: Purification of monoclonal antibody. Biotechnology and Bioengineering, 2008, 99, 1434-1442.	1.7	24

#	Article	lF	CITATIONS
37	Chromatographic separation of proteins using hydrophobic membrane shielded with an environment-responsive hydrogel. Journal of Membrane Science, 2009, 345, 177-182.	4.1	24
38	Paper-based composite lyotropic salt-responsive membranes for chromatographic separation of proteins. Journal of Membrane Science, 2010, 360, 149-154.	4.1	24
39	Integrated Solid-Phase Synthesis and Purification of PEGylated Protein. Biomacromolecules, 2011, 12, 2772-2779.	2.6	23
40	Low-temperature solution processing of palladium/palladium oxide films and their pH sensing performance. Talanta, 2016, 146, 517-524.	2.9	23
41	Biocompatible poly(N-vinyllactam)-based materials with environmentally-responsive permeability. Journal of Biomaterials Science, Polymer Edition, 2008, 19, 275-290.	1.9	22
42	Method for Studying Immunoglobulin G Binding on Hydrophobic Surfaces. Langmuir, 2010, 26, 924-929.	1.6	22
43	Purification of monoclonal antibody from tobacco extract using membrane-based bioseparation techniques. Journal of Membrane Science, 2008, 323, 159-166.	4.1	21
44	Integrated development of enzymatic DNA digestion and membrane chromatography processes for the purification of therapeutic adenoviruses. Separation and Purification Technology, 2021, 254, 117503.	3.9	21
45	Fractionation of human plasma proteins by hydrophobic interaction membrane chromatography. Journal of Membrane Science, 2005, 260, 112-118.	4.1	20
46	Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1055-1056, 158-164.	1.2	20
47	Continuous fractionation of plasma proteins HSA and HlgG using cascade ultrafiltration systems. Separation and Purification Technology, 2009, 70, 231-241.	3.9	19
48	Fractionation of different PEGylated forms of a protein by chromatography using environment-responsive membranes. Journal of Chromatography A, 2010, 1217, 5595-5601.	1.8	19
49	A flow distribution and collection feature for ensuring scalable uniform flow in a chromatography device. Journal of Chromatography A, 2020, 1618, 460892.	1.8	19
50	A z2 laterally-fed membrane chromatography device for fast high-resolution purification of biopharmaceuticals. Journal of Chromatography A, 2020, 1629, 461453.	1.8	19
51	Simultaneous removal of leached protein-A and aggregates from monoclonal antibody using hydrophobic interaction membrane chromatography. Journal of Membrane Science, 2012, 390-391, 263-269.	4.1	18
52	Purification of chimeric heavy chain monoclonal antibody EG2â€hFc using hydrophobic interaction membrane chromatography: An alternative to proteinâ€A affinity chromatography. Biotechnology and Bioengineering, 2014, 111, 1139-1149.	1.7	18
53	Using a box instead of a column for process chromatography. Journal of Chromatography A, 2016, 1468, 164-172.	1.8	18
54	Preparation of graphene oxide-cotton fiber composite adsorbent and its application for the purification of polyphenols from pomegranate peel extract. Separation and Purification Technology, 2017, 174, 561-569.	3.9	18

#	Article	IF	CITATIONS
55	Rapid preparative separation of monoclonal antibody charge variants using laterally-fed membrane chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1073, 27-33.	1.2	18
56	Computational fluid dynamic (CFD) simulation of laterally-fed membrane chromatography. Chemical Engineering Research and Design, 2018, 137, 412-420.	2.7	18
57	Integrated fragmentation of human IgG and purification of Fab using a reactant adsorptive membrane bioreactor separator system. Biotechnology and Bioengineering, 2009, 104, 152-161.	1.7	17
58	Poly(N-isopropylacrylamide)-grafted dual stimuli-responsive filter paper for protein separation. Chinese Journal of Polymer Science (English Edition), 2015, 33, 1048-1057.	2.0	17
59	Purification of humanized monoclonal antibodies by membrane-based hybrid bioseparation technique. Journal of Immunological Methods, 2006, 314, 1-8.	0.6	15
60	Purification of human IgG using membrane based hybrid bioseparation technique and its variants: A comparative study. Separation and Purification Technology, 2009, 66, 242-247.	3.9	15
61	Mathematical modelling and evaluation of performance of cuboid packed-bed devices for chromatographic separations. Journal of Chromatography A, 2017, 1515, 138-145.	1.8	15
62	Bioseparation using supported liquid membrane chromatography. Journal of Membrane Science, 2001, 192, 243-247.	4.1	14
63	Effects of protein–protein interaction in ultrafiltration based fractionation processes. Biotechnology and Bioengineering, 2005, 91, 678-687.	1.7	14
64	Isolation of ellagic acid from pomegranate peel extract by hydrophobic interaction chromatography using graphene oxide grafted cotton fiber adsorbent. Journal of Separation Science, 2018, 41, 747-755.	1.3	14
65	Fractionation of bovine serum albumin and monoclonal antibody alemtuzumab using carrier phase ultrafiltration. Biotechnology and Bioengineering, 2005, 90, 303-315.	1.7	13
66	Purification of equine IgG using membrane based enhanced hybrid bioseparation technique: A potential method for manufacturing hyperimmune antibody. Biotechnology and Bioengineering, 2008, 99, 625-633.	1.7	13
67	Purification of transgenic tobacco-derived recombinant human monoclonal antibody. Biochemical Engineering Journal, 2013, 72, 33-41.	1.8	13
68	Purification and analysis of monoâ€ <scp>PEG</scp> ylated HSA by hydrophobic interaction membrane chromatography. Journal of Separation Science, 2013, 36, 3673-3681.	1.3	13
69	Computational fluid dynamic (CFD) simulation of a cuboid packed-bed chromatography device. Chemical Engineering Research and Design, 2019, 152, 393-401.	2.7	13
70	Separation of human serum albumin and human immunoglobulins using carrier phase ultrafiltration. Biotechnology Progress, 2004, 20, 1103-1112.	1.3	11
71	Separation of human plasma proteins HSA and HIgG using high-capacity macroporous gel-filled membranes. Biochemical Engineering Journal, 2007, 35, 295-300.	1.8	11
72	Study of hydrophobic interaction based binding of immunoglobulin G on synthetic membranes. Journal of Membrane Science, 2009, 344, 165-171.	4.1	11

#	Article	IF	CITATIONS
73	Membrane reactor for continuous and selective protein mono-PEGylation. Journal of Membrane Science, 2014, 451, 177-184.	4.1	11
74	Feasibility study for high-resolution multi-component separation of protein mixture using a cation-exchange cuboid packed-bed device. Journal of Chromatography A, 2018, 1549, 25-30.	1.8	11
75	Fast, low-pressure chromatographic separation of proteins using hydroxyapatite nanoparticles. Talanta, 2019, 199, 472-477.	2.9	11
76	Production enhancement of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in Halogeometricum borinquense, characterization of the bioplastic and desalination of the bioreactor effluent. Process Biochemistry, 2020, 94, 243-257.	1.8	11
77	Purification of monoclonal antibody using cation exchange z2 laterally-fed membrane chromatography – A potential alternative to protein A affinity chromatography. Biochemical Engineering Journal, 2022, 178, 108293.	1.8	11
78	Rapid antibody screening by membrane chromatographic immunoassay technique. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 844, 163-167.	1.2	10
79	Cascade ultrafiltration bioreactor-separator system for continuous production of F(ab′)2 fragment from immunoglobulin G. Journal of Membrane Science, 2010, 351, 96-103.	4.1	10
80	Transmission behavior of pNIPAM microgel particles through porous membranes. Journal of Membrane Science, 2015, 479, 141-147.	4.1	10
81	Purification of therapeutic adenoviruses using laterally-fed membrane chromatography. Journal of Membrane Science, 2019, 579, 351-358.	4.1	10
82	Dry-compression packing of hydroxyapatite nanoparticles within a flat cuboid chromatography device and its use for fast protein separation. Journal of Chromatography A, 2022, 1667, 462881.	1.8	10
83	Feasibility Study for the Fractionation of the Major Human Immunoglobulin G Subclasses Using Hydrophobic Interaction Membrane Chromatography. Analytical Chemistry, 2010, 82, 452-455.	3.2	9
84	An annular-flow, hollow-fiber membrane chromatography device for fast, high-resolution protein separation at low pressure. Journal of Membrane Science, 2019, 590, 117305.	4.1	9
85	Feasibility study of the fractionation of monoclonal antibody charge variants using a cuboid packed-bed device. Biochemical Engineering Journal, 2019, 147, 48-56.	1.8	9
86	Performance Comparison of a Laterally-Fed Membrane Chromatography (LFMC) Device with a Commercial Resin Packed Column. Membranes, 2019, 9, 138.	1.4	9
87	Membrane chromatographic immunoassay method for rapid quantitative analysis of specific serum antibodies. Biotechnology and Bioengineering, 2006, 93, 280-285.	1.7	8
88	Effects of process parameters on the efficiency of chromatographic separations using a cuboid packed-bed device. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1086, 23-28.	1.2	8
89	A novel approach for high-resolution protein–protein separation by ultrafiltration using a dual-facilitating agent. Journal of Membrane Science, 2004, 243, 223-228.	4.1	7
90	Modeling and Optimization of Protein PEGylation. Industrial & Engineering Chemistry Research, 2016, 55, 11785-11794.	1.8	7

#	Article	IF	CITATIONS
91	Purification of Danshensu from <i>Salvia miltiorrhiza</i> Extract Using Graphene Oxide-Based Composite Adsorbent. Industrial & Engineering Chemistry Research, 2017, 56, 8972-8980.	1.8	7
92	Enhancing the efficiency of disc membrane chromatography modules by using a flow directing layer. Journal of Membrane Science, 2019, 580, 154-160.	4.1	7
93	Comparison of membrane chromatography devices in laboratory-scale preparative flow-through separation of a recombinant protein. Separation Science and Technology, 2018, 53, 2990-2997.	1.3	6
94	Cuboid Packed-Beds as Chemical Reactors?. Processes, 2018, 6, 44.	1.3	6
95	A cuboid chromatography device having short bed-height gives better protein separation at a significantly lower pressure drop than a taller column having the same bed-volume. Journal of Chromatography A, 2021, 1647, 462167.	1.8	6
96	Ultrahigh speed, ultrahigh resolution preparative separation of protein biopharmaceuticals using membrane chromatography. Journal of Separation Science, 2022, , .	1.3	6
97	Membrane bioreactor separator system for integrated IgG fragmentation and Fab purification. Journal of Immunological Methods, 2010, 359, 37-41.	0.6	5
98	An osmolyte-based micro-volume ultrafiltration technique. Lab on A Chip, 2014, 14, 4559-4566.	3.1	5
99	Dewatering of microalgae suspension using air-sparged ultrafiltration. Separation Science and Technology, 2017, 52, 344-351.	1.3	5
100	Fast and high-resolution purification of a PEGylated protein using a z2 laterally-fed membrane chromatography device. Journal of Chromatography A, 2021, 1652, 462375.	1.8	5
101	A Thermal-Cycling Method for Disaggregating Monoclonal Antibody Oligomers. Journal of Pharmaceutical Sciences, 2014, 103, 870-878.	1.6	4
102	Effect of the Length-to-Width Aspect Ratio of a Cuboid Packed-Bed Device on Efficiency of Chromatographic Separation. Processes, 2018, 6, 160.	1.3	4
103	Fast and high-resolution fractionation of positional isomers of a PEGylated protein using membrane chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2022, 1203, 123292.	1.2	4
104	Enzymatic fragmentation of cation exchange membrane bound immunoglobulin G. Biotechnology Progress, 2011, 27, 61-66.	1.3	3
105	Comparison of the performance of anion exchange membrane materials for adenovirus purification using laterally-fed membrane chromatography. Biochemical Engineering Journal, 2022, 182, 108417.	1.8	3
106	Surfaces Modified by Amphiphilic Copolymer: Preparation and Application. Advanced Materials Research, 0, 47-50, 1311-1314.	0.3	2
107	Efficient capture of monoclonal antibody from cell culture supernatant using protein A media contained in a cuboid packed-bed device. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1134-1135, 121853.	1.2	2
108	High-resolution purification of a therapeutic PEGylated protein using a cuboid packed-bed device. Journal of Chromatography A, 2020, 1630, 461524.	1.8	2

#	Article	IF	CITATIONS
109	Stimuli-Responsive Membranes for Separations. Polymers and Polymeric Composites, 2019, , 491-508.	0.6	2
110	Manufacturing T cells in hollow fiber membrane bioreactors changes their programming and enhances their potency. Oncolmmunology, 2021, 10, 1995168.	2.1	2
111	A Pulsed Tangential-Flow Ultrafiltration Technique for Studying Protein-Drug Binding. Journal of Pharmaceutical Sciences, 2013, 102, 2679-2688.	1.6	1
112	A technique for drying and storing a protein as a soluble composite thin film on the surface of an ultrafiltration membrane. Journal of Membrane Science, 2015, 490, 256-265.	4.1	1
113	Gas-Sparged Ultrafiltration: Recent Trends, Applications and Future Challenges. , 2011, , 669-697.		1
114	Recovery of functionallyâ€active protein from inclusion bodies using a thermal ycling method. Biotechnology Progress, 2017, 33, 133-139.	1.3	0
115	Enrichment and immobilization of macromolecular analytes on a porous membrane utilizing permeation drag. Journal of Pharmaceutical Analysis, 2018, 8, 187-193.	2.4	0
116	Stimuli-Responsive Membranes for Separations. Polymers and Polymeric Composites, 2019, , 1-18.	0.6	0
117	Simulation and experimental study of the transport of protein bands through cuboid packed-bed devices during chromatographic separations. Journal of Chromatography A, 2020, 1615, 460764.	1.8	0