Bing Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4616659/publications.pdf Version: 2024-02-01

		3325	4323
366	33,173	91	173
papers	citations	h-index	g-index
393 all docs	393	393 times ranked	26797
		times ranked	citing autions

RINC XII

#	Article	IF	CITATIONS
1	Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Accounts of Chemical Research, 2009, 42, 1097-1107.	7.6	1,638
2	Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials. Chemical Reviews, 2015, 115, 13165-13307.	23.0	1,497
3	Promoting Axon Regeneration in the Adult CNS by Modulation of the PTEN/mTOR Pathway. Science, 2008, 322, 963-966.	6.0	1,455
4	Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles. Journal of the American Chemical Society, 2004, 126, 9938-9939.	6.6	836
5	Facile One-Pot Synthesis of Bifunctional Heterodimers of Nanoparticles:Â A Conjugate of Quantum Dot and Magnetic Nanoparticles. Journal of the American Chemical Society, 2004, 126, 5664-5665.	6.6	709
6	Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chemical Communications, 2006, , 941.	2.2	637
7	Presenting Vancomycin on Nanoparticles to Enhance Antimicrobial Activities. Nano Letters, 2003, 3, 1261-1263.	4.5	620
8	Enzymatic Hydrogelation of Small Molecules. Accounts of Chemical Research, 2008, 41, 315-326.	7.6	615
9	Enzymatic Formation of Supramolecular Hydrogels. Advanced Materials, 2004, 16, 1440-1444.	11.1	554
10	Heterodimers of Nanoparticles:Â Formation at a Liquidâ^'Liquid Interface and Particle-Specific Surface Modification by Functional Molecules. Journal of the American Chemical Society, 2005, 127, 34-35.	6.6	532
11	Using Biofunctional Magnetic Nanoparticles to Capture Vancomycin-Resistant Enterococci and Other Gram-Positive Bacteria at Ultralow Concentration. Journal of the American Chemical Society, 2003, 125, 15702-15703.	6.6	531
12	Molecular hydrogels of therapeutic agents. Chemical Society Reviews, 2009, 38, 883.	18.7	459
13	Using a Kinase/Phosphatase Switch to Regulate a Supramolecular Hydrogel and Forming the Supramolecular Hydrogel in Vivo. Journal of the American Chemical Society, 2006, 128, 3038-3043.	6.6	452
14	Nitrilotriacetic Acid-Modified Magnetic Nanoparticles as a General Agent to Bind Histidine-Tagged Proteins. Journal of the American Chemical Society, 2004, 126, 3392-3393.	6.6	442
15	Supramolecular Hydrogels Respond to Ligandâ~'Receptor Interaction. Journal of the American Chemical Society, 2003, 125, 13680-13681.	6.6	434
16	Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nature Communications, 2012, 3, 1033.	5.8	411
17	FePt@CoS2Yolkâ^'Shell Nanocrystals as a Potent Agent to Kill HeLa Cells. Journal of the American Chemical Society, 2007, 129, 1428-1433.	6.6	392
18	Hydrophobic Interaction and Hydrogen Bonding Cooperatively Confer a Vancomycin Hydrogel:Â A Potential Candidate for Biomaterials. Journal of the American Chemical Society, 2002, 124, 14846-14847.	6.6	387

#	Article	IF	CITATIONS
19	Enzyme-Instructed Molecular Self-assembly Confers Nanofibers and a Supramolecular Hydrogel of Taxol Derivative. Journal of the American Chemical Society, 2009, 131, 13576-13577.	6.6	373
20	A Supramolecular-Hydrogel-Encapsulated Hemin as an Artificial Enzyme to Mimic Peroxidase. Angewandte Chemie - International Edition, 2007, 46, 4285-4289.	7.2	369
21	Multifunctional Yolkâ~'Shell Nanoparticles: A Potential MRI Contrast and Anticancer Agent. Journal of the American Chemical Society, 2008, 130, 11828-11833.	6.6	354
22	Magnetic nanoparticles for the manipulation of proteins and cells. Chemical Society Reviews, 2012, 41, 2912.	18.7	342
23	Aromaticâ^'Aromatic Interactions Induce the Self-Assembly of Pentapeptidic Derivatives in Water To Form Nanofibers and Supramolecular Hydrogels. Journal of the American Chemical Society, 2010, 132, 2719-2728.	6.6	328
24	Chemical composition, crystal size and lattice structural changes after incorporation of strontium into biomimetic apatite. Biomaterials, 2007, 28, 1452-1460.	5.7	291
25	Pericellular Hydrogel/Nanonets Inhibit Cancer Cells. Angewandte Chemie - International Edition, 2014, 53, 8104-8107.	7.2	280
26	<scp>d</scp> -Amino Acids Boost the Selectivity and Confer Supramolecular Hydrogels of a Nonsteroidal Anti-Inflammatory Drug (NSAID). Journal of the American Chemical Society, 2013, 135, 542-545.	6.6	264
27	Intracellular Enzymatic Formation of Nanofibers Results in Hydrogelation and Regulated Cell Death. Advanced Materials, 2007, 19, 3152-3156.	11.1	259
28	Supramolecular Hydrogel of a <scp>d</scp> -Amino Acid Dipeptide for Controlled Drug Release in Vivo. Langmuir, 2009, 25, 8419-8422.	1.6	257
29	Integrating Enzymatic Self-Assembly and Mitochondria Targeting for Selectively Killing Cancer Cells without Acquired Drug Resistance. Journal of the American Chemical Society, 2016, 138, 16046-16055.	6.6	254
30	Small peptide nanofibers as the matrices of molecular hydrogels for mimicking enzymes and enhancing the activity of enzymes. Chemical Society Reviews, 2010, 39, 3425.	18.7	242
31	Intracellular Spatial Control of Fluorescent Magnetic Nanoparticles. Journal of the American Chemical Society, 2008, 130, 3710-3711.	6.6	228
32	Design of Coordination Polymer Gels as Stable Catalytic Systems. Chemistry - A European Journal, 2002, 8, 5028-5032.	1.7	226
33	Dephosphorylation of <scp>d</scp> -Peptide Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications for Intracellular Imaging and Intratumoral Chemotherapy. Journal of the American Chemical Society, 2013, 135, 9907-9914.	6.6	226
34	A Biocompatible Method of Decorporation:Â Bisphosphonate-Modified Magnetite Nanoparticles to Remove Uranyl Ions from Blood. Journal of the American Chemical Society, 2006, 128, 13358-13359.	6.6	224
35	Magnetic-Dipolar-Interaction-Induced Self-Assembly Affords Wires of Hollow Nanocrystals of Cobalt Selenide. Angewandte Chemie - International Edition, 2006, 45, 1220-1223.	7.2	220
36	Enzyme-Instructed Self-Assembly of Small <scp>d</scp> -Peptides as a Multiple-Step Process for Selectively Killing Cancer Cells. Journal of the American Chemical Society, 2016, 138, 3813-3823.	6.6	220

#	Article	IF	CITATIONS
37	Applications of nanomaterials inside cells. Nano Today, 2009, 4, 37-51.	6.2	218
38	A simple visual assay based on small molecule hydrogels for detecting inhibitors of enzymes. Chemical Communications, 2004, , 2424.	2.2	215
39	Intracellular Hydrogelation of Small Molecules Inhibits Bacterial Growth. Angewandte Chemie - International Edition, 2007, 46, 8216-8219.	7.2	212
40	Small molecule hydrogels based on a class of antiinflammatory agents. Chemical Communications, 2004, , 208.	2.2	211
41	d-Glucosamine-based supramolecular hydrogels to improve wound healing. Chemical Communications, 2007, , 843-845.	2.2	208
42	Using β-Lactamase to Trigger Supramolecular Hydrogelation. Journal of the American Chemical Society, 2007, 129, 266-267.	6.6	203
43	Versatile Small-Molecule Motifs for Self-Assembly in Water and the Formation of Biofunctional Supramolecular Hydrogels. Langmuir, 2011, 27, 529-537.	1.6	203
44	Supramolecular biofunctional materials. Biomaterials, 2017, 129, 1-27.	5.7	196
45	Conjugates of naphthalene and dipeptides produce molecular hydrogelators with high efficiency of hydrogelation and superhelical nanofibers. Journal of Materials Chemistry, 2007, 17, 850-854.	6.7	192
46	Reaction–diffusion processes at the nano- and microscales. Nature Nanotechnology, 2016, 11, 312-319.	15.6	192
47	Bioinspired assembly of small molecules in cell milieu. Chemical Society Reviews, 2017, 46, 2421-2436.	18.7	188
48	Rigid bowlic liquid crystals based on tungsten-oxo calix[4]arenes: host-guest effects and head-to-tail organization. Journal of the American Chemical Society, 1993, 115, 1159-1160.	6.6	182
49	Supramolecular hydrogels based on biofunctional nanofibers of self-assembled small molecules. Journal of Materials Chemistry, 2007, 17, 2385.	6.7	179
50	Enzymatic Assemblies Disrupt the Membrane and Target Endoplasmic Reticulum for Selective Cancer Cell Death. Journal of the American Chemical Society, 2018, 140, 9566-9573.	6.6	174
51	Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles—a potential candidate for bimodal anticancer therapy. Chemical Communications, 2005, , 4270.	2.2	172
52	Fluorescent Magnetic Nanocrystals by Sequential Addition of Reagents in a One-Pot Reaction:  A Simple Preparation for Multifunctional Nanostructures. Journal of the American Chemical Society, 2007, 129, 11928-11935.	6.6	168
53	Combining Fluorescent Probes and Biofunctional Magnetic Nanoparticles for Rapid Detection of Bacteria in Human Blood. Advanced Materials, 2006, 18, 3145-3148.	11.1	165
54	Molecular Nanofibers of Olsalazine Form Supramolecular Hydrogels for Reductive Release of an Anti-inflammatory Agent. Journal of the American Chemical Society, 2010, 132, 17707-17709.	6.6	165

Вінс Хи

#	Article	IF	CITATIONS
55	Molecular Recognition Remolds the Self-Assembly of Hydrogelators and Increases the Elasticity of the Hydrogel by 106-Fold. Journal of the American Chemical Society, 2004, 126, 15028-15029.	6.6	162
56	Enzymeâ€Instructed Intracellular Molecular Selfâ€Assembly to Boost Activity of Cisplatin against Drugâ€Resistant Ovarian Cancer Cells. Angewandte Chemie - International Edition, 2015, 54, 13307-13311.	7.2	158
57	Self-assembly of small molecules affords multifunctional supramolecular hydrogels for topically treating simulated uranium wounds. Chemical Communications, 2005, , 4414.	2.2	154
58	A Redox Responsive, Fluorescent Supramolecular Metallohydrogel Consists of Nanofibers with Single-Molecule Width. Journal of the American Chemical Society, 2013, 135, 5008-5011.	6.6	151
59	Enzymatic Cleavage of Branched Peptides for Targeting Mitochondria. Journal of the American Chemical Society, 2018, 140, 1215-1218.	6.6	149
60	Inâ€Vitro and Inâ€Vivo Enzymatic Formation of Supramolecular Hydrogels Based on Self-Assembled Nanofibers of a β-Amino Acid Derivative. Small, 2007, 3, 558-562.	5.2	144
61	Enzyme-Instructed Self-Assembly for Spatiotemporal Profiling of the Activities of Alkaline Phosphatases on Live Cells. CheM, 2016, 1, 246-263.	5.8	143
62	Enzymatic Noncovalent Synthesis. Chemical Reviews, 2020, 120, 9994-10078.	23.0	143
63	Taurine Boosts Cellular Uptake of Small <scp>d</scp> -Peptides for Enzyme-Instructed Intracellular Molecular Self-Assembly. Journal of the American Chemical Society, 2015, 137, 10040-10043.	6.6	140
64	Single-Molecule Force Spectroscopy and Imaging of the Vancomycin/d-Ala-d-Ala Interaction. Nano Letters, 2007, 7, 796-801.	4.5	139
65	Supramolecular catalysis and dynamic assemblies for medicine. Chemical Society Reviews, 2017, 46, 6470-6479.	18.7	137
66	Supramolecular Nanofibers and Hydrogels of Nucleopeptides. Angewandte Chemie - International Edition, 2011, 50, 9365-9369.	7.2	133
67	Enzyme-Instructed Self-Assembly: A Multistep Process for Potential Cancer Therapy. Bioconjugate Chemistry, 2015, 26, 987-999.	1.8	127
68	Molecular hydrogel-immobilized enzymes exhibit superactivity and high stability in organic solvents. Chemical Communications, 2007, , 1032.	2.2	126
69	Aromatic–Aromatic Interactions Enhance Interfiber Contacts for Enzymatic Formation of a Spontaneously Aligned Supramolecular Hydrogel. Journal of the American Chemical Society, 2014, 136, 2970-2973.	6.6	126
70	Aromatic–Aromatic Interactions Enable α-Helix to β-Sheet Transition of Peptides to Form Supramolecular Hydrogels. Journal of the American Chemical Society, 2017, 139, 71-74.	6.6	124
71	Disruption of the Dynamics of Microtubules and Selective Inhibition of Glioblastoma Cells by Nanofibers of Small Hydrophobic Molecules. Angewandte Chemie - International Edition, 2013, 52, 6944-6948.	7.2	123
72	Enzyme-Instructed Assembly and Disassembly Processes for Targeting Downregulation in Cancer Cells. Journal of the American Chemical Society, 2017, 139, 3950-3953.	6.6	122

#	Article	IF	CITATIONS
73	Supramolecular hydrogels based on \hat{l}^2 -amino acid derivatives. Chemical Communications, 2006, , 738.	2.2	121
74	Enzyme-Instructed Peptide Assemblies Selectively Inhibit Bone Tumors. CheM, 2019, 5, 2442-2449.	5.8	118
75	Multifunctional, Biocompatible Supramolecular Hydrogelators Consist Only of Nucleobase, Amino Acid, and Glycoside. Journal of the American Chemical Society, 2011, 133, 17513-17518.	6.6	115
76	A stable metal coordination polymer gel based on a calix[4]arene and its "uptake―of non-ionic organic molecules from the aqueous phase. Chemical Communications, 2002, , 362-363.	2.2	114
77	Using biofunctional magnetic nanoparticles to capture Gram-negative bacteria at an ultra-low concentrationElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b3/b305421g/. Chemical Communications, 2003, , 1966.	2.2	111
78	Self-Assembling Ability Determines the Activity of Enzyme-Instructed Self-Assembly for Inhibiting Cancer Cells. Journal of the American Chemical Society, 2017, 139, 15377-15384.	6.6	108
79	Using Surface Plasmon Resonance to Study the Binding of Vancomycin and Its Dimer to Self-Assembled Monolayers Presentingd-Ala-d-Ala. Journal of the American Chemical Society, 1999, 121, 2629-2630.	6.6	107
80	Enzymatic hydrogelation to immobilize an enzyme for high activity and stability. Soft Matter, 2008, 4, 550.	1.2	106
81	Supramolecular Hydrogels Made of Basic Biological Building Blocks. Chemistry - an Asian Journal, 2014, 9, 1446-1472.	1.7	105
82	Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomolecular Concepts, 2016, 7, 179-187.	1.0	104
83	Enzyme-Regulated Supramolecular Assemblies of Cholesterol Conjugates against Drug-Resistant Ovarian Cancer Cells. Journal of the American Chemical Society, 2016, 138, 10758-10761.	6.6	102
84	Active Probes for Imaging Membrane Dynamics of Live Cells with High Spatial and Temporal Resolution over Extended Time Scales and Areas. Journal of the American Chemical Society, 2018, 140, 3505-3509.	6.6	100
85	Enzymeâ€instructed selfâ€assembly of peptide derivatives to form nanofibers and hydrogels. Biopolymers, 2010, 94, 19-31.	1.2	99
86	Enzymatic formation of a photoresponsive supramolecular hydrogel. Chemical Communications, 2010, 46, 5364.	2.2	99
87	Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie - International Edition, 2019, 58, 10423-10432.	7.2	99
88	<scp>d</scp> -Amino Acids Modulate the Cellular Response of Enzymatic-Instructed Supramolecular Nanofibers of Small Peptides. Biomacromolecules, 2014, 15, 3559-3568.	2.6	98
89	Dual Fluorescent―and Isotopic‣abelled Selfâ€Assembling Vancomycin for in vivo Imaging of Bacterial Infections. Angewandte Chemie - International Edition, 2017, 56, 2356-2360.	7.2	98
90	Ultrashort Cationic Naphthalene-Derived Self-Assembled Peptides as Antimicrobial Nanomaterials. Biomacromolecules, 2014, 15, 3429-3439.	2.6	97

#	Article	IF	CITATIONS
91	InÂvivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharmaceutica Sinica B, 2021, 11, 2150-2171.	5.7	97
92	Gels as Functional Nanomaterials for Biology and Medicine. Langmuir, 2009, 25, 8375-8377.	1.6	94
93	Exceptionally small supramolecular hydrogelators based on aromatic–aromatic interactions. Beilstein Journal of Organic Chemistry, 2011, 7, 167-172.	1.3	94
94	Interfacial behaviour of strontium-containing hydroxyapatite cement with cancellous and cortical bone. Biomaterials, 2006, 27, 5127-5133.	5.7	90
95	Unequal prognostic potentials of p53 gain-of-function mutations in human cancers associate with drug-metabolizing activity. Cell Death and Disease, 2014, 5, e1108-e1108.	2.7	89
96	Enzymatic control of the self-assembly of small molecules: a new way to generate supramolecular hydrogels. Soft Matter, 2007, 3, 515.	1.2	85
97	Multifunctional divalent vancomycin: the fluorescent imaging and photodynamic antimicrobial properties for drug resistant bacteria. Chemical Communications, 2011, 47, 1601-1603.	2.2	81
98	Large-Area Patterning by Vacuum-Assisted Micromolding. Advanced Materials, 1999, 11, 946-950.	11.1	80
99	Using Enzymes to Control Molecular Hydrogelation. Advanced Materials, 2006, 18, 3043-3046.	11.1	79
100	Regulating the Rate of Molecular Selfâ€Assembly for Targeting Cancer Cells. Angewandte Chemie - International Edition, 2016, 55, 5770-5775.	7.2	77
101	Supramolecular medicine. Chemical Society Reviews, 2017, 46, 6430-6432.	18.7	77
102	Self-Assembly and Self-Orientation of Truncated Octahedral Magnetite Nanocrystals. Advanced Materials, 2006, 18, 2418-2421.	11.1	76
103	Introducing <scp>d</scp> -Amino Acid or Simple Glycoside into Small Peptides to Enable Supramolecular Hydrogelators to Resist Proteolysis. Langmuir, 2012, 28, 13512-13517.	1.6	76
104	Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 16445-16450.	7.2	75
105	D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Advanced Drug Delivery Reviews, 2017, 110-111, 102-111.	6.6	74
106	Novel Anisotropic Supramolecular Hydrogel with High Stability over a Wide pH Range. Langmuir, 2011, 27, 1510-1512.	1.6	72
107	Mixing Biomimetic Heterodimers of Nucleopeptides to Generate Biocompatible and Biostable Supramolecular Hydrogels. Angewandte Chemie - International Edition, 2015, 54, 5705-5708.	7.2	71
108	Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angewandte Chemie - International Edition, 2018, 57, 4931-4935.	7.2	71

Вінс Хи

#	Article	IF	CITATIONS
109	Dying tumor cells stimulate proliferation of living tumor cells via caspaseâ€dependent protein kinase Cĺ activation in pancreatic ductal adenocarcinoma. Molecular Oncology, 2015, 9, 105-114.	2.1	70
110	Probing Nanoscale Self-Assembly of Nonfluorescent Small Molecules inside Live Mammalian Cells. ACS Nano, 2013, 7, 9055-9063.	7.3	69
111	Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angewandte Chemie - International Edition, 2021, 60, 12796-12801.	7.2	68
112	Colloidosome-based Synthesis of a Multifunctional Nanostructure of Silver and Hollow Iron Oxide Nanoparticles. Langmuir, 2010, 26, 4184-4187.	1.6	66
113	Instructed Assembly of Peptides for Intracellular Enzyme Sequestration. Journal of the American Chemical Society, 2018, 140, 16433-16437.	6.6	66
114	Intercellular Instructed-Assembly Mimics Protein Dynamics To Induce Cell Spheroids. Journal of the American Chemical Society, 2019, 141, 7271-7274.	6.6	66
115	Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites. Advanced Functional Materials, 2010, 20, 2580-2587.	7.8	65
116	Instructed-Assembly (iA): A Molecular Process for Controlling Cell Fate. Bulletin of the Chemical Society of Japan, 2018, 91, 900-906.	2.0	65
117	Chemical synthesis of narrowly dispersed SmCo5 nanoparticles. Journal of Applied Physics, 2003, 93, 7589-7591.	1.1	64
118	High Catalytic Activities of Artificial Peroxidases Based on Supramolecular Hydrogels That Contain Heme Models. Chemistry - A European Journal, 2008, 14, 5073-5078.	1.7	63
119	The conjugation of nonsteroidal anti-inflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry, 2013, 9, 908-917.	1.3	63
120	Enzymatic Self-Assembly Confers Exceptionally Strong Synergism with NF-κB Targeting for Selective Necroptosis of Cancer Cells. Journal of the American Chemical Society, 2018, 140, 2301-2308.	6.6	63
121	Enzyme-Instructed Self-Assembly for Cancer Therapy and Imaging. Bioconjugate Chemistry, 2020, 31, 492-500.	1.8	61
122	Phenyl groups in supramolecular nanofibers confer hydrogels with high elasticity and rapid recovery. Journal of Materials Chemistry, 2010, 20, 2128.	6.7	60
123	Selfâ€Delivery Multifunctional Antiâ€HIV Hydrogels for Sustained Release. Advanced Healthcare Materials, 2013, 2, 1586-1590.	3.9	60
124	Spontaneous Enrichment of Organic Molecules from Aqueous and Gas Phases into a Stable Metallogel. Langmuir, 2002, 18, 9654-9658.	1.6	59
125	Partial rescue of defects in Cited2-deficient embryos by HIF-1α heterozygosity. Developmental Biology, 2007, 301, 130-140.	0.9	58
126	Calcium Ions to Cross-Link Supramolecular Nanofibers to Tune the Elasticity of Hydrogels over Orders of Magnitude. Langmuir, 2011, 27, 14425-14431.	1.6	56

#	Article	IF	CITATIONS
127	Selectively Inducing Cancer Cell Death by Intracellular Enzymeâ€Instructed Selfâ€Assembly (EISA) of Dipeptide Derivatives. Advanced Healthcare Materials, 2017, 6, 1601400.	3.9	56
128	Artificial Intracellular Filaments. Cell Reports Physical Science, 2020, 1, 100085.	2.8	56
129	Using Soft Lithography to Pattern Highly Oriented Polyacetylene (HOPA) Films via Solventless Polymerization. Advanced Materials, 2004, 16, 1356-1359.	11.1	55
130	Enzymatic Noncovalent Synthesis of Supramolecular Soft Matter for Biomedical Applications. Matter, 2019, 1, 1127-1147.	5.0	54
131	Perimitochondrial Enzymatic Self-Assembly for Selective Targeting the Mitochondria of Cancer Cells. ACS Nano, 2020, 14, 6947-6955.	7.3	54
132	Induction of human myeloblastic ML-1 cell G1 arrest by suppression of K+ channel activity. American Journal of Physiology - Cell Physiology, 1996, 271, C2037-C2044.	2.1	52
133	Controlling self-assembly within nanospace for peptide nanoparticle fabrication. Soft Matter, 2008, 4, 1617.	1.2	52
134	Enzymeâ€instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angewandte Chemie - International Edition, 2020, 59, 9330-9334.	7.2	52
135	An inâ€situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids. Angewandte Chemie - International Edition, 2017, 56, 16297-16301.	7.2	50
136	Using supramolecular hydrogels to discover the interactions between proteins and molecular nanofibers of small molecules. Chemical Communications, 2012, 48, 8404.	2.2	49
137	Nanoscale assemblies of small molecules control the fate of cells. Nano Today, 2015, 10, 615-630.	6.2	49
138	Enzymatically Forming Intranuclear Peptide Assemblies for Selectively Killing Human Induced Pluripotent Stem Cells. Journal of the American Chemical Society, 2021, 143, 15852-15862.	6.6	49
139	Glutathione (GSH)-decorated magnetic nanoparticles for binding glutathione-S-transferase (GST) fusion protein and manipulating live cells. Chemical Science, 2011, 2, 945.	3.7	48
140	Multivalent Antibiotics via Metal Complexes:Â Potent Divalent Vancomycins against Vancomycin-Resistant Enterococci. Journal of Medicinal Chemistry, 2003, 46, 4904-4909.	2.9	47
141	A versatile supramolecular hydrogel of nitrilotriacetic acid (NTA) for binding metal ions and magnetorheological response. Journal of Materials Chemistry, 2011, 21, 6804.	6.7	47
142	Substrate Specificities of the Insulin and Insulin-like Growth Factor 1 Receptor Tyrosine Kinase Catalytic Domains. Journal of Biological Chemistry, 1995, 270, 29825-29830.	1.6	46
143	Self-assembled hybrid nanofibers confer a magnetorheological supramolecular hydrogel. Tetrahedron, 2007, 63, 7349-7357.	1.0	46
144	Bactericidal functionalization of wrinkle-free fabrics via covalently bonding TiO2@Ag nanoconjugates. Journal of Materials Science, 2009, 44, 1894-1901.	1.7	46

#	Article	IF	CITATIONS
145	Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics. Journal of Biological Chemistry, 2014, 289, 29208-29218.	1.6	46
146	Giant Volume Change of Active Gels under Continuous Flow. Journal of the American Chemical Society, 2014, 136, 7341-7347.	6.6	46
147	Supramolecular Assemblies of Peptides or Nucleopeptides for Gene Delivery. Theranostics, 2019, 9, 3213-3222.	4.6	46
148	Instructed Assembly as Contextâ€Dependent Signaling for the Death and Morphogenesis of Cells. Angewandte Chemie - International Edition, 2019, 58, 5567-5571.	7.2	45
149	The origin of the non-monotonic field dependence of the blocking temperature in magnetic nanoparticles. Journal of Physics Condensed Matter, 2006, 18, 5905-5910.	0.7	44
150	Supramolecular Assemblies of a Conjugate of Nucleobase, Amino Acids, and Saccharide Act as Agonists for Proliferation of Embryonic Stem Cells and Development of Zygotes. Bioconjugate Chemistry, 2014, 25, 1031-1035.	1.8	43
151	Genetically Encoded Biosensors Reveal PKA Hyperphosphorylation on the Myofilaments in Rabbit Heart Failure. Circulation Research, 2016, 119, 931-943.	2.0	43
152	Making Honeycomb Microcomposites by Soft Lithography. Advanced Materials, 1999, 11, 492-495.	11.1	42
153	Supramolecular hydrogels formed by the conjugates of nucleobases, Arg-Gly-Asp (RGD) peptides, and glucosamine. Soft Matter, 2012, 8, 7402.	1.2	42
154	"Molecular trinity―for soft nanomaterials: integrating nucleobases, amino acids, and glycosides to construct multifunctional hydrogelators. Soft Matter, 2012, 8, 2801.	1.2	42
155	Ligand–Receptor Interaction Catalyzes the Aggregation of Small Molecules To Induce Cell Necroptosis. Journal of the American Chemical Society, 2015, 137, 26-29.	6.6	42
156	Ligand–Receptor Interaction Modulates the Energy Landscape of Enzyme-Instructed Self-Assembly of Small Molecules. Journal of the American Chemical Society, 2016, 138, 15397-15404.	6.6	42
157	Post-Self-Assembly Cross-Linking of Molecular Nanofibers for Oscillatory Hydrogels. Langmuir, 2012, 28, 3063-3066.	1.6	41
158	Imaging Self-Assembly Dependent Spatial Distribution of Small Molecules in a Cellular Environment. Langmuir, 2013, 29, 15191-15200.	1.6	41
159	Emerging Applications of Supramolecular Peptide Assemblies. Trends in Chemistry, 2020, 2, 71-83.	4.4	41
160	Using Congo red to report intracellular hydrogelation resulted from self-assembly of small molecules. Chemical Communications, 2007, , 4096.	2.2	40
161	Xuebijing Ameliorates Sepsis-Induced Lung Injury by Downregulating HMGB1 and RAGE Expressions in Mice. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	0.5	40
162	Self-assembling ultrashort NSAID-peptide nanosponges: multifunctional antimicrobial and anti-inflammatory materials. RSC Advances, 2016, 6, 114738-114749.	1.7	40

Вінс Хи

#	Article	lF	CITATIONS
163	In situ generated Dâ€peptidic nanofibrils as multifaceted apoptotic inducers to target cancer cells. Cell Death and Disease, 2017, 8, e2614-e2614.	2.7	40
164	Self-assembled multivalent vancomycin on cell surfaces against vancomycin-resistant enterococci (VRE)Electronic Supplementary Information (ESI) available: details of the in vitro experiments and fluorescent spectroscopic study (6 pages). See http://www.rsc.org/suppdata/cc/b3/b305886g/. Chemical Communications, 2003, , 2224.	2.2	39
165	Memory effects in a nanoparticle system: Low-field magnetization and ac susceptibility measurements. Physical Review B, 2005, 72, .	1.1	39
166	Synthesis and characterization of 5-substituted 8-hydroxyquinoline derivatives and their metal complexes. Tetrahedron, 2008, 64, 10986-10995.	1.0	39
167	Supramolecular hydrogelators of N-terminated dipeptides selectively inhibit cancer cells. Chemical Communications, 2011, 47, 12625.	2.2	39
168	Supramolecular Nanofibrils Inhibit Cancer Progression In Vitro and In Vivo. Advanced Healthcare Materials, 2014, 3, 1217-1221.	3.9	39
169	Cell Compatible Trimethoprim-Decorated Iron Oxide Nanoparticles Bind Dihydrofolate Reductase for Magnetically Modulating Focal Adhesion of Mammalian Cells. Journal of the American Chemical Society, 2011, 133, 10006-10009.	6.6	38
170	Kinetic Analysis of Nanostructures Formed by Enzyme-Instructed Intracellular Assemblies against Cancer Cells. ACS Nano, 2018, 12, 3804-3815.	7.3	38
171	Using Patterns in Microfiche as Photomasks in 10-μm-Scale Microfabrication. Langmuir, 1999, 15, 6575-6581.	1.6	37
172	The first pamidronate containing polymer and copolymer. Chemical Communications, 2006, , 2795.	2.2	37
173	Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair. Clinical Epigenetics, 2019, 11, 137.	1.8	37
174	Facet-Selective 2D Self-Assembly of TiO2 Nanoleaves via Supramolecular Interactions. Chemistry of Materials, 2008, 20, 7514-7520.	3.2	36
175	Active Crossâ€Linkers that Lead to Active Gels. Angewandte Chemie - International Edition, 2013, 52, 11494-11498.	7.2	36
176	Branched peptides for enzymatic supramolecular hydrogelation. Chemical Communications, 2018, 54, 86-89.	2.2	36
177	Direct Synthesis of a Bimodal Nanosponge Based on FePt and ZnS. Small, 2005, 1, 402-406.	5.2	35
178	Strontium–calcium coadministration stimulates bone matrix osteogenic factor expression and new bone formation in a large animal model. Journal of Orthopaedic Research, 2009, 27, 758-762.	1.2	35
179	Positive Regulation of Interleukin-1β Bioactivity by Physiological ROS-Mediated Cysteine S-Glutathionylation. Cell Reports, 2017, 20, 224-235.	2.9	35
180	β-Galactosidase-instructed formation of molecular nanofibers and a hydrogel. Nanoscale, 2011, 3, 2859.	2.8	34

#	Article	IF	CITATIONS
181	Catalytic dephosphorylation of adenosine monophosphate (AMP) to form supramolecular nanofibers/hydrogels. Chemical Communications, 2012, 48, 2098.	2.2	34
182	Post-Self-Assembly Cross-Linking to Integrate Molecular Nanofibers with Copolymers in Oscillatory Hydrogels. Journal of Physical Chemistry B, 2013, 117, 6566-6573.	1.2	33
183	The first supramolecular peptidic hydrogelator containing taurine. Chemical Communications, 2014, 50, 2772-2774.	2.2	32
184	Supramolecular Glycosylation Accelerates Proteolytic Degradation of Peptide Nanofibrils. Journal of the American Chemical Society, 2015, 137, 10092-10095.	6.6	32
185	Assemblies of <scp>d</scp> -Peptides for Targeting Cell Nucleolus. Bioconjugate Chemistry, 2019, 30, 2528-2532.	1.8	32
186	Supramolecular hydrogels based on the epitope of potassium ion channels. Chemical Communications, 2011, 47, 8772.	2.2	31
187	Selection of Secondary Structures of Heterotypic Supramolecular Peptide Assemblies by an Enzymatic Reaction. Angewandte Chemie - International Edition, 2018, 57, 11716-11721.	7.2	31
188	Interactions between cellular proteins and morphologically different nanoscale aggregates of small molecules. RSC Advances, 2013, 3, 7704.	1.7	30
189	Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures. Nature Communications, 2015, 6, 6165.	5.8	30
190	New self-assembled supramolecular hydrogels based on dehydropeptides. Journal of Materials Chemistry B, 2015, 3, 6355-6367.	2.9	30
191	Minimal C-terminal modification boosts peptide self-assembling ability for necroptosis of cancer cells. Chemical Communications, 2016, 52, 6332-6335.	2.2	30
192	Enzyme-Responsive Peptide Thioesters for Targeting Golgi Apparatus. Journal of the American Chemical Society, 2022, 144, 6709-6713.	6.6	30
193	Controlling uniformity of photopolymerized microscopic hydrogels. Lab on A Chip, 2014, 14, 1551-1563.	3.1	29
194	Solventless Polymerization at the Gas–Solid Interface to Form Polymeric Thin Films. Advanced Materials, 2002, 14, 339.	11.1	28
195	Heterotypic supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 5638-5649.	2.9	28
196	Trypsinâ€Instructed Selfâ€Assembly on Endoplasmic Reticulum for Selectively Inhibiting Cancer Cells. Advanced Healthcare Materials, 2021, 10, e2000416.	3.9	28
197	Enzyme Responsive Rigid-Rod Aromatics Target "Undruggable―Phosphatases to Kill Cancer Cells in a Mimetic Bone Microenvironment. Journal of the American Chemical Society, 2022, 144, 13055-13059.	6.6	28
198	Bioinspired Supramolecular Confinement of Luminol and Heme Proteins to Enhance the Chemiluminescent Quantum Yield. Chemistry - A European Journal, 2009, 15, 3168-3172.	1.7	27

#	Article	IF	CITATIONS
199	XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53. Journal of Hematology and Oncology, 2020, 13, 148.	6.9	27
200	Multivalent Vancomycins and Related Antibiotics Against Infectious Diseases. Current Pharmaceutical Design, 2005, 11, 3111-3124.	0.9	26
201	Nitric oxide (NO) reversed TNF-Î \pm inhibition of trophoblast interaction with endothelial cellular networks. Placenta, 2014, 35, 417-421.	0.7	26
202	Using enzymatic reactions to enhance the photodynamic therapy effect of porphyrin dityrosine phosphates. Chemical Communications, 2006, , 5021.	2.2	25
203	Bisphosphonate-containing supramolecular hydrogels for topical decorporation of uranium-contaminated wounds in mice. International Journal of Radiation Biology, 2008, 84, 353-362.	1.0	25
204	Terpyridine- and Bipyridine-Based Ruthenium Complexes as Catalysts for the Belousovâ^'Zhabotinsky Reaction. Journal of Physical Chemistry A, 2011, 115, 2208-2215.	1.1	25
205	A naphthalene-containing amino acid enables hydrogelation of a conjugate of nucleobase–saccharide–amino acids. Chemical Communications, 2014, 50, 1992.	2.2	25
206	<scp>l</scp> -Rhamnose-containing supramolecular nanofibrils as potential immunosuppressive materials. Organic and Biomolecular Chemistry, 2014, 12, 6816.	1.5	25
207	Solventless Polymerization:Â Spatial Migration of a Catalyst To Form Polymeric Thin Films in Microchannels. Journal of the American Chemical Society, 2003, 125, 9256-9257.	6.6	24
208	Magnetic nanoparticles for direct protein sorting inside live cells. Chemical Science, 2012, 3, 3495.	3.7	24
209	Enzymatic Transformation of Phosphate Decorated Magnetic Nanoparticles for Selectively Sorting and Inhibiting Cancer Cells. Bioconjugate Chemistry, 2014, 25, 2129-2133.	1.8	24
210	Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials. Frontiers of Chemical Science and Engineering, 2017, 11, 509-515.	2.3	24
211	Hyperâ€Crosslinkers Lead to Temperature―and pHâ€Responsive Polymeric Nanogels with Unusual Volume Change. Angewandte Chemie - International Edition, 2017, 56, 2623-2627.	7.2	24
212	Diglycine Enables Rapid Intrabacterial Hydrolysis for Activating Anbiotics against Gramâ€negative Bacteria. Angewandte Chemie - International Edition, 2019, 58, 10631-10634.	7.2	24
213	Assemblies of Peptides in a Complex Environment and their Applications. Angewandte Chemie, 2019, 131, 10532-10541.	1.6	24
214	Enzyme-instructed self-assembly of hydrogelators consisting of nucleobases, amino acids, and saccharide. RSC Advances, 2014, 4, 26487.	1.7	23
215	Chirality Controls Reactionâ€Ðiffusion of Nanoparticles for Inhibiting Cancer Cells. ChemNanoMat, 2017, 3, 17-21.	1.5	23
216	Dynamic Continuum of Nanoscale Peptide Assemblies Facilitates Endocytosis and Endosomal Escape. Nano Letters, 2021, 21, 4078-4085.	4.5	23

#	Article	IF	CITATIONS
217	Instant Hydrogelation Inspired by Inflammasomes. Angewandte Chemie - International Edition, 2017, 56, 7579-7583.	7.2	22
218	Self-assembly of nucleopeptides to interact with DNAs. Interface Focus, 2017, 7, 20160116.	1.5	22
219	Expression of Interleukin-18 in Murine Contact Hypersensitivity. Journal of Interferon and Cytokine Research, 1998, 18, 653-659.	0.5	21
220	Regulating the Rate of Molecular Selfâ€Assembly for Targeting Cancer Cells. Angewandte Chemie, 2016, 128, 5864-5869.	1.6	21
221	A New Approach in Measuring Cu–EMC Adhesion Strength by AFM. IEEE Transactions on Components and Packaging Technologies, 2006, 29, 543-550.	1.4	20
222	Cellular Uptake of A Taurine-Modified, Ester Bond-Decorated D-Peptide Derivative via Dynamin-Based Endocytosis and Macropinocytosis. Molecular Therapy, 2018, 26, 648-658.	3.7	20
223	Unraveling the Cellular Mechanism of Assembling Cholesterols for Selective Cancer Cell Death. Molecular Cancer Research, 2019, 17, 907-917.	1.5	20
224	Aggressive B-cell Lymphoma with MYC/TP53 Dual Alterations Displays Distinct Clinicopathobiological Features and Response to Novel Targeted Agents. Molecular Cancer Research, 2021, 19, 249-260.	1.5	20
225	Thiol-based self-assembly nanostructures in promoting interfacial adhesion for copper-epoxy joint. Applied Physics Letters, 2009, 94, .	1.5	19
226	Structural modulation of self-oscillating gels: changing the proximity of the catalyst to the polymer backbone to tailor chemomechanical oscillation. Soft Matter, 2012, 8, 7056.	1.2	19
227	Src homology domains of v-Src stabilize an active conformation of the tyrosine kinase catalytic domain. Molecular and Cellular Biochemistry, 1979, 158, 57-63.	1.4	18
228	Using matrix metalloprotease-9 (MMP-9) to trigger supramolecular hydrogelation. Soft Matter, 2009, ,	1.2	18
229	Supramolecular hydrogel of kanamycin selectively sequesters 16S rRNA. Chemical Communications, 2012, 48, 9257.	2.2	18
230	Synthesis of novel conjugates of a saccharide, amino acids, nucleobase and the evaluation of their cell compatibility. Beilstein Journal of Organic Chemistry, 2014, 10, 2406-2413.	1.3	18
231	IL-21-mediated expansion of Vγ9Vδ2 T cells is limited by the Tim-3 pathway. International Immunopharmacology, 2019, 69, 136-142.	1.7	18
232	Adaptive Multifunctional Supramolecular Assemblies of Glycopeptides Rapidly Enable Morphogenesis. Biochemistry, 2018, 57, 4867-4879.	1.2	17
233	Cellâ€Compatible Nanoprobes for Imaging Intracellular Phosphatase Activities. ChemBioChem, 2019, 20, 526-531	1.3	16
234	Enzymatic Insertion of Lipids Increases Membrane Tension for Inhibiting Drug Resistant Cancer Cells. Chemistry - A European Journal, 2020, 26, 15116-15120.	1.7	16

#	Article	IF	CITATIONS
235	Palladium Couplings on Metallocalix[4]arenes:Â A Efficient Synthesis of New Functionalized Cavities. Journal of Organic Chemistry, 1998, 63, 8561-8564.	1.7	15
236	Fabrication and characterization of microscale sandwich beams. Journal of Materials Research, 2001, 16, 597-605.	1.2	15
237	Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip. , 0, , .		15
238	Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells. Journal of Colloid and Interface Science, 2015, 447, 273-277.	5.0	15
239	The first CD73-instructed supramolecular hydrogel. Journal of Colloid and Interface Science, 2015, 447, 269-272.	5.0	15
240	Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption. Nanoscale, 2016, 8, 10570-10575.	2.8	15
241	Enzymatically Formed Peptide Assemblies Sequestrate Proteins and Relocate Inhibitors to Selectively Kill Cancer Cells. Angewandte Chemie, 2020, 132, 16587-16592.	1.6	15
242	Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells. Cell Reports Physical Science, 2020, 1, 100270.	2.8	15
243	Job Satisfaction Among Doctors from Jiangsu Province in China. Medical Science Monitor, 2018, 24, 7162-7169.	0.5	15
244	Dual Fluorescent―and Isotopicâ€Labelled Selfâ€Assembling Vancomycin for in vivo Imaging of Bacterial Infections. Angewandte Chemie, 2017, 129, 2396-2400.	1.6	14
245	Nucleopeptide Assemblies Selectively Sequester ATP in Cancer Cells to Increase the Efficacy of Doxorubicin. Angewandte Chemie, 2018, 130, 5025-5029.	1.6	14
246	Enzymatic formation of curcumin in vitro and in vivo. Nano Research, 2018, 11, 3453-3461.	5.8	14
247	Instructedâ€assembly of small peptides inhibits drugâ€resistant prostate cancer cells. Peptide Science, 2020, 112, e24123.	1.0	14
248	Large g factors of higher-lying excitons detected with reflectance difference spectroscopy in GaAs-based quantum wells. Applied Physics Letters, 2006, 89, 051903.	1.5	13
249	Napabucasin (BBI608) eliminate AML cells in vitro and in vivo via inhibition of Stat3 pathway and induction of DNA damage. European Journal of Pharmacology, 2019, 855, 252-261.	1.7	13
250	Phosphobisaromatic motifs enable rapid enzymatic self-assembly and hydrogelation of short peptides. Soft Matter, 2021, 17, 8590-8594.	1.2	13
251	Long-Term Safety and Efficacy of Orelabrutinib Monotherapy in Chinese Patients with Relapsed or Refractory Mantle Cell Lymphoma: A Multicenter, Open-Label, Phase II Study. Blood, 2020, 136, 1-1.	0.6	13
252	Effect of pattern topology on the self-cleaning properties of textured surfaces. Journal of Chemical Physics, 2007, 127, 014703.	1.2	12

#	Article	IF	CITATIONS
253	Fabrication of High Thermal Conductivity Carbon Nanotube Arrays by Self Assembled Fe 3 O 4 particles. CIRP Annals - Manufacturing Technology, 2007, 56, 245-248.	1.7	12
254	Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology. Prion, 2015, 9, 110-118.	0.9	12
255	Enzyme-instructed self-assembly of the stereoisomers of pentapeptides to form biocompatible supramolecular hydrogels. Journal of Drug Targeting, 2020, 28, 760-765.	2.1	12
256	Interleukin-12 Enhances Contact Hypersensitivity by Modulating the <i>In Vivo</i> Cytokine Pattern in Mice. Journal of Interferon and Cytokine Research, 1998, 18, 23-31.	0.5	11
257	Using novel materials to enhance the efficiency of conductive polymer. , 2008, , .		11
258	Investigations of a controllable nanoscale coating on natural fiber system: effects of charge and bonding on the mechanical properties of textiles. Journal of Materials Science, 2009, 44, 469-476.	1.7	11
259	Insight of the Cytotoxicity of the Aggregates of Peptides or Aberrant Proteins: A Meta-Analysis. PLoS ONE, 2014, 9, e95759.	1.1	11
260	Design and synthesis of nanofibers of self-assembled de novo glycoconjugates towards mucosal lining restoration and anti-inflammatory drug delivery. Tetrahedron, 2016, 72, 6078-6083.	1.0	11
261	The enzyme-instructed assembly of the core of yeast prion Sup35 to form supramolecular hydrogels. Journal of Materials Chemistry B, 2016, 4, 1318-1323.	2.9	11
262	An inâ€situ Dynamic Continuum of Supramolecular Phosphoglycopeptides Enables Formation of 3D Cell Spheroids. Angewandte Chemie, 2017, 129, 16515-16519.	1.6	11
263	Selection of Secondary Structures of Heterotypic Supramolecular Peptide Assemblies by an Enzymatic Reaction. Angewandte Chemie, 2018, 130, 11890-11895.	1.6	11
264	Nanonets Collect Cancer Secretome from Pericellular Space. PLoS ONE, 2016, 11, e0154126.	1.1	11
265	Themis is indispensable for IL-2 and IL-15 signaling in T cells. Science Signaling, 2022, 15, eabi9983.	1.6	11
266	Characteristics and mechanical properties of acrylolpamidronate-treated strontium containing bioactive bone cement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 464-471.	1.6	10
267	Enzymatic Dissolution of Biocomposite Solids Consisting of Phosphopeptides to Form Supramolecular Hydrogels. Chemistry - A European Journal, 2015, 21, 18047-18051.	1.7	10
268	Enzyme transformation to modulate the ligand–receptor interactions between small molecules. Chemical Communications, 2015, 51, 4899-4901.	2.2	10
269	Using a peptide segment to covalently conjugate doxorubicin and taxol for the study of drug combination effect. RSC Advances, 2015, 5, 101475-101479.	1.7	10
270	CS2164 suppresses acute myeloid leukemia cell growth via inhibiting VEGFR2 signaling in preclinical models. European Journal of Pharmacology, 2019, 853, 193-200.	1.7	10

Вінс Хи

#	Article	IF	CITATIONS
271	Apatinib exhibits cytotoxicity toward leukemia cells by targeting VEGFR2-mediated prosurvival signaling and angiogenesis. Experimental Cell Research, 2020, 390, 111934.	1.2	10
272	Enzyme-instructed assembly of a cholesterol conjugate promotes pro-inflammatory macrophages and induces apoptosis of cancer cells. Biomaterials Science, 2020, 8, 2007-2017.	2.6	10
273	Biological functions of supramolecular assemblies of small molecules in the cellular environment. RSC Chemical Biology, 2021, 2, 289-305.	2.0	10
274	Enzymatic Delivery of Magnetic Nanoparticles into Mitochondria of Live Cells. ChemNanoMat, 2021, 7, 1104-1107.	1.5	10
275	Orthogonal Enzymatic Reactions to Control Supramolecular Hydrogelations. Chinese Journal of Chemistry, 2012, 30, 53-58.	2.6	9
276	Supramolecular Self-Assembly of a Model Hydrogelator: Characterization of Fiber Formation and Morphology. Gels, 2016, 2, 27.	2.1	9
277	Enzyme-Instructed Self-Assembly for Subcellular Targeting. ACS Omega, 2020, 5, 15771-15776.	1.6	9
278	Clinical features and outcomes of 1845 patients with follicular lymphoma: a real-world multicenter experience in China. Journal of Hematology and Oncology, 2021, 14, 131.	6.9	9
279	Intramitochondrial co-assembly between ATP and nucleopeptides induces cancer cell apoptosis. Chemical Science, 2022, 13, 6197-6204.	3.7	9
280	Lengthâ€dependent proteolytic cleavage of short oligopeptides catalyzed by matrix metalloproteaseâ€9. Biopolymers, 2013, 100, 790-795.	1.2	8
281	De Novo Chemoattractants Form Supramolecular Hydrogels for Immunomodulating Neutrophils In Vivo. Bioconjugate Chemistry, 2014, 25, 2116-2122.	1.8	8
282	Frozen embryo transfer or fresh embryo transfer: Clinical outcomes depend on the number of oocytes retrieved. European Journal of Obstetrics, Gynecology and Reproductive Biology, 2017, 215, 50-54.	0.5	8
283	Enzymeâ€Instructed Assemblies Enable Mitochondria Localization of Histone H2B in Cancer Cells. Angewandte Chemie, 2020, 132, 9416-9420.	1.6	8
284	Enzymatically forming cell compatible supramolecular assemblies of tryptophanâ€rich short peptides. Peptide Science, 2021, 113, e24173.	1.0	8
285	Enzymatic Assemblies of Thiophosphopeptides Instantly Target Golgi Apparatus and Selectively Kill Cancer Cells**. Angewandte Chemie, 2021, 133, 12906-12911.	1.6	8
286	Efficacy and Safety of Orelabrutinib in Relapsed/Refractory Waldenstrom's Macroglobulinemia Patients. Blood, 2021, 138, 46-46.	0.6	8
287	Mechanical properties of femoral cortical bone following cemented hip replacement. Journal of Orthopaedic Research, 2007, 25, 1408-1414.	1.2	7
288	Supramolecular Detoxification of Neurotoxic Nanofibrils of Small Molecules via Morphological Switch. Bioconjugate Chemistry, 2015, 26, 1879-1883.	1.8	7

#	Article	lF	CITATIONS
289	Instant Hydrogelation Inspired by Inflammasomes. Angewandte Chemie, 2017, 129, 7687-7691.	1.6	7
290	Enzymatic self-assembly of an immunoreceptor tyrosine-based inhibitory motif (ITIM). Organic and Biomolecular Chemistry, 2017, 15, 5689-5692.	1.5	7
291	Structure–Activity Relationship of Peptide-Conjugated Chloramphenicol for Inhibiting <i>Escherichia coli</i> . Journal of Medicinal Chemistry, 2019, 62, 10245-10257.	2.9	7
292	Instructed Assembly as Contextâ€Dependent Signaling for the Death and Morphogenesis of Cells. Angewandte Chemie, 2019, 131, 5623-5627.	1.6	7
293	Diglycine Enables Rapid Intrabacterial Hydrolysis for Activating Anbiotics against Gramâ€negative Bacteria. Angewandte Chemie, 2019, 131, 10741-10744.	1.6	7
294	Role of adiponectin/peroxisome proliferator-activated receptor alpha signaling in human chorionic gonadotropin-induced estradiol synthesis in human luteinized granulosa cells. Molecular and Cellular Endocrinology, 2019, 493, 110450.	1.6	7
295	Optimal Candidates to Do Fresh Embryo Transfer in Those Using Oral Contraceptive Pretreatment in IVF Cycles. Frontiers in Physiology, 2021, 12, 576917.	1.3	7
296	A new approach in measuring Cu-EMC adhesion strength by AFM [electronics packaging applications]. , 0, , .		6
297	Solventless Polymerization to Grow Thin Films on Solid Substrates. Advanced Functional Materials, 2004, 14, 492-500.	7.8	6
298	Solvothermal synthesis of strontium phosphate chloride nanowire. Journal of Crystal Growth, 2007, 306, 129-134.	0.7	6
299	Synthesis and evaluation of the biostability and cell compatibility of novel conjugates of nucleobase, peptidic epitope, and saccharide. Beilstein Journal of Organic Chemistry, 2015, 11, 1352-1359.	1.3	6
300	The safety of intracytoplasmic sperm injection in men with hepatitis B. Archives of Medical Science, 2016, 3, 587-591.	0.4	6
301	What should we focus on before preimplantation genetic diagnosis/screening?. Archives of Medical Science, 2018, 14, 1119-1124.	0.4	6
302	Downâ€regulating Proteolysis to Enhance Anticancer Activity of Peptide Nanofibers. Chemistry - an Asian Journal, 2018, 13, 3464-3468.	1.7	6
303	Dynamic Continuum of Molecular Assemblies for Controlling Cell Fates. ChemBioChem, 2019, 20, 2442-2446.	1.3	6
304	The ratio of hydrogelator to precursor controls the enzymatic hydrogelation of a branched peptide. Soft Matter, 2020, 16, 10101-10105.	1.2	6
305	Enzymatic noncovalent synthesis of peptide assemblies generates multimolecular crowding in cells for biomedical applications. Chemical Communications, 2021, 57, 12870-12879.	2.2	6
306	A Self-Assembling Probe for Imaging the States of Golgi Apparatus in Live Single Cells. Bioconjugate Chemistry, 2022, 33, 1983-1988.	1.8	6

#	Article	IF	CITATIONS
307	Chidamide and apatinib are therapeutically synergistic in acute myeloid leukemia stem and progenitor cells. Experimental Hematology and Oncology, 2022, 11, 29.	2.0	6
308	In-plane optical anisotropy of symmetric and asymmetric (001) GaAs/Al(Ga)As superlattices and quantum wells. Journal of Applied Physics, 2001, 90, 1266-1270.	1.1	5
309	Peptide Assemblies Mimicking Chaperones for Protein Trafficking. Bioconjugate Chemistry, 2021, 32, 502-506.	1.8	5
310	Disulfiram/copper shows potent cytotoxic effects on myelodysplastic syndromes via inducing Bip-mediated apoptosis and suppressing autophagy. European Journal of Pharmacology, 2021, 902, 174107.	1.7	5
311	Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes. Molecules, 2021, 26, 77.	1.7	5
312	Using PDMS microtransfer molding (/apl mu/TM) for polymer flip chip. , 0, , .		4
313	Functional Hyperâ€Crosslinkers. Chemistry - A European Journal, 2017, 23, 15844-15851.	1.7	4
314	Lowâ€dose triptolide enhances antitumor effect of JQ1 on acute myeloid leukemia through inhibiting RNA polymerase II in vitro and in vivo. Molecular Carcinogenesis, 2020, 59, 1076-1087.	1.3	4
315	Low-Dose Triptolide Enhanced Activity of Idarubicin Against Acute Myeloid Leukemia Stem-like Cells Via Inhibiting DNA Damage Repair Response. Stem Cell Reviews and Reports, 2021, 17, 616-627.	1.7	4
316	Preclinical Evaluation of the HDAC Inhibitor Chidamide in Transformed Follicular Lymphoma. Frontiers in Oncology, 2021, 11, 780118.	1.3	4
317	Therapeutic synergy of Triptolide and MDM2 inhibitor against acute myeloid leukemia through modulation of p53-dependent and -independent pathways. Experimental Hematology and Oncology, 2022, 11, 23.	2.0	4
318	Internal construction. Nature Chemistry, 2010, 2, 13-14.	6.6	3
319	Self-Assembled Prodrugs. , 2011, , 339-355.		3
320	OS061. Placental growth factor reduces blood pressure and proteinuria in experimental preeclampsia. Pregnancy Hypertension, 2012, 2, 210.	0.6	3
321	Supramolecular Nanofibers/Hydrogels of the Conjugates of Nucleobase, Saccharide, and Amino Acids. Chinese Journal of Chemistry, 2014, 32, 313-318.	2.6	3
322	Hyper rosslinkers Lead to Temperature―and pHâ€Responsive Polymeric Nanogels with Unusual Volume Change. Angewandte Chemie, 2017, 129, 2667-2671.	1.6	3
323	Disruption of CTCF Boundary at HOXA Locus Promote BET Inhibitors' Therapeutic Sensitivity in Acute Myeloid Leukemia. Stem Cell Reviews and Reports, 2020, 16, 1280-1291.	1.7	3
324	Erythropoietin-producing hepatocellular receptor A7 restrains estrogen negative feedback of luteinizing hormone via ephrin A5 in the hypothalamus of female rats. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E81-E90.	1.8	3

Вілд Хи

#	Article	IF	CITATIONS
325	CS2164 and Venetoclax Show Synergistic Antitumoral Activities in High Grade B-Cell Lymphomas With MYC and BCL2 Rearrangements. Frontiers in Oncology, 2021, 11, 618908.	1.3	3
326	Therapeutic Interaction of Apatinib and Chidamide in T-Cell Acute Lymphoblastic Leukemia through Interference with Mitochondria Associated Biogenesis and Intrinsic Apoptosis. Journal of Personalized Medicine, 2021, 11, 977.	1.1	3
327	Enzymatic Noncovalent Synthesis for Targeting Subcellular Organelles. ChemPlusChem, 2022, 87, e202200060.	1.3	3
328	Optical anisotropy and strain evolution of GaAs surfaces at the onset of the formation of InAs quantum dots. Journal of Applied Physics, 2006, 99, 073507.	1.1	2
329	Low-temperature dynamics of magnetic nanoshells. Europhysics Letters, 2010, 91, 57006.	0.7	2
330	Silver Surface Iodination for Enhancing the Conductivity of Conductive Composites. Advanced Functional Materials, 2010, 20, n/a-n/a.	7.8	2
331	OS055. Sex-dependent differences in expression of FLT-1 variants andJMJD6 in mouse placenta. Pregnancy Hypertension, 2012, 2, 206-207.	0.6	2
332	Determination of the packing model of a supramolecular nanofiber <i>via</i> mass-per-length measurement and <i>de novo</i> simulation. Nanoscale, 2018, 10, 3990-3996.	2.8	2
333	Too Crowded to Be Straight: Insights from Self-Assembly of Heterochiral Tripeptides. CheM, 2018, 4, 1765-1767.	5.8	2
334	Pharmacological targeting PIKfyve and tubulin as an effective treatment strategy for double-hit lymphoma. Cell Death Discovery, 2022, 8, 39.	2.0	2
335	Model for evaluating cross-sensitivity of DNBS with DNCB using hapten-stimulated in vitro interleukin-2 production by murine lymph node cells. Bulletin of Environmental Contamination and Toxicology, 1995, 55, 789-95.	1.3	1
336	OS041. Apolipoprotein A-I protects normal integration of the trophoblast into endothelial cellular networks in an in vitro model of preeclampsia. Pregnancy Hypertension, 2012, 2, 198-199.	0.6	1
337	PP042. Anti-hypertensive drugs hydralazine, clonidine and labetalol improve trophoblast integration into endothelial cellular networks in vitro. Pregnancy Hypertension, 2012, 2, 264.	0.6	1
338	Enzyme-mediated self-assembly. , 2018, , 399-417.		1
339	Cystotomy with Non-Capitonnage in Treating Children with Pulmonary Hydatid Disease. Annals of Thoracic and Cardiovascular Surgery, 2021, , .	0.3	1
340	The inflammatory response of two different kinds of anesthetics on vascular cognitive impairment rats and the effect on long term cognitive function. International Journal of Clinical and Experimental Medicine, 2015, 8, 16694-8.	1.3	1
341	Biomaterials based on noncovalent interactions of small molecules. EXCLI Journal, 2020, 19, 1124-1140.	0.5	1
342	Anlotinib suppresses MLL-rearranged acute myeloid leukemia cell growth by inhibiting SETD1A/AKT-mediated DNA damage response. American Journal of Translational Research (discontinued), 2021, 13, 1494-1504.	0.0	1

Bing Xu

#	Article	IF	CITATIONS
343	Determining Clinical Course of Diffuse Large B-Cell Lymphoma Using Targeted Transcriptome and Machine Learning Algorithms. Blood, 2021, 138, 2395-2395.	0.6	1
344	Anlotinib Induced Apoptosis and Regulated the Chemosensitivity and Immune-Related Properties of Leukemia Stem Cells By Inhibiting JAK2-STAT3/5 Signaling. Blood, 2020, 136, 12-12.	0.6	1
345	An Azaindole-Based Small Molecule Hzx-02-059 Induces Methuosis in B-Cell Acute Lymphoblastic Leukemia through the PI3K/AKT Axis. Blood, 2020, 136, 9-9.	0.6	1
346	Synthesis and bioactivity of pyrrole-conjugated phosphopeptides. Beilstein Journal of Organic Chemistry, 2022, 18, 159-166.	1.3	1
347	Kinetics Study of Disulfide Self Assembly Monolayer (SAM) Deposition for Cu-EMC Adhesion Promotion. , 2006, , .		0
348	Interfacial Strength Assessment of Cu-Epoxy System by Atomic Force Microscope. , 0, , .		0
349	Kinetic Study of Disulfide Molecular Film Deposition for Cu-EMC Adhesion Promotion. Electronics Manufacturing Technology Symposium (IEMT), IEEE/CPMT International, 2006, , .	0.0	0
350	The Complexes of Bisphosphonate and Magnetite Nanoparticles to Remove Uranyl Ions from Aqueous Phase. AIP Conference Proceedings, 2007, , .	0.3	0
351	Enhancing PDT drug delivery by enzymatic cleavage of porphyrin phosphates. , 2007, , .		0
352	Evaluation of the effects of phenylalanine and carboxylate on the rheological behaviors of small molecule hydrogelators containing naphthalene. Materials Research Society Symposia Proceedings, 2012, 1418, 57.	0.1	0
353	Supramolecular Self-Assembly Inside Living Mammalian Cells. Materials Research Society Symposia Proceedings, 2014, 1622, 85-93.	0.1	0
354	Nanobiointerfaces: Interfaces Between Biological Entities and Nanomaterials. ChemNanoMat, 2016, 2, 321-322.	1.5	0
355	Frontispiece: Functional Hyperâ€Crosslinkers. Chemistry - A European Journal, 2017, 23, .	1.7	0
356	A General Method to Prepare Peptide-Based Supramolecular Hydrogels. Methods in Molecular Biology, 2018, 1777, 175-180.	0.4	0
357	Enzyme-instructed morphological transition of the supramolecular assemblies of branched peptides. Beilstein Journal of Organic Chemistry, 2020, 16, 2709-2718.	1.3	0
358	Editorial: Novel Treatment Strategies for Myeloproliferative Neoplasms. Frontiers in Oncology, 2021, 11, 762928.	1.3	0
359	Toward Elimination of Solvents in Micro/Nanofabrication: Solventless Polymerization and Its Applications. Materials Research Society Symposia Proceedings, 2003, 776, 1041.	0.1	0
360	Cell Compatible Polypyridyl Ru-Complex Based Fluorophore as Long-Life Lysosome Tracker. , 2014, , .		0

#	Article	IF	CITATIONS
361	Biocompatibility of Hydrogelators Based on Small Peptide Derivatives. RSC Soft Matter, 2014, , 31-47.	0.2	0
362	Spatiotemporal Profiling the Activities of Ectophosphatases on Cancer Cells by Molecular Imaging. FASEB Journal, 2015, 29, 577.8.	0.2	0
363	Low-Dose Triptolide Promotes MDM2 Inhibitor Nutlin3a to Induce Acute Myeloid Leukemia Cell Death Via p53-Dependent and -Independent Mechanisms. Blood, 2020, 136, 24-24.	0.6	0
364	Gls-010, a Novel Anti-PD-1 Mab in Chinese Patients with Relapsed or Refractory Classical Hodgkin Lymphoma: Preliminary Impressive Results of a Phase II Clinical Trial. Blood, 2020, 136, 17-17.	0.6	0
365	Combination of CS2164 and Venetoclax Shows Synergistic Antitumor Effect in High-Grade B-Cell Lymphomas with ConcomitantMYCandBCL2Rearrangements. Blood, 2020, 136, 41-41.	0.6	0
366	Anlotinib Shows Potent Antileukemia Effects in B-Cell Acute Lymphocytic Leukemia through the Blockage of Angiogenic Related Pathways. Blood, 2020, 136, 49-49.	0.6	0