Simon M Danner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4618251/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Human spinal locomotor control is based on flexibly organized burst generators. Brain, 2015, 138, 577-588.	7.6	139
2	Can the Human Lumbar Posterior Columns Be Stimulated by Transcutaneous Spinal Cord Stimulation? A Modeling Study. Artificial Organs, 2011, 35, 257-262.	1.9	134
3	Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motorâ€Incomplete Spinal Cordâ€Injured Individuals. Artificial Organs, 2015, 39, E176-86.	1.9	112
4	Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord–Injured Individuals. Neurorehabilitation and Neural Repair, 2016, 30, 233-243.	2.9	98
5	Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds. ELife, 2017, 6, .	6.0	95
6	Central control of interlimb coordination and speedâ€dependent gait expression in quadrupeds. Journal of Physiology, 2016, 594, 6947-6967.	2.9	89
7	Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. Journal of Neurotrauma, 2020, 37, 481-493.	3.4	87
8	Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. Journal of Neurophysiology, 2015, 114, 400-410.	1.8	65
9	Body Position Influences Which Neural Structures Are Recruited by Lumbar Transcutaneous Spinal Cord Stimulation. PLoS ONE, 2016, 11, e0147479.	2.5	64
10	Effects of transcutaneous spinal cord stimulation on voluntary locomotor activity in an incomplete spinal cord injured individual. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	51
11	Spinal V3 Interneurons and Left–Right Coordination in Mammalian Locomotion. Frontiers in Cellular Neuroscience, 2019, 13, 516.	3.7	47
12	Computational modeling of brainstem circuits controlling locomotor frequency and gait. ELife, 2019, 8, .	6.0	43
13	Neurocontrol of Movement in Humans With Spinal Cord Injury. Artificial Organs, 2015, 39, 823-833.	1.9	39
14	Intralimb and Interlimb Cutaneous Reflexes during Locomotion in the Intact Cat. Journal of Neuroscience, 2018, 38, 4104-4122.	3.6	33
15	Selectivity of transcutaneous stimulation of lumbar posterior roots at different spinal levels in humans. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	28
16	Peak I of the human auditory brainstem response results from the somatic regions of type I spiral ganglion cells: Evidence from computer modeling. Hearing Research, 2014, 315, 67-79.	2.0	25
17	Multiâ€Electrode Array for Transcutaneous Lumbar Posterior Root Stimulation. Artificial Organs, 2015, 39, 834-840.	1.9	25
18	Energy-Optimal Electrical-Stimulation Pulses Shaped by the Least-Action Principle. PLoS ONE, 2014, 9, e90480.	2.5	24

SIMON M DANNER

#	Article	IF	CITATIONS
19	The role of V3 neurons in speed-dependent interlimb coordination during locomotion in mice. ELife, 2022, 11, .	6.0	18
20	Mechanisms of rhythm generation of the human lumbar spinal cord in response to tonic stimulation without and with step-related sensory feedback. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	15
21	On the Organization of the Locomotor CPG: Insights From Split-Belt Locomotion and Mathematical Modeling. Frontiers in Neuroscience, 2020, 14, 598888.	2.8	10
22	Computational Modeling of Spinal Locomotor Circuitry in the Age of Molecular Genetics. International Journal of Molecular Sciences, 2021, 22, 6835.	4.1	10
23	A Whole-Body Musculoskeletal Model of the Mouse. IEEE Access, 2021, 9, 163861-163881.	4.2	9
24	Potential Distribution and Nerve Fiber Responses in Transcutaneous Lumbosacral Spinal Cord Stimulation. IFMBE Proceedings, 2014, , 203-208.	0.3	7
25	Influence of Spine Curvature on the Efficacy of Transcutaneous Lumbar Spinal Cord Stimulation. Journal of Clinical Medicine, 2021, 10, 5543.	2.4	7
26	Phase-Dependent Response to Afferent Stimulation During Fictive Locomotion: A Computational Modeling Study. Frontiers in Neuroscience, 2019, 13, 1288.	2.8	5
27	Ipsi- and Contralateral Oligo- and Polysynaptic Reflexes in Humans Revealed by Low-Frequency Epidural Electrical Stimulation of the Lumbar Spinal Cord. Brain Sciences, 2021, 11, 112.	2.3	5
28	Finite Element Models of Transcutaneous Spinal Cord Stimulation. , 2014, , 1-6.		4
29	Finite Element Modeling for Extracellular Stimulation. , 2014, , 1-12.		3
30	Locomotor rhythm and pattern generating networks of the human lumbar spinal cord: an electrophysiological and computer modeling study. BMC Neuroscience, 2013, 14, .	1.9	2
31	Health-related and legal interventions: A comparison of allegedly delinquent and convicted opioid addicts in Austria. Drug Science, Policy and Law, 2013, 1, 205032451452844.	1.3	2
32	Finite Element Modeling for Extracellular Stimulation. , 2013, , 1-12.		2
33	Contribution of Afferent Feedback to Adaptive Hindlimb Walking in Cats: A Neuromusculoskeletal Modeling Study. Frontiers in Bioengineering and Biotechnology, 2022, 10, 825149.	4.1	2
34	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2014, , 1-21.		1
35	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2014, , 1-21.		1
36	Non-invasive transcutaneous stimulation of the human lumbar spinal cord facilitates locomotor output in spinal cord injury. Biomedizinische Technik, 2012, 57, .	0.8	0

SIMON M DANNER

#	Article	IF	CITATIONS
37	Effect of Functional Electrical Stimulation on the Central State of Excitability of the Spinal Cord. IFMBE Proceedings, 2013, , 2240-2243.	0.3	0
38	Pattern Generating Networks in the Human Lumbar Spinal Cord: Electrophysiology and Computer Modeling. Biomedizinische Technik, 2013, 58 Suppl 1, .	0.8	0
39	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2013, , 1-20.		0
40	Design of a Multi-site Electrical Stimulation System for Transcutaneous Lumbar Posterior Roots Stimulation. IFMBE Proceedings, 2014, , 43-46.	0.3	0
41	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2015, , 2194-2212.		0
42	Finite Element Models of Transcutaneous Spinal Cord Stimulation. , 2015, , 1197-1202.		0
43	Finite Element Modeling for Extracellular Stimulation. , 2015, , 1186-1195.		0
44	Finite Element Models of Transcutaneous Spinal Cord Stimulation. , 2022, , 1434-1439.		0
45	Finite Element Modeling for Extracellular Stimulation. , 2022, , 1423-1432.		0
46	Paraspinal Magnetic and Transcutaneous Electrical Stimulation. , 2022, , 2581-2599.		0