Wei Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4617724/wei-li-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

309	24,048	80	148
papers	citations	h-index	g-index
325 ext. papers	28,306 ext. citations	11. 8 avg, IF	7.37 L-index

#	Paper	IF	Citations
309	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation <i>Journal of the American Chemical Society</i> , 2022 ,	16.4	9
308	Synthesis and Applications of Mesoporous Nanostructures 2022 ,		
307	Constructing Structurally Ordered High-entropy Alloy Nanoparticles on Nitrogen-rich Mesoporous Carbon Nanosheets for High-performance Oxygen Reduction <i>Advanced Materials</i> , 2022 , e2110128	24	6
306	2D mesoporous materials <i>National Science Review</i> , 2022 , 9, nwab108	10.8	4
305	Coupling of N-Doped Mesoporous Carbon and N-Ti C in 2D Sandwiched Heterostructure for Enhanced Oxygen Electroreduction <i>Small</i> , 2022 , e2106581	11	O
304	Modulating the Electronic Structure of FeCo Nanoparticles in N-Doped Mesoporous Carbon for Efficient Oxygen Reduction Reaction <i>Advanced Science</i> , 2022 , e2200394	13.6	3
303	Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications <i>Macromolecular Rapid Communications</i> , 2022 , e2200071	4.8	O
302	Highly enhanced photocatalytic property dominantly owing to the synergic effects of much negative Ecb and S-scheme heterojunctions in composite g-C3N4/Mo-doped WO3. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 642, 128682	5.1	0
301	Embedding ZnCdS@ZnIn2S4 into thiazole-modified g-C3N4 by electrostatic self-assembly to build dual Z-scheme heterojunction with spatially separated active centers for photocatalytic H2 evolution and ofloxacin degradation. <i>Separation and Purification Technology</i> , 2022 , 290, 120858	8.3	2
300	Edible Amorphous Structural Color. Advanced Optical Materials, 2022, 10, 2102125	8.1	2
299	Recent Advances in the Marriage of Catalyst Nanoparticles and Mesoporous Supports. <i>Advanced Materials Interfaces</i> , 2022 , 9, 2101528	4.6	1
298	Copper Clusters Encapsulated in Carbonaceous Mesoporous Silica Nanospheres for the Valorization of Biomass-Derived Molecules. <i>ACS Catalysis</i> , 2022 , 12, 5711-5725	13.1	O
297	Modular super-assembly of hierarchical superstructures from monomicelle building blocks <i>Science Advances</i> , 2022 , 8, eabo0283	14.3	5
296	Unusual Mesoporous Titanium Niobium Oxides Realizing Sodium-Ion Batteries Operated at -40IIC <i>Advanced Materials</i> , 2022 , e2202873	24	5
295	Integrated p-n/Schottky junctions for efficient photocatalytic hydrogen evolution upon Cu@TiO-CuO ternary hybrids with steering charge transfer <i>Journal of Colloid and Interface Science</i> , 2022 , 622, 924-937	9.3	1
294	Breaking scaling relationships in alkynol semi-hydrogenation by manipulating interstitial atoms in Pd with d-electron gain <i>Nature Communications</i> , 2022 , 13, 2754	17.4	5
293	Wood-Derived Carbon Materials and Light-Emitting Materials. <i>Advanced Materials</i> , 2021 , 33, e2000596	24	30

(2021-2021)

292	Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. <i>Science Advances</i> , 2021 , 7, eabi7403	14.3	8	
291	Computational and data driven molecular material design assisted by low scaling quantum mechanics calculations and machine learning <i>Chemical Science</i> , 2021 , 12, 14987-15006	9.4	3	
290	Interfacial Assembly and Applications of Functional Mesoporous Materials. <i>Chemical Reviews</i> , 2021 , 121, 14349-14429	68.1	24	
289	Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. <i>Advanced Science</i> , 2021 , 8, e2102859	13.6	11	
288	Synergistic Effect between S and Se Enhancing the Electrochemical Behavior of SexSy in Aqueous Zn Metal Batteries. <i>Advanced Functional Materials</i> , 2021 , 31, 2101237	15.6	18	
287	Ultra-low temperature preparation of mullite glass-ceramics with high transparency sintered from EMT-type zeolite. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 3158-3166	3.8	2	
286	General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles. <i>Advanced Materials</i> , 2021 , 33, e2100820	24	11	
285	Programmable synthesis of radially gradient-structured mesoporous carbon nanospheres with tunable core-shell architectures. <i>CheM</i> , 2021 , 7, 1020-1032	16.2	25	
284	Pd Anchored on a Phytic Acid/Thiourea Polymer as a Highly Active and Stable Catalyst for the Reduction of Nitroarene. <i>ACS Applied Materials & Active and Stable Catalyst for the Reduction of Nitroarene</i> . <i>ACS Applied Materials & Discourse and Stable Catalyst for the Reduction of Nitroarene</i> .	9.5	6	
283	High-Performance Supercapacitor Device with Ultrathick Electrodes Fabricated from All-Cellulose-Based Carbon Aerogel. <i>Energy & Energy & 2021</i> , 35, 8295-8302	4.1	10	
282	Oriented assembly of monomicelles in beam stream enabling bimodal mesoporous metal oxide nanofibers. <i>Science China Materials</i> , 2021 , 64, 2486-2496	7.1	О	
281	Hydrolytic Modification of SiO Microspheres with NaSiO and the Performance of Supported Nano-TiO Composite Photocatalyst. <i>Materials</i> , 2021 , 14,	3.5	1	
280	Recent advances in TiO2-based catalysts for N2 reduction reaction. SusMat, 2021, 1, 174-193		7	
279	Inorganic-organic competitive coating strategy derived uniform hollow gradient-structured ferroferric oxide-carbon nanospheres for ultra-fast and long-term lithium-ion battery. <i>Nature Communications</i> , 2021 , 12, 2973	17.4	21	
278	Electrostatic Interactions Leading to Hierarchical Interpenetrating Electroconductive Networks in Silicon Anodes for Fast Lithium Storage. <i>Chemistry - A European Journal</i> , 2021 , 27, 9320-9327	4.8	4	
277	N-doped cellulose-based carbon aerogels with a honeycomb-like structure for high-performance supercapacitors. <i>Journal of Energy Storage</i> , 2021 , 38, 102414	7.8	3	
276				
276	Fabricating Silicon Nanotubes by Electrochemical Exfoliation and Reduction of Layer-Structured CaSiO in Molten Salt. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 30668-30677	9.5	4	

274	Properly aligned band structures in B-TiO2/MIL53(Fe)/g-C3N4 ternary nanocomposite can drastically improve its photocatalytic activity for H2 evolution: Investigations based on the experimental results. <i>International Journal of Hydrogen Energy</i> , 2021 , 46, 21912-21923	6.7	7
273	Hydrogen peroxide enabled two-dimensional molybdenum trioxide nanosheet clusters for enhanced surface Li-ion storage. <i>Tungsten</i> , 2021 , 3, 338-347	4.6	O
272	Boron doping-induced interconnected assembly approach for mesoporous silicon oxycarbide architecture. <i>National Science Review</i> , 2021 , 8, nwaa152	10.8	38
271	Synthesis of hollow CoSe2/MoSe2 nanospheres for efficient hydrazine-assisted hydrogen evolution. <i>Chemical Engineering Journal</i> , 2021 , 404, 126529	14.7	17
270	Sub-nanometric Manganous Oxide Clusters in Nitrogen Doped Mesoporous Carbon Nanosheets for High-Performance Lithium-Sulfur Batteries. <i>Nano Letters</i> , 2021 , 21, 700-708	11.5	26
269	Visible-Light Responsive TiO2-Based Materials for Efficient Solar Energy Utilization. <i>Advanced Energy Materials</i> , 2021 , 11, 2003303	21.8	36
268	Comparison of Additives in Anode: The Case of Graphene, MXene, CNTs Integration with Silicon Inside Carbon Nanofibers. <i>Acta Metallurgica Sinica (English Letters)</i> , 2021 , 34, 337-346	2.5	9
267	Pushing the Limit of Ordered Mesoporous Materials via 2D Self-Assembly for Energy Conversion and Storage. <i>Advanced Functional Materials</i> , 2021 , 31, 2007496	15.6	19
266	Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions. <i>Science Bulletin</i> , 2021 , 66, 275-283	10.6	24
265	When Silicon Materials Meet Natural Sources: Opportunities and Challenges for Low-Cost Lithium Storage. <i>Small</i> , 2021 , 17, e1904508	11	29
264	Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. <i>Small</i> , 2021 , 17, e1904022	11	27
263	The nonlinear optical properties of silver nanoparticles decorated glass obtained from sintering mesoporous powders. <i>Journal of the American Ceramic Society</i> , 2021 , 104, 2571-2578	3.8	
262	Monodisperse Ultrahigh Nitrogen-Containing Mesoporous Carbon Nanospheres from Melamine-Formaldehyde Resin <i>Small Methods</i> , 2021 , 5, e2001137	12.8	16
261	Enriching Atomic Cobalt in an Ultrathin Porous Carbon Shell for Enhanced Electrocatalysis. <i>ACS Applied Materials & Discrete Applied & Discrete Applied Materials & Discrete Applied Materials & Discrete Applied </i>	9.5	4
260	Ultrahigh Adsorption Capacity and Kinetics of Vertically Oriented Mesoporous Coatings for Removal of Organic Pollutants. <i>Small</i> , 2021 , 17, e2101363	11	2
259	Incorporating Cobalt Nanoparticles in Nitrogen-Doped Mesoporous Carbon Spheres through Composite Micelle Assembly for High-Performance Lithium-Sulfur Batteries. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 38604-38612	9.5	7
258	A label-free and homogenous electrochemical assay for matrix metalloproteinase 2 activity monitoring in complex samples based on electrodes modified with orderly distributed mesoporous silica films. <i>Talanta</i> , 2021 , 231, 122418	6.2	2
257	Monomicelle-directed synthesis of deformable and porous carbon membranes for bioelectronics. <i>Matter</i> , 2021 , 4, 2630-2632	12.7	1

(2020-2021)

256	Chemically Self-Charging Aqueous Zinc-Organic Battery. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15369-15377	16.4	16
255	Sulfur-Based Aqueous Batteries: Electrochemistry and Strategies. <i>Journal of the American Chemical Society</i> , 2021 , 143, 15475-15489	16.4	23
254	Asymmetric structure engineering of polymeric carbon nitride for visible-light-driven reduction reactions. <i>Nano Energy</i> , 2021 , 87, 106168	17.1	7
253	Understanding size-dependent hydrogenation of dimethyl oxalate to methyl glycolate over Ag catalysts. <i>Journal of Catalysis</i> , 2021 , 401, 252-261	7.3	1
252	A review of advanced separators for rechargeable batteries. <i>Journal of Power Sources</i> , 2021 , 509, 23037	78 .9	14
251	Anchoring strategy for highly active copper nanoclusters in hydrogenation of renewable biomass-derived compounds. <i>Applied Catalysis B: Environmental</i> , 2021 , 299, 120651	21.8	2
250	Phase-transfer-assisted confined growth of mesoporous MoS2@graphene van der Waals supraparticles for unprecedented ultrahigh-rate sodium storage. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10714-10721	13	4
249	Recent Progress of Porous Materials in Lithium-Metal Batteries. <i>Small Structures</i> , 2021 , 2, 2000118	8.7	31
248	Microdroplet confined assembly enabling the scalable synthesis of titania supported ultrasmall low-valent copper catalysts for efficient photocatalytic activation of peroxymonosulfate. <i>Nanoscale</i> , 2021 , 13, 13764-13775	7.7	2
247	Cluster-in-Molecule Local Correlation Method with an Accurate Distant Pair Correction for Large Systems. <i>Journal of Chemical Theory and Computation</i> , 2021 , 17, 756-766	6.4	7
246	Recent advances on the synthesis of mesoporous metals for electrocatalytic methanol oxidation. <i>Emergent Materials</i> , 2020 , 3, 291-306	3.5	2
245	Template-directed synthesis of mesoporous TiO2 materials for energy conversion and storage. <i>Emergent Materials</i> , 2020 , 3, 315-329	3.5	2
244	Interface-Amorphized TiC@Si/SiO@TiO Anodes with Sandwiched Structures and Stable Lithium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2020 , 12, 24796-24805	9.5	29
243	Designing Champion Nanostructures of Tungsten Dichalcogenides for Electrocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2020 , 32, e2002584	24	48
242	A carbon network strategy to synthesize siliconflarbon anodes toward regulated morphologies during molten salt reduction. <i>CrystEngComm</i> , 2020 , 22, 4894-4902	3.3	
241	Interface Heteroatom-doping: Emerging Solutions to Silicon-based Anodes. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 1394-1404	4.5	9
240	Post-redox engineering electron configurations of atomic thick C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. <i>Applied Catalysis B: Environmental</i> , 2020 , 270, 118855	21.8	17
239	Enhancement in sintering driving force derived from in situ ordered structural collapse of mesoporous powders. <i>Journal of the American Ceramic Society</i> , 2020 , 103, 5654-5663	3.8	6

238	Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (I):[Droplet-based[microfluidicself-assemblysynthesis. <i>Journal of Chromatography A</i> , 2020 , 1626, 461379	4.5	1
237	An Efficient Emulsion-Induced Interface Assembly Approach for Rational Synthesis of Mesoporous Carbon Spheres with Versatile Architectures. <i>Advanced Functional Materials</i> , 2020 , 30, 2002488	15.6	22
236	Dendritic Cell-Inspired Designed Architectures toward Highly Efficient Electrocatalysts for Nitrate Reduction Reaction. <i>Small</i> , 2020 , 16, e2001775	11	35
235	A Biomimetic-Mineralization-Inspired Hybrid Mesocrystal with Boosted Lithium Storage Properties. <i>ChemistrySelect</i> , 2020 , 5, 2240-2246	1.8	O
234	Recent advances in the synthesis of hierarchically mesoporous TiO materials for energy and environmental applications. <i>National Science Review</i> , 2020 , 7, 1702-1725	10.8	61
233	Synergy of Mn and Ni enhanced catalytic performance for toluene combustion over Ni-doped HMnO2 catalysts. <i>Chemical Engineering Journal</i> , 2020 , 388, 124244	14.7	48
232	Regulating ambient pressure approach to graphitic carbon nitride towards dispersive layers and rich pyridinic nitrogen. <i>Chinese Chemical Letters</i> , 2020 , 31, 1603-1607	8.1	5
231	Yolk-shell structured Fe@void@mesoporous silica with high magnetization for activating peroxymonosulfate. <i>Chinese Chemical Letters</i> , 2020 , 31, 2003-2006	8.1	6
230	Solution-phase synthesis of ordered mesoporous carbon as resonant-gravimetric sensing material for room-temperature H2S detection. <i>Chinese Chemical Letters</i> , 2020 , 31, 1680-1685	8.1	5
229	Toward understanding the interaction within Silicon-based anodes for stable lithium storage. <i>Chemical Engineering Journal</i> , 2020 , 385, 123821	14.7	36
228	Sequential Chemistry Toward Core-Shell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 3287-3293	16.4	44
227	A Dual-Functional Conductive Framework Embedded with TiN-VN Heterostructures for Highly Efficient Polysulfide and Lithium Regulation toward Stable Li-S Full Batteries. <i>Advanced Materials</i> , 2020 , 32, e1905658	24	154
226	Sequential Chemistry Toward CoreBhell Structured Metal Sulfides as Stable and Highly Efficient Visible-Light Photocatalysts. <i>Angewandte Chemie</i> , 2020 , 132, 3313-3319	3.6	13
225	Ordered mesoporous carbon-silica frameworks confined magnetic mesoporous TiO2 as an efficient catalyst under acoustic cavitation energy. <i>Journal of Materiomics</i> , 2020 , 6, 45-53	6.7	4
224	Is graphite lithiophobic or lithiophilic?. <i>National Science Review</i> , 2020 , 7, 1208-1217	10.8	66
223	Catalyst consisting of Ag nanoparticles anchored on amine-derivatized mesoporous silica nanospheres for the selective hydrogenation of dimethyl oxalate to methyl glycolate. <i>Journal of Catalysis</i> , 2020 , 391, 155-162	7.3	8
222	A Low Cost Aqueous Zn-S Battery Realizing Ultrahigh Energy Density. <i>Advanced Science</i> , 2020 , 7, 20007	61 3.6	27
221	Engineering Z-scheme TiO-OV-BiOCl via oxygen vacancy for enhanced photocatalytic degradation of imidacloprid. <i>Dalton Transactions</i> , 2020 , 49, 11010-11018	4.3	17

220	Mesoporous Materials for Electrochemical Energy Storage and Conversion. <i>Advanced Energy Materials</i> , 2020 , 10, 2002152	21.8	65
219	Interfacial engineering of core-shell structured mesoporous architectures from single-micelle building blocks. <i>Nano Today</i> , 2020 , 35, 100940	17.9	8
218	Polydopamine-Derived Carbon: What a Critical Role for Lithium Storage?. <i>Frontiers in Energy Research</i> , 2020 , 8,	3.8	2
217	Mesoporous black TiO2 phase junction@Ni nanosheets: A highly integrated photocatalyst system. Journal of the Taiwan Institute of Chemical Engineers, 2020 , 114, 284-290	5.3	3
216	Enhanced photoresponse and fast charge transfer: three-dimensional macroporous g-C3N4/GO-TiO2 nanostructure for hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 1953	3 ¹ ₹954	3 ²¹
215	Confined interfacial micelle aggregating assembly of ordered macro-mesoporous tungsten oxides for HS sensing. <i>Nanoscale</i> , 2020 , 12, 20811-20819	7.7	7
214	Nitrogen-doped carbon enhanced mesoporous TiO2 in photocatalytic remediation of organic pollutants. <i>Research on Chemical Intermediates</i> , 2020 , 46, 1065-1076	2.8	6
213	Synthesis of sandwich-like graphene@mesoporous nitrogen-doped carbon nanosheets for application in high-performance supercapacitors. <i>Nanotechnology</i> , 2020 , 31, 024001	3.4	5
212	Bowl-like mesoporous polymer-induced interface growth of molybdenum disulfide for stable lithium storage. <i>Chemical Engineering Journal</i> , 2020 , 381, 122651	14.7	27
211	Controllable synthesis of highly crystallized mesoporous TiO2/WO3 heterojunctions for acetone gas sensing. <i>Chinese Chemical Letters</i> , 2020 , 31, 1119-1123	8.1	14
210	Mass production of large-pore phosphorus-doped mesoporous carbon for fast-rechargeable lithium-ion batteries. <i>Energy Storage Materials</i> , 2019 , 22, 147-153	19.4	49
209	Spherical Mesoporous Materials from Single to Multilevel Architectures. <i>Accounts of Chemical Research</i> , 2019 , 52, 2928-2938	24.3	81
208	Self-Assembled Nanoparticle Supertubes as Robust Platform for Revealing Long-Term, Multiscale Lithiation Evolution. <i>Matter</i> , 2019 , 1, 976-987	12.7	26
207	Three-dimensional ordered macroporous magnetic photonic crystal microspheres for enrichment and detection of mycotoxins (II): The application in liquid chromatography with fluorescence detector for mycotoxins. <i>Journal of Chromatography A</i> , 2019 , 1604, 460475	4.5	12
206	Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. <i>Nano Energy</i> , 2019 , 66, 104113	17.1	59
205	Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection. <i>Matter</i> , 2019 , 1, 127	′ 4 21728	423
204	In Situ Green Synthesis of Nitrogen-Doped Carbon-Dot-Based Room-Temperature Phosphorescent Materials for Visual Iron Ion Detection. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 18801-18809	98.3	29
203	Hollow-Carbon-Templated Few-Layered VS Nanosheets Enabling Ultrafast Potassium Storage and Long-Term Cycling. <i>ACS Nano</i> , 2019 , 13, 7939-7948	16.7	97

202	Nanocrystal supracrystal-derived atomically dispersed Mn-Fe catalysts with enhanced oxygen reduction activity. <i>Nano Energy</i> , 2019 , 63, 103851	17.1	55
201	Carbon-Encapsulated Copper Sulfide Leading to Enhanced Thermoelectric Properties. <i>ACS Applied Materials & Materia</i>	9.5	22
200	Ultrahigh Surface Area N-Doped Hierarchically Porous Carbon for Enhanced CO Capture and Electrochemical Energy Storage. <i>ChemSusChem</i> , 2019 , 12, 3541-3549	8.3	25
199	Facile synthesis of mesoporous WO3@graphene aerogel nanocomposites for low-temperature acetone sensing. <i>Chinese Chemical Letters</i> , 2019 , 30, 2032-2038	8.1	25
198	Spatially Confined Tuning the Interfacial Synergistic Catalysis in Mesochannels toward Selective Catalytic Reduction. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 19242-19251	9.5	14
197	Ordered mesoporous CoO/CeO2 heterostructures with highly crystallized walls and enhanced peroxidase-like bioactivity. <i>Applied Materials Today</i> , 2019 , 15, 482-493	6.6	24
196	Mesoporous WO Nanofibers With Crystalline Framework for High-Performance Acetone Sensing. <i>Frontiers in Chemistry</i> , 2019 , 7, 266	5	21
195	CO2-Assisted synthesis of hierarchically porous carbon as a supercapacitor electrode and dye adsorbent. <i>Inorganic Chemistry Frontiers</i> , 2019 , 6, 1141-1151	6.8	3
194	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. <i>Angewandte Chemie</i> , 2019 , 131, 6741-6745	3.6	14
193	Engineering the Distribution of Carbon in Silicon Oxide Nanospheres at the Atomic Level for Highly Stable Anodes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 6669-6673	16.4	142
192	Synthesis of carbon nanotubes@mesoporous carbon coreBhell structured electrocatalysts via a molecule-mediated interfacial co-assembly strategy. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 8975-898	8 3 3	36
191	Ultradispersed titanium dioxide nanoparticles embedded in a three-dimensional graphene aerogel for high performance sulfur cathodes <i>RSC Advances</i> , 2019 , 9, 6568-6575	3.7	4
190	Versatile Nanoemulsion Assembly Approach to Synthesize Functional Mesoporous Carbon Nanospheres with Tunable Pore Sizes and Architectures. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7073-7080	16.4	220
189	Controlled PEGylation of periodic mesoporous organosilica nanospheres for improving their stability in physiological solutions. <i>Chinese Chemical Letters</i> , 2019 , 30, 929-932	8.1	6
188	Confinement synthesis of hierarchical ordered macro-/mesoporous TiO2 nanostructures with high crystallization for photodegradation. <i>Chemical Physics</i> , 2019 , 516, 48-54	2.3	11
187	Large-Pore Mesoporous CeO -ZrO Solid Solutions with In-Pore Confined Pt Nanoparticles for Enhanced CO Oxidation. <i>Small</i> , 2019 , 15, e1903058	11	27
186	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. <i>Angewandte Chemie</i> , 2019 , 131, 16010-16015	3.6	6
185	Molecular Design Strategy for Ordered Mesoporous Stoichiometric Metal Oxide. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 15863-15868	16.4	25

184	General Synthesis Approach for Hierarchically Porous Materials via Reverse Microemulsion System. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 13845-13855	8.3	8
183	Tailoring the Assembly of Iron Nanoparticles in Carbon Microspheres toward High-Performance Electrocatalytic Denitrification. <i>Nano Letters</i> , 2019 , 19, 5423-5430	11.5	72
182	Boosting the initial coulombic efficiency in silicon anodes through interfacial incorporation of metal nanocrystals. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 17426-17434	13	61
181	Rational Synthesis and Gas Sensing Performance of Ordered Mesoporous Semiconducting WO/NiO Composites. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 26268-26276	9.5	48
180	Nature-Inspired Multifunctional Bilayer Architecture Advances Bone Defect Repair. <i>CheM</i> , 2019 , 5, 2515	5-265.17	1
179	CeO -Encapsulated Hollow Ag-Au Nanocage Hybrid Nanostructures as High-Performance Catalysts for Cascade Reactions. <i>Small</i> , 2019 , 15, e1903182	11	14
178	Preparation of Nonspherical Fluorinated Acrylate Polymer Particles by a Burface Tension Controlling Method and Their Applications in Light-Diffusing Films. <i>Macromolecular Materials and Engineering</i> , 2019 , 304, 1900174	3.9	6
177	Detection of IL-8 in human serum using surface-enhanced Raman scattering coupled with highly-branched gold nanoparticles and gold nanocages. <i>New Journal of Chemistry</i> , 2019 , 43, 1733-1742	3.6	12
176	Fe-functionalized mesoporous carbonaceous microsphere with high sulfur loading as cathode for lithium-sulfur batteries. <i>Journal of Electroanalytical Chemistry</i> , 2019 , 850, 113408	4.1	5
175	Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 24715-24737	13	40
174	Bimetallic PdCu Nanocrystals Immobilized by Nitrogen-Containing Ordered Mesoporous Carbon for Electrocatalytic Denitrification. <i>ACS Applied Materials & Denitrification (Containing Ordered Mesoporous Carbon for Electrocatalytic Denitrification)</i> 11, 3861-3868	9.5	34
173	Synthesis of uniform ordered mesoporous TiO microspheres with controllable phase junctions for efficient solar water splitting. <i>Chemical Science</i> , 2019 , 10, 1664-1670	9.4	82
172	Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. <i>Nano Energy</i> , 2019 , 56, 426-433	17.1	81
171	Pore Engineering of Mesoporous Tungsten Oxides for Ultrasensitive Gas Sensing. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801269	4.6	26
170	Molecule Self-Assembly Synthesis of Porous Few-Layer Carbon Nitride for Highly Efficient Photoredox Catalysis. <i>Journal of the American Chemical Society</i> , 2019 , 141, 2508-2515	16.4	397
169	Fully optimized implementation of the cluster-in-molecule local correlation approach for electron correlation calculations of large systems. <i>Journal of Computational Chemistry</i> , 2019 , 40, 1130-1140	3.5	15
168	Low-Dimensional Copper Selenide Nanostructures: Controllable Morphology and its Dependence on Electrocatalytic Performance. <i>ChemElectroChem</i> , 2019 , 6, 574-580	4.3	6
167	Mesoporous Organosilica Hollow Nanoparticles: Synthesis and Applications. <i>Advanced Materials</i> , 2019 , 31, e1707612	24	106

166	Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts. <i>AICHE Journal</i> , 2018 , 64, 2881-2889	3.6	19
165	Large-Scale One-Step Synthesis of Carbon Dots from Yeast Extract Powder and Construction of Carbon Dots/PVA Fluorescent Shape Memory Material. <i>Advanced Optical Materials</i> , 2018 , 6, 1701150	8.1	57
164	Scalable synthesis of wrinkled mesoporous titania microspheres with uniform large micron sizes for efficient removal of Cr(VI). <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3954-3966	13	38
163	Folding Graphene Film Yields High Areal Energy Storage in Lithium-Ion Batteries. <i>ACS Nano</i> , 2018 , 12, 1739-1746	16.7	94
162	Deformable Hollow Periodic Mesoporous Organosilica Nanocapsules for Significantly Improved Cellular Uptake. <i>Journal of the American Chemical Society</i> , 2018 , 140, 1385-1393	16.4	107
161	A template-catalyzed in situ polymerization and co-assembly strategy for rich nitrogen-doped mesoporous carbon. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 3162-3170	13	66
160	Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3770-3775	11.5	178
159	Exposed metal oxide active sites on mesoporous titania channels: a promising design for low-temperature selective catalytic reduction of NO with NH. <i>Chemical Communications</i> , 2018 , 54, 3783	- 3 786	18
158	A long-life aqueous Zn-ion battery based on Na3V2(PO4)2F3 cathode. <i>Energy Storage Materials</i> , 2018 , 15, 14-21	19.4	295
157	Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for LiBir batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22096-22105	13	36
156	CoFe2O4 Nanocrystals Mediated Crystallization Strategy for Magnetic Functioned ZSM-5 Catalysts. <i>Advanced Functional Materials</i> , 2018 , 28, 1802088	15.6	10
155	Complex silica composite nanomaterials templated with DNA origami. <i>Nature</i> , 2018 , 559, 593-598	50.4	233
154	Nanostructured binary copper chalcogenides: synthesis strategies and common applications. <i>Nanoscale</i> , 2018 , 10, 15130-15163	7.7	46
153	Magnetic mesoporous TiO2 microspheres for sustainable arsenate removal from acidic environments. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 2132-2139	6.8	9
152	Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. <i>Chemical Communications</i> , 2018 , 54, 5887-5890	5.8	23
151	Core-shell structured titanium dioxide nanomaterials for solar energy utilization. <i>Chemical Society Reviews</i> , 2018 , 47, 8203-8237	58.5	180
150	Porous-Carbon-Confined Formation of Monodisperse Iron Nanoparticle Yolks toward Versatile Nanoreactors for Metal Extraction. <i>Chemistry - A European Journal</i> , 2018 , 24, 15663-15668	4.8	13
149	Thin Film Thermoelectric Materials: Classification, Characterization, and Potential for Wearable Applications. <i>Coatings</i> , 2018 , 8, 244	2.9	31

148	Correlating the Surface Basicity of Metal Oxides with Photocatalytic Hydroxylation of Boronic Acids to Alcohols. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 9780-9784	16.4	25
147	Big Potential From Silicon-Based Porous Nanomaterials: In Field of Energy Storage and Sensors. <i>Frontiers in Chemistry</i> , 2018 , 6, 539	5	17
146	Unveiling the Role of Defects on Oxygen Activation and Photodegradation of Organic Pollutants. <i>Environmental Science & Environmental </i>	10.3	110
145	A Stable Bifunctional Catalyst for Rechargeable Zinc-Air Batteries: Iron-Cobalt Nanoparticles Embedded in a Nitrogen-Doped 3D Carbon Matrix. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16166-16170	16.4	243
144	Mesoporous carbon matrix confinement synthesis of ultrasmall WO3 nanocrystals for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 21550-21557	13	31
143	A green and template-free synthesis process of superior carbon material with ellipsoidal structure as enhanced material for supercapacitors. <i>Journal of Power Sources</i> , 2018 , 405, 80-88	8.9	31
142	Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen-doped carbon coralline. <i>Nanoscale</i> , 2018 , 10, 19023-19030	7.7	35
141	Synthesis of Particulate Hierarchical Tandem Heterojunctions toward Optimized Photocatalytic Hydrogen Production. <i>Advanced Materials</i> , 2018 , 30, e1804282	24	251
140	Janus nanoarchitectures: From structural design to catalytic applications. <i>Nano Today</i> , 2018 , 22, 62-82	17.9	93
139	Vertically Grown Edge-Rich Graphene Nanosheets for Spatial Control of Li Nucleation. <i>Advanced Energy Materials</i> , 2018 , 8, 1800564	21.8	111
138	Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode. <i>Nano Letters</i> , 2018 , 18, 3926-3933	11.5	108
137	New Insight into the Synthesis of Large-Pore Ordered Mesoporous Materials. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1706-1713	16.4	216
136	Ordered Mesoporous Alumina with Ultra-Large Pores as an Efficient Absorbent for Selective Bioenrichment. <i>Chemistry of Materials</i> , 2017 , 29, 2211-2217	9.6	72
135	A carbon-based 3D current collector with surface protection for Li metal anode. <i>Nano Research</i> , 2017 , 10, 1356-1365	10	139
134	Mesoporous organosilica nanoparticles with large radial pores via an assembly-reconstruction process in bi-phase. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 2625-2634	7.3	23
133	A facile template route to periodic mesoporous organosilicas nanospheres with tubular structure by using compressed CO. <i>Scientific Reports</i> , 2017 , 7, 45055	4.9	11
132	Reducing Interfacial Resistance between Garnet-Structured Solid-State Electrolyte and Li-Metal Anode by a Germanium Layer. <i>Advanced Materials</i> , 2017 , 29, 1606042	24	378
131	Porous Carbon Composites for Next Generation Rechargeable Lithium Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700283	21.8	187

130	Fabrication of hollow mesoporous SiO2-BiOCl@PANI@Pd photocatalysts to improve the photocatalytic performance under visible light. <i>Applied Catalysis B: Environmental</i> , 2017 , 213, 136-146	21.8	49
129	Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. <i>ACS Nano</i> , 2017 , 11, 4801-4807	16.7	113
128	Structural insights into hydrogenated graphite prepared from fluorinated graphite through Birchtlype reduction. <i>Carbon</i> , 2017 , 121, 309-321	10.4	9
127	Amorphous TiO Shells: A Vital Elastic Buffering Layer on Silicon Nanoparticles for High-Performance and Safe Lithium Storage. <i>Advanced Materials</i> , 2017 , 29, 1700523	24	265
126	High-capacity, low-tortuosity, and channel-guided lithium metal anode. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3584-3589	11.5	331
125	Controlling the Thickness of Thermally Expanded Films of Graphene Oxide. ACS Nano, 2017 , 11, 665-67	416.7	36
124	Carbon cloth@T-Nb2O5@MnO2: A rational exploration of manganese oxide for high performance supercapacitor. <i>Electrochimica Acta</i> , 2017 , 253, 311-318	6.7	32
123	One-pot synthesis of Ni nanoparticle/ordered mesoporous carbon composite electrode materials for electrocatalytic reduction of aromatic ketones. <i>Nanoscale</i> , 2017 , 9, 17807-17813	7.7	9
122	Conformal Coating of Co/N-Doped Carbon Layers into Mesoporous Silica for Highly Efficient Catalytic Dehydrogenation-Hydrogenation Tandem Reactions. <i>Small</i> , 2017 , 13, 1702243	11	42
121	Surface and Interface Engineering of Silicon-Based Anode Materials for Lithium-Ion Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1701083	21.8	249
120	Mesoporous Silica Thin Membranes with Large Vertical Mesochannels for Nanosize-Based Separation. <i>Advanced Materials</i> , 2017 , 29, 1702274	24	65
119	Towards efficient dual-emissive carbon dots through sulfur and nitrogen co-doped. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8014-8021	7.1	50
118	Orderly integration of porous TiO 2 (B) nanosheets into bunchy hierarchical structure for high-rate and ultralong-lifespan lithium-ion batteries. <i>Nano Energy</i> , 2017 , 31, 1-8	17.1	85
117	Controlled Synthesis of Ordered Mesoporous Carbon-Cobalt Oxide Nanocomposites with Large Mesopores and Graphitic Walls. <i>Chemistry of Materials</i> , 2016 , 28, 7773-7780	9.6	57
116	A Micelle Fusion-Aggregation Assembly Approach to Mesoporous Carbon Materials with Rich Active Sites for Ultrasensitive Ammonia Sensing. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12586-95	16.4	116
115	Chelation-assisted soft-template synthesis of ordered mesoporous zinc oxides for low concentration gas sensing. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 15064-15071	13	68
114	Germanium Nanograin Decoration on Carbon Shell: Boosting Lithium-Storage Properties of Silicon Nanoparticles. <i>Advanced Functional Materials</i> , 2016 , 26, 7800-7806	15.6	59
113	Ag-deposited hollow mesoporous silica microspheres for rapid decolorizing of dye pollutants. Research on Chemical Intermediates, 2016, 42, 8321-8328	2.8	3

(2016-2016)

112	Mesoporous materials for energy conversion and storage devices. <i>Nature Reviews Materials</i> , 2016 , 1,	73.3	788
111	Silicon/Mesoporous Carbon/Crystalline TiO Nanoparticles for Highly Stable Lithium Storage. <i>ACS Nano</i> , 2016 , 10, 10524-10532	16.7	197
110	Amphiphilic Block Copolymer Templated Synthesis of Mesoporous Indium Oxides with Nanosheet-Assembled Pore Walls. <i>Chemistry of Materials</i> , 2016 , 28, 7997-8005	9.6	59
109	Capping agent-free highly dispersed noble metal nanoparticles supported in ordered mesoporous carbon with short channels and their catalytic applications. <i>RSC Advances</i> , 2016 , 6, 61064-61072	3.7	11
108	Rapid thermal decomposition of confined graphene oxide films in air. Carbon, 2016, 101, 71-76	10.4	52
107	Synthesis of Ordered Mesoporous Silica with Tunable Morphologies and Pore Sizes via a Nonpolar Solvent-Assisted StBer Method. <i>Chemistry of Materials</i> , 2016 , 28, 2356-2362	9.6	131
106	A facile biliquid-interface co-assembly synthesis of mesoporous vesicles with large pore sizes. <i>CrystEngComm</i> , 2016 , 18, 4343-4348	3.3	9
105	Preparation of mesoporous TiO2t composites as an advanced Ni catalyst support for reduction of 4-nitrophenol. <i>New Journal of Chemistry</i> , 2016 , 40, 4200-4205	3.6	18
104	Nitrogen-doped porous carbon spheres anchored with Co3O4 nanoparticles as high-performance anode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2016 , 187, 234-242	6.7	73
103	Extremely high arsenic removal capacity for mesoporous aluminium magnesium oxide composites. <i>Environmental Science: Nano</i> , 2016 , 3, 94-106	7.1	100
102	Critical thickness of phenolic resin-based carbon interfacial layer for improving long cycling stability of silicon nanoparticle anodes. <i>Nano Energy</i> , 2016 , 27, 255-264	17.1	163
101	Synthesis of sub-100 nm biocompatible superparamagnetic Fe3O4 colloidal nanocrystal clusters as contrast agents for magnetic resonance imaging. <i>RSC Advances</i> , 2016 , 6, 62550-62555	3.7	17
100	Graphene-Supported Mesoporous Carbons Prepared with Thermally Removable Templates as Efficient Catalysts for Oxygen Electroreduction. <i>Small</i> , 2016 , 12, 1900-8	11	50
99	Facile Synthesis of Yolk-Shell-Structured Triple-Hybridized Periodic Mesoporous Organosilica Nanoparticles for Biomedicine. <i>Small</i> , 2016 , 12, 3550-8	11	58
98	Layer Controllable Graphene Using Graphite Intercalation Compounds with Different Stage Numbers through Li Conversion Reaction. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500496	4.6	4
97	Direct Superassemblies of Freestanding Metal-Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. <i>Journal of the American Chemical Society</i> , 2016 , 138, 16533-16541	16.4	97
96	Monodisperse mesoporous TiO2 microspheres for dye sensitized solar cells. <i>Nano Energy</i> , 2016 , 26, 16-	25 7.1	43
95	Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds. Journal of Colloid and Interface Science, 2016 , 477, 54-63	9.3	20

94	Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery. <i>Nano Energy</i> , 2016 , 25, 80-90	17.1	90
93	Transition from Superlithiophobicity to Superlithiophilicity of Garnet Solid-State Electrolyte. Journal of the American Chemical Society, 2016 , 138, 12258-62	16.4	424
92	Near-Infrared-Light-Induced Fast Drug Release Platform: Mesoporous Silica-Coated Gold Nanoframes for Thermochemotherapy. <i>Particle and Particle Systems Characterization</i> , 2016 , 33, 316-32	2 ^{3.1}	9
91	Interfacial engineering of magnetic particles with porous shells: Towards magnetic core iPorous shell microparticles. <i>Nano Today</i> , 2016 , 11, 464-482	17.9	53
90	Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis. <i>Nano Research</i> , 2015 , 8, 238-245	10	58
89	TiO2 interpenetrating networks decorated with SnO2 nanocrystals: enhanced activity of selective catalytic reduction of NO with NH3. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1405-1409	13	17
88	General strategy to synthesize uniform mesoporous TiO2/graphene/mesoporous TiO2 sandwich-like nanosheets for highly reversible lithium storage. <i>Nano Letters</i> , 2015 , 15, 2186-93	11.5	248
87	Ultradispersed Palladium Nanoparticles in Three-Dimensional Dendritic Mesoporous Silica Nanospheres: Toward Active and Stable Heterogeneous Catalysts. <i>ACS Applied Materials & amp;</i> Interfaces, 2015 , 7, 17450-9	9.5	92
86	Synthesis of Mesoporous Silica/Reduced Graphene Oxide Sandwich-Like Sheets with Enlarged and Eunneling Mesochannels. <i>Chemistry of Materials</i> , 2015 , 27, 5577-5586	9.6	36
85	An Interface Coassembly in Biliquid Phase: Toward Core-Shell Magnetic Mesoporous Silica Microspheres with Tunable Pore Size. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13282-9	16.4	208
84	Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 7060-4	16.4	318
83	Carbon-Coated Mesoporous TiO2 Nanocrystals Grown on Graphene for Lithium-Ion Batteries. <i>ACS Applied Materials & Discours (Materials & Discours)</i> (2015), 7, 10395-400	9.5	48
82	Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. <i>Nature Communications</i> , 2015 , 6, 7081	17.4	815
81	Synthesis of Co3O4/SnO2@MnO2 coreEhell nanostructures for high-performance supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 12852-12857	13	99
80	Template-assisted synthesis of corellhell Fe2O3@TiO2 nanorods and their photocatalytic property. <i>Journal of Materials Science</i> , 2015 , 50, 4083-4094	4.3	36
79	Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. <i>Journal of the American Chemical Society</i> , 2015 , 137, 13161-6	16.4	459
78	Effect of reaction time on structure of ordered mesoporous carbon microspheres prepared from carboxymethyl cellulose by soft-template method. <i>Industrial Crops and Products</i> , 2015 , 76, 866-872	5.9	24
77	Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals. <i>ACS Central Science</i> , 2015 , 1, 400-8	16.8	63

(2014-2015)

76	Facile synthesis of uniform yolkEhell structured magnetic mesoporous silica as an advanced photo-Fenton-like catalyst for degrading rhodamine B. <i>RSC Advances</i> , 2015 , 5, 96201-96204	3.7	15
75	Controllable Synthesis of Mesoporous Peapod-like Co3O4@Carbon Nanotube Arrays for High-Performance Lithium-Ion Batteries. <i>Angewandte Chemie</i> , 2015 , 127, 7166-7170	3.6	39
74	A Bamboo-Inspired Nanostructure Design for Flexible, Foldable, and Twistable Energy Storage Devices. <i>Nano Letters</i> , 2015 , 15, 3899-906	11.5	257
73	Synthesis of graphene@Fe3O4@C coreBhell nanosheets for high-performance lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7036-7043	13	84
72	Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. <i>Nano Research</i> , 2015 , 8, 2503-2514	10	70
71	Direct plasma deposition of amorphous Si/C nanocomposites as high performance anodes for lithium ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 3522-3528	13	31
7°	Synthesis of hierarchically porous carbon spheres with yolk-shell structure for high performance supercapacitors. <i>Catalysis Today</i> , 2015 , 243, 199-208	5.3	80
69	Sandwich-like Cr2O3graphite intercalation composites as high-stability anode materials for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 1703-1708	13	35
68	Fabrication of a Fe3O4@SiO2@mSiO2-HPG-COOH-Pd(0) supported catalyst and its performance in catalyzing the Suzuki cross-coupling reaction. <i>New Journal of Chemistry</i> , 2015 , 39, 2767-2777	3.6	22
67	Uniform coreEhell structured magnetic mesoporous TiO2 nanospheres as a highly efficient and stable sonocatalyst for the degradation of bisphenol-A. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 6492	-6500	56
66	A versatile designed synthesis of magnetically separable nano-catalysts with well-defined coreBhell nanostructures. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 6071-6074	13	57
65	Tricomponent Coassembly Approach To Synthesize Ordered Mesoporous Carbon/Silica Nanocomposites and Their Derivative Mesoporous Silicas with Dual Porosities. <i>Chemistry of Materials</i> , 2014 , 26, 2438-2444	9.6	37
64	Protein biomineralized nanoporous inorganic mesocrystals with tunable hierarchical nanostructures. <i>Journal of the American Chemical Society</i> , 2014 , 136, 15781-6	16.4	53
63	Facile preparation of CuMn/CeO2/SBA-15 catalysts using ceria as an auxiliary for advanced oxidation processes. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 10654	13	38
62	Hydrothermal synthesis of ordered mesoporous carbons from a biomass-derived precursor for electrochemical capacitors. <i>Nanoscale</i> , 2014 , 6, 14657-61	7.7	84
61	Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. <i>Chemical Communications</i> , 2014 , 50, 713-5	5.8	39
60	Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides. <i>Materials Horizons</i> , 2014 , 1, 439	14.4	47
59	Ordered mesoporous C/TiO2 composites as advanced sonocatalysts. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16452-16458	13	30

58	Controllable synthesis of SnO2@C yolk-shell nanospheres as a high-performance anode material for lithium ion batteries. <i>Nanoscale</i> , 2014 , 6, 3217-22	7.7	149
57	YolkBhell Structured Mesoporous Nanoparticles with Thioether-Bridged Organosilica Frameworks. <i>Chemistry of Materials</i> , 2014 , 26, 5980-5987	9.6	82
56	Fabrication of core-shell Fe(2)O(3)@ Li(4)Ti(5)O(12) composite and its application in the lithium ion batteries. <i>ACS Applied Materials & Description (Composite and Its application in the lithium application (Composite and Its application in the lithium ion batteries).</i>	9.5	106
55	Fabrication of noncovalently functionalized brick-like Eyclodextrins/graphene composite dispersions with favorable stability. <i>RSC Advances</i> , 2014 , 4, 2813-2819	3.7	12
54	Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. <i>Chemical Communications</i> , 2014 , 50, 329-31	5.8	196
53	Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. <i>Nano Letters</i> , 2014 , 14, 923-32	11.5	503
52	Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 9035-40	16.4	215
51	Hierarchically tetramodal-porous zeolite ZSM-5 monoliths with template-free-derived intracrystalline mesopores. <i>Chemical Science</i> , 2014 , 5, 1565	9.4	83
50	Facile synthesis of hierarchical porous TiO(2) ceramics with enhanced photocatalytic performance for micropolluted pesticide degradation. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 16653-60	9.5	83
49	Ordered Macro-/Mesoporous Anatase Films with High Thermal Stability and Crystallinity for Photoelectrocatalytic Water-Splitting. <i>Advanced Energy Materials</i> , 2014 , 4, 1301725	21.8	42
48	Oriented mesoporous nanopyramids as versatile plasmon-enhanced interfaces. <i>Journal of the American Chemical Society</i> , 2014 , 136, 6822-5	16.4	58
47	Mesoporous silica-coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. <i>Advanced Healthcare Materials</i> , 2014 , 3, 1620-8	10.1	61
46	Rational design of a metalBrganic framework host for sulfur storage in fast, long-cycle LiB batteries. <i>Energy and Environmental Science</i> , 2014 , 7, 2715	35.4	376
45	Ordered mesoporous black TiO(2) as highly efficient hydrogen evolution photocatalyst. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9280-3	16.4	736
44	A Perspective on Mesoporous TiO2 Materials. <i>Chemistry of Materials</i> , 2014 , 26, 287-298	9.6	366
43	Magnetically guided survivin-siRNA delivery and simultaneous dual-modal imaging visualization based on FeO@mTiO nanospheres for breast cancer. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 7756-77	′6 4 ·3	9
42	Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. <i>Advanced Materials</i> , 2014 , 26, 3741-7	24	158
41	Ordered mesoporous materials based on interfacial assembly and engineering. <i>Advanced Materials</i> , 2013 , 25, 5129-52, 5128	24	226

(2012-2013)

40	Spatially Confined Fabrication of CoreBhell Gold [email[protected] Silica for Near-Infrared Controlled Photothermal Drug Release. <i>Chemistry of Materials</i> , 2013 , 25, 3030-3037	9.6	276
39	Sol-gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. <i>Journal of the American Chemical Society</i> , 2013 , 135, 18300-3	16.4	313
38	A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 11603-6	16.4	23
37	A resol-assisted co-assembly approach to crystalline mesoporous niobia spheres for electrochemical biosensing. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 10505-10	16.4	68
36	Facile fabrication and some specific properties of polymeric/inorganic bilayer hybrid hollow spheres. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 2183-2191	13	27
35	Multi-layered mesoporous TiO2 thin films with large pores and highly crystalline frameworks for efficient photoelectrochemical conversion. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 1591-1599	13	81
34	Extension of the StBer method to construct mesoporous SiO2 and TiO2 shells for uniform multifunctional core-shell structures. <i>Advanced Materials</i> , 2013 , 25, 142-9	24	237
33	An overview of the synthesis of ordered mesoporous materials. <i>Chemical Communications</i> , 2013 , 49, 943-6	5.8	221
32	In-situ crystallization route to nanorod-aggregated functional ZSM-5 microspheres. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1181-4	16.4	78
31	Simple and Green Synthesis of Nitrogen-Doped Photoluminescent Carbonaceous Nanospheres for Bioimaging. <i>Angewandte Chemie</i> , 2013 , 125, 8309-8313	3.6	41
30	Simple and green synthesis of nitrogen-doped photoluminescent carbonaceous nanospheres for bioimaging. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8151-5	16.4	378
29	Preparation and characterization of novel immobilized Fe3O4@SiO2@mSiO2Pd(0) catalyst with large pore-size mesoporous for Suzuki coupling reaction. <i>Applied Catalysis A: General</i> , 2013 , 459, 65-72	5.1	102
28	A Resol-Assisted Co-Assembly Approach to Crystalline Mesoporous Niobia Spheres for Electrochemical Biosensing. <i>Angewandte Chemie</i> , 2013 , 125, 10699-10704	3.6	18
27	High Thermally Stable Mesoporous WO3/TiO2 Heterojunction as a High-Efficient Simulated Solar-Light Photocatalyst. <i>Advanced Porous Materials</i> , 2013 , 1, 262-270		3
26	General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. <i>Advanced Materials</i> , 2012 , 24, 485-91	24	283
25	Highly ordered mesoporous silica films with perpendicular mesochannels by a simple StBer-solution growth approach. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2173-7	16.4	233
24	One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications. <i>Chemistry - A European Journal</i> , 2012 , 18, 13642-50	4.8	58
23	Ultrafine MoO2 nanoparticles embedded in a carbon matrix as a high-capacity and long-life anode for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 425-431		163

22	Ligand exchange triggered controlled-release targeted drug delivery system based on corelhell superparamagnetic mesoporous microspheres capped with nanoparticles. <i>Journal of Materials Chemistry</i> , 2012 , 22, 17677		27
21	Ordered mesoporous graphitized pyrolytic carbon materials: synthesis, graphitization, and electrochemical properties. <i>Journal of Materials Chemistry</i> , 2012 , 22, 8835		80
20	Magnetic spherical cores partly coated with periodic mesoporous organosilica single crystals. <i>Nanoscale</i> , 2012 , 4, 1647-51	7.7	25
19	Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. <i>Nano Letters</i> , 2012 , 12, 2852-8	11.5	265
18	A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. <i>Journal of the American Chemical Society</i> , 2012 , 134, 11864-7	16.4	357
17	Highly Ordered Mesoporous Silica Films with Perpendicular Mesochannels by a Simple StBer-Solution Growth Approach. <i>Angewandte Chemie</i> , 2012 , 124, 2215-2219	3.6	19
16	Hollow micro-mesoporous carbon polyhedra produced by selective removal of skeletal scaffolds. <i>Carbon</i> , 2012 , 50, 2546-2555	10.4	16
15	Multiwall carbon nanotube@mesoporous carbon with core-shell configuration: a well-designed composite-structure toward electrochemical capacitor application. <i>Journal of Materials Chemistry</i> , 2011 , 21, 13025		65
14	Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. <i>Journal of the American Chemical Society</i> , 2011 , 133, 15830-3	16.4	268
13	Core-shell Ag@SiO2@mSiO2 mesoporous nanocarriers for metal-enhanced fluorescence. <i>Chemical Communications</i> , 2011 , 47, 11618-20	5.8	153
12	Synthesis of monodispersed ultrafine Bi2S3 nanocrystals. <i>Journal of Alloys and Compounds</i> , 2011 , 509, 9382-9386	5.7	16
11	Controllable fabrication of various ZnO micro/nanostructures from a wire-like ZnEGAC precursor via a facile solution-based route. <i>Materials Research Bulletin</i> , 2011 , 46, 1283-1289	5.1	19
10	A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. <i>Advanced Energy Materials</i> , 2011 , 1, 382-386	21.8	327
9	Efficient removal of organic pollutants with magnetic Nanoscaled BiFeO(3) as a reusable heterogeneous fenton-like catalyst. <i>Environmental Science & Environmental Science & E</i>	10.3	437
8	Multifunctional mesoporous composite microspheres with well-designed nanostructure: a highly integrated catalyst system. <i>Journal of the American Chemical Society</i> , 2010 , 132, 8466-73	16.4	827
7	Synthesis of Nickel Nanoparticles Supported on Boehmite for Selective Hydrogenation of p-Nitrophenol and p-Chloronitrobenzene. <i>Catalysis Letters</i> , 2010 , 137, 261-266	2.8	67
6	Controlled Synthesis and Functionalization of Ordered Large-Pore Mesoporous Carbons. <i>Advanced Functional Materials</i> , 2010 , 20, 3658-3665	15.6	117
5	One pot synthesis of Ag nanoparticle modified ZnO microspheres in ethylene glycol medium and their enhanced photocatalytic performance. <i>Journal of Solid State Chemistry</i> , 2010 , 183, 2720-2725	3.3	49

LIST OF PUBLICATIONS

4	Synthesis of uniform hollow silica spheres with ordered mesoporous shells in a CO2 induced nanoemulsion. <i>Chemical Communications</i> , 2009 , 2365-7	5.8	67
3	An implantable antibacterial drug-carrier: Mesoporous silica coatings with size-tunable vertical mesochannels. <i>Nano Research</i> ,1	10	2
2	Single Copolymer Chain-Templated Synthesis of Ultrasmall Symmetric and Asymmetric Silica-Based Nanoparticles. <i>Advanced Functional Materials</i> ,2112742	15.6	2
1	Boron heteroatom-doped silicontarbon peanut-like composites enables long life lithium-ion batteries. <i>Rare Metals</i> ,1	5.5	13