List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461607/publications.pdf Version: 2024-02-01



CHDIS D RIIDD

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Comprehensive investigation of reclaimed carbon fibre reinforced polyamide (rCF/PA) filaments and FDM printed composites. Composites Part B: Engineering, 2022, 233, 109646.                                                      | 12.0 | 23        |
| 2  | The effects of compaction and interleaving on through-thickness electrical resistance and in-plane mechanical properties for CFRP laminates. Composites Science and Technology, 2022, 223, 109441.                                | 7.8  | 3         |
| 3  | Time-dependent degradation behaviour of phosphate glass fibre reinforced composites with different fibre architecture. Mechanics of Time-Dependent Materials, 2021, 25, 663-678.                                                  | 4.4  | 4         |
| 4  | Vibration transmission and power flow of laminated composite plates with inerter-based suppression configurations. International Journal of Mechanical Sciences, 2021, 190, 106012.                                               | 6.7  | 43        |
| 5  | Processing and characterization of phosphate glass fiber/polylactic acid commingled yarn composites<br>for commercial production. Journal of Biomedical Materials Research - Part B Applied Biomaterials,<br>2021, 109, 990-1004. | 3.4  | 3         |
| 6  | Recovery of Carbon Fibre from Waste Prepreg via Microwave Pyrolysis. Polymers, 2021, 13, 1231.                                                                                                                                    | 4.5  | 23        |
| 7  | Vibration transmission and energy flow analysis of L-shaped laminated composite structure based on a substructure method. Thin-Walled Structures, 2021, 169, 108375.                                                              | 5.3  | 15        |
| 8  | Additive-Manufactured Gyroid Scaffolds of Magnesium Oxide, Phosphate Glass Fiber and Polylactic<br>Acid Composite for Bone Tissue Engineering. Polymers, 2021, 13, 270.                                                           | 4.5  | 12        |
| 9  | A Conceptional Approach of Resin-Transfer-Molding to Rosin-Sourced Epoxy Matrix Green Composites.<br>Aerospace, 2021, 8, 5.                                                                                                       | 2.2  | 3         |
| 10 | Development of highly electrically conductive composites for aeronautical applications utilizing bi-functional composite interleaves. Aerospace Science and Technology, 2020, 98, 105669.                                         | 4.8  | 15        |
| 11 | Recycled Carbon Fibers (rCF) in Automobiles: Towards Circular Economy. Materials Circular Economy, 2020, 2, 1.                                                                                                                    | 3.2  | 16        |
| 12 | Study on Toughness Improvement of a Rosin-Sourced Epoxy Matrix Composite for Green Aerospace<br>Application. Journal of Composites Science, 2020, 4, 168.                                                                         | 3.0  | 6         |
| 13 | Fire performance of sandwich composites with intumescent mat protection: Evolving thermal<br>insulation, post-fire performance and rail industry testing. Fire Safety Journal, 2020, 116, 103205.                                 | 3.1  | 12        |
| 14 | The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites.<br>Journal of Fire Sciences, 2019, 37, 257-272.                                                                                     | 2.0  | 9         |
| 15 | Production and characterisation of novel phosphate glass fibre yarns, textiles, and textile composites<br>for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 99,<br>47-55.            | 3.1  | 14        |
| 16 | The effects of microcrystalline cellulose on the flammability and thermal behaviours of flame retarded natural fibre epoxy composite. World Journal of Engineering, 2019, 16, 363-367.                                            | 1.6  | 6         |
| 17 | Effects of ZnO addition on thermal properties, degradation and biocompatibility of P45Mg24Ca16Na(15â^xx)Znx glasses. Biomedical Glasses, 2019, 5, 53-66.                                                                          | 2.4  | 6         |
| 18 | Preparation of highly electrically conductive carbon-fiber composites with high interlaminar<br>fracture toughness by using silver-plated interleaves. Composites Science and Technology, 2019, 176,<br>29-36.                    | 7.8  | 30        |

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | On vibration transmission in oscillating systems incorporating bilinear stiffness and damping elements. International Journal of Mechanical Sciences, 2019, 150, 458-470.                                                                               | 6.7  | 36        |
| 20 | Development of fire retardancy of natural fiber composite encouraged by a synergy between zinc borate and ammonium polyphosphate. Composites Part B: Engineering, 2019, 159, 165-172.                                                                   | 12.0 | 84        |
| 21 | On vibration transmission between interactive oscillators with nonlinear coupling interface.<br>International Journal of Mechanical Sciences, 2018, 137, 238-251.                                                                                       | 6.7  | 21        |
| 22 | Novel bioresorbable phosphate glass fiber textile composites for medical applications. Polymer<br>Composites, 2018, 39, E140.                                                                                                                           | 4.6  | 16        |
| 23 | Chitosan as a Coupling Agent for Phosphate Glass Fibre/Polycaprolactone Composites. Fibers, 2018, 6,<br>97.                                                                                                                                             | 4.0  | 6         |
| 24 | Effects of Fe2O3 addition and annealing on the mechanical and dissolution properties of MgO-and<br>CaO-containing phosphate glass fibres for bio-applications. Biomedical Glasses, 2018, 4, 57-71.                                                      | 2.4  | 14        |
| 25 | Effect of boron oxide addition on the viscosityâ€ŧemperature behaviour and structure of<br>phosphateâ€based glasses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017,<br>105, 764-777.                                     | 3.4  | 15        |
| 26 | Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review. Journal of Materials Science, 2017, 52, 8733-8760.                                                                          | 3.7  | 40        |
| 27 | Structural, thermal, in vitro degradation and cytocompatibility properties of<br>P2O5-B2O3-CaO-MgO-Na2O-Fe2O3 glasses. Journal of Non-Crystalline Solids, 2017, 457, 77-85.                                                                             | 3.1  | 19        |
| 28 | Composites recycling solutions for the aviation industry. Science China Technological Sciences, 2017, 60, 1291-1300.                                                                                                                                    | 4.0  | 59        |
| 29 | Structural, thermal and dissolution properties of MgO- and CaO-containing borophosphate glasses: effect of Fe2O3 addition. Journal of Materials Science, 2017, 52, 7489-7502.                                                                           | 3.7  | 23        |
| 30 | Investigation on the thermal properties, density and degradation of quaternary iron and titanium phosphate based glasses. IOP Conference Series: Materials Science and Engineering, 2016, 114, 012124.                                                  | 0.6  | 0         |
| 31 | Structure, viscosity and fibre drawing properties of phosphate-based glasses: effect of boron and iron oxide addition. Journal of Materials Science, 2016, 51, 7523-7535.                                                                               | 3.7  | 22        |
| 32 | In-situ polymerisation of fully bioresorbable polycaprolactone/phosphate glass fibre composites: In<br>vitro degradation and mechanical properties. Journal of the Mechanical Behavior of Biomedical<br>Materials, 2016, 59, 78-89.                     | 3.1  | 17        |
| 33 | Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide<br>phosphate glass fibre reinforced bioresorbable composites. Journal of the Mechanical Behavior of<br>Biomedical Materials, 2016, 59, 41-56.            | 3.1  | 32        |
| 34 | Accelerated in vitro degradation properties of polylactic acid/phosphate glass fibre composites.<br>Journal of Materials Science, 2015, 50, 3942-3955.                                                                                                  | 3.7  | 46        |
| 35 | Magnesium coated phosphate glass fibers for unidirectional reinforcement of polycaprolactone composites. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1424-1432.                                                  | 3.4  | 5         |
| 36 | Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P <sub>2</sub> O <sub>5</sub> . Journal of Biomaterials Applications, 2014, 29, 639-653. | 2.4  | 45        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites. Journal of Biomaterials Applications, 2014, 29, 675-687.                     | 2.4 | 13        |
| 38 | Mechanical, crystallisation and moisture absorption properties of melt drawn polylactic acid fibres.<br>European Polymer Journal, 2014, 53, 270-281.                                                                    | 5.4 | 59        |
| 39 | Effect of Cellulose Nanowhiskers on Surface Morphology, Mechanical Properties, and Cell Adhesion of Melt-Drawn Polylactic Acid Fibers. Biomacromolecules, 2014, 15, 1498-1506.                                          | 5.4 | 50        |
| 40 | The effect of cellulose nanowhiskers on the flexural properties of self-reinforced polylactic acid composites. Reactive and Functional Polymers, 2014, 85, 193-200.                                                     | 4.1 | 21        |
| 41 | Bioresorbable composite screws manufactured via forging process: Pull-out, shear, flexural and<br>degradation characteristics. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18,<br>108-122.        | 3.1 | 21        |
| 42 | Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates. Journal of Biomaterials Applications, 2013, 27, 990-1002.                                     | 2.4 | 22        |
| 43 | Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix. Journal of Biomaterials Applications, 2013, 28, 354-366.                | 2.4 | 23        |
| 44 | Degradation properties and microstructural analysis of 40P2O5–24MgO–16CaO–16Na2O–4Fe2O3<br>phosphate glass fibres. Journal of Non-Crystalline Solids, 2013, 375, 99-109.                                                | 3.1 | 21        |
| 45 | Bioresorbable screws reinforced with phosphate glass fibre: Manufacturing and mechanical property characterisation. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17, 76-88.                        | 3.1 | 28        |
| 46 | Cytocompatibility, degradation, mechanical property retention and ion release profiles for phosphate glass fibre reinforced composite rods. Materials Science and Engineering C, 2013, 33, 1914-1924.                   | 7.3 | 29        |
| 47 | Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices. BioMed Research International, 2013, 2013, 1-10.                                            | 1.9 | 8         |
| 48 | Effect of Boron Addition on the Thermal, Degradation, and Cytocompatibility Properties of Phosphate-Based Glasses. BioMed Research International, 2013, 2013, 1-12.                                                     | 1.9 | 50        |
| 49 | Investigation of Crystallinity, Molecular Weight Change, and Mechanical Properties of PLA/PBG<br>Bioresorbable Composites as Bone Fracture Fixation Plates. Journal of Biomaterials Applications, 2012,<br>26, 765-789. | 2.4 | 61        |
| 50 | High cellulose nanowhisker content composites through cellosize bonding. Soft Matter, 2012, 8,<br>12099.                                                                                                                | 2.7 | 28        |
| 51 | Initial mechanical properties of phosphate-glass fibre-reinforced rods for use as resorbable intramedullary nails. Journal of Materials Science, 2012, 47, 4884-4894.                                                   | 3.7 | 22        |
| 52 | Effect of Si and Fe doping on calcium phosphate glass fibre reinforced polycaprolactone bone<br>analogous composites. Acta Biomaterialia, 2012, 8, 1616-1626.                                                           | 8.3 | 30        |
| 53 | Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). Journal of Materials Science, 2012, 47, 2675-2686.                                            | 3.7 | 111       |
| 54 | Effect of Iron Phosphate Glass on the Physico-mechanical Properties of Jute Fabric-reinforced<br>Polypropylene-based Composites. Journal of Thermoplastic Composite Materials, 2011, 24, 695-711.                       | 4.2 | 21        |

| #          | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55         | In vitro degradation, flexural, compressive and shear properties of fully bioresorbable composite rods. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1462-1472.                                                            | 3.1 | 53        |
| 56         | Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture.<br>Journal of Materials Science: Materials in Medicine, 2011, 22, 1825-1834.                                                                     | 3.6 | 62        |
| 5 <b>7</b> | Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid)<br>matrix composites. Journal of Materials Science: Materials in Medicine, 2011, 22, 2659-2672.                                                   | 3.6 | 27        |
| 58         | Repair of calvarial defects in rats by prefabricated, degradable, long fibre composite implants. Journal<br>of Biomedical Materials Research - Part A, 2011, 96A, 230-238.                                                                         | 4.0 | 11        |
| 59         | Interfacial Properties of Phosphate Glass Fiber/Poly(caprolactone) System Measured Using the Single<br>Fiber Fragmentation Test. Composite Interfaces, 2011, 18, 77-90.                                                                            | 2.3 | 8         |
| 60         | Effectiveness of 3-Aminopropyl-Triethoxy-Silane as a Coupling Agent for Phosphate Glass<br>Fiber-Reinforced Poly(caprolactone)-based Composites for Fracture Fixation Devices. Journal of<br>Thermoplastic Composite Materials, 2011, 24, 517-534. | 4.2 | 17        |
| 61         | Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations. Acta Biomaterialia, 2010, 6, 3157-3168.                                                                                           | 8.3 | 23        |
| 62         | Interfacial properties of phosphate glass fibres/PLA composites: Effect of the end functionalities of oligomeric PLA coupling agents. Composites Science and Technology, 2010, 70, 1854-1860.                                                      | 7.8 | 36        |
| 63         | Mimicking Bone Structure and Function with Structural Composite Materials. Journal of Bionic Engineering, 2010, 7, S1-S10.                                                                                                                         | 5.0 | 29        |
| 64         | Influence of compatibilizing agent molecular structure on the mechanical properties of phosphate<br>glass fiberâ€reinforced PLA composites. Journal of Polymer Science Part A, 2010, 48, 3082-3094.                                                | 2.3 | 35        |
| 65         | Preparation and Characterization of Phosphate Glass Fibers and Fabrication of Poly(caprolactone)<br>Matrix Resorbable Composites. Journal of Reinforced Plastics and Composites, 2010, 29, 1838-1850.                                              | 3.1 | 21        |
| 66         | Global knowledge exchange and the low carbon economy. , 2010, , .                                                                                                                                                                                  |     | 0         |
| 67         | Cytocompatibility and Effect of Increasing MgO Content in a Range of Quaternary Invert<br>Phosphate-based Glasses. Journal of Biomaterials Applications, 2010, 24, 555-575.                                                                        | 2.4 | 59        |
| 68         | Fabrication Effects on Properties of Composites for Medical Applications: 1. Composite Preparation and Characterization. Journal of Reinforced Plastics and Composites, 2010, 29, 112-122.                                                         | 3.1 | 1         |
| 69         | Fabrication Effects on Properties of Composites for Medical Applications: 2 - Retention of Composite Mechanical Properties. Journal of Reinforced Plastics and Composites, 2010, 29, 1804-1813.                                                    | 3.1 | Ο         |
| 70         | Neutron scattering andab initiomolecular dynamics study of cross-linking in biomedical phosphate glasses. Journal of Physics Condensed Matter, 2010, 22, 485403.                                                                                   | 1.8 | 15        |
| 71         | Degradation and Interfacial Properties of Iron Phosphate Glass Fiber-Reinforced PCL-Based Composite<br>for Synthetic Bone Replacement Materials. Polymer-Plastics Technology and Engineering, 2010, 49,<br>1265-1274.                              | 1.9 | 9         |
| 72         | Recycled carbon fibre reinforced polymer composite for electromagnetic interference shielding.<br>Composites Part A: Applied Science and Manufacturing, 2010, 41, 693-702.                                                                         | 7.6 | 111       |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Retention of mechanical properties and cytocompatibility of a phosphateâ€based glass fiber/polylactic<br>acid composite. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2009, 89B, 18-27.                     | 3.4 | 78        |
| 74 | Surface treatment of phosphate glass fibers using 2â€hydroxyethyl methacrylate: Fabrication of poly(caprolactone)â€based composites. Journal of Applied Polymer Science, 2009, 111, 246-254.                                           | 2.6 | 28        |
| 75 | Mechanistic study of Sn(Oct) <sub>2</sub> â€catalyzed εâ€caprolactone polymerization using<br>Sn(Oct) <sub>2</sub> /BF <sub>3</sub> dual catalyst. Journal of Applied Polymer Science, 2009, 114,<br>658-662.                          | 2.6 | 17        |
| 76 | Boron trifluoride-catalyzed degradation of poly-É>-caprolactone at ambient temperature. Polymer<br>Degradation and Stability, 2009, 94, 1515-1519.                                                                                     | 5.8 | 2         |
| 77 | Analysis of pressure profile and flow progression in the vacuum infusion process. Composites Science and Technology, 2009, 69, 1458-1464.                                                                                              | 7.8 | 27        |
| 78 | Phosphate Glass Fibre Composites for Bone Repair. Journal of Bionic Engineering, 2009, 6, 318-323.                                                                                                                                     | 5.0 | 62        |
| 79 | Analysis of calvarial bone defects in rats using microcomputed tomography: potential for a novel composite material and a new quantitative measurement. British Journal of Oral and Maxillofacial Surgery, 2009, 47, 616-621.          | 0.8 | 17        |
| 80 | Real-time dissolution of P40Na20Ca16Mg24 phosphate glass fibers. Journal of Non-Crystalline Solids, 2009, 355, 2514-2521.                                                                                                              | 3.1 | 15        |
| 81 | Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomaterialia, 2008, 4, 1307-1314.                                                                            | 8.3 | 82        |
| 82 | Surface characterisation of carbon fibre recycled using fluidised bed. Applied Surface Science, 2008, 254, 2588-2593.                                                                                                                  | 6.1 | 96        |
| 83 | Effects of aqueous aging on the mechanical properties of P40Na20Ca16Mg24 phosphate glass fibres.<br>Journal of Materials Science, 2008, 43, 4834-4839.                                                                                 | 3.7 | 22        |
| 84 | Modeling changes in the modulus of poly(εâ€caprolactone) due to hydrolysis and plasticization. Journal of Applied Polymer Science, 2008, 107, 3484-3490.                                                                               | 2.6 | 4         |
| 85 | Water absorption properties of phosphate glass fiberâ€reinforced polyâ€ïµâ€caprolactone composites for<br>craniofacial bone repair. Journal of Applied Polymer Science, 2008, 107, 3750-3755.                                          | 2.6 | 13        |
| 86 | Preparation and characterization of degradation tunable poly(ε aprolactone) using a<br>Sn(Oct) <sub>2</sub> /BF <sub>3</sub> dual catalyst. Journal of Applied Polymer Science, 2008, 110,<br>3733-3736.                               | 2.6 | 0         |
| 87 | Glass forming region and physical properties in the system P2O5-Na2O–Fe2O3. Journal of<br>Non-Crystalline Solids, 2008, 354, 4661-4667.                                                                                                | 3.1 | 21        |
| 88 | Low-cost carbon-fibre-based automotive body panel systems: A performance and manufacturing cost<br>comparison. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile<br>Engineering, 2008, 222, 53-63. | 1.9 | 27        |
| 89 | Surface quality prediction of thermoset composite structures using geometric simulation tools.<br>Plastics, Rubber and Composites, 2007, 36, 428-437.                                                                                  | 2.0 | 13        |
| 90 | Investigation of pressure profile and flow progression in vacuum infusion process. Plastics, Rubber and Composites, 2007, 36, 101-110.                                                                                                 | 2.0 | 12        |

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Characterisation of random carbon fibre composites from a directed fibre preforming process: The effect of tow filamentisation. Composites Part A: Applied Science and Manufacturing, 2007, 38, 755-770.              | 7.6  | 45        |
| 92  | Active control of the vacuum infusion process. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1271-1287.                                                                                             | 7.6  | 53        |
| 93  | Corrosion resistance of zinc–magnesium coated steel. Corrosion Science, 2007, 49, 3669-3695.                                                                                                                          | 6.6  | 321       |
| 94  | Soft ionisation analysis of evolved gas for oxidative decomposition of an epoxy resin/carbon fibre composite. Thermochimica Acta, 2007, 454, 109-115.                                                                 | 2.7  | 46        |
| 95  | Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture. Composites Part A: Applied Science and Manufacturing, 2006, 37, 847-857.                                  | 7.6  | 80        |
| 96  | Influence of stochastic fibre angle variations on the permeability of bi-directional textile fabrics.<br>Composites Part A: Applied Science and Manufacturing, 2006, 37, 122-132.                                     | 7.6  | 37        |
| 97  | Characterisation of thermoset laminates for cosmetic automotive applications: Part II – Cure and residual volatile assessment. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1747-1756.             | 7.6  | 10        |
| 98  | Characterisation of thermoset laminates for cosmetic automotive applications: Part I – Surface characterisation. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1734-1746.                           | 7.6  | 28        |
| 99  | Characterisation of thermoset laminates for cosmetic automotive applications: Part III – Shrinkage control via nanoscale reinforcement. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1757-1772.    | 7.6  | 34        |
| 100 | Characterisation of random carbon fibre composites from a directed fibre preforming process:<br>Analysis of microstructural parameters. Composites Part A: Applied Science and Manufacturing, 2006,<br>37, 2136-2147. | 7.6  | 49        |
| 101 | Characterisation of random carbon fibre composites from a directed fibre preforming process: The effect of fibre length. Composites Part A: Applied Science and Manufacturing, 2006, 37, 1863-1878.                   | 7.6  | 49        |
| 102 | Properties of sodium-based ternary phosphate glasses produced from readily available phosphate salts. Journal of Non-Crystalline Solids, 2006, 352, 5309-5317.                                                        | 3.1  | 30        |
| 103 | Mechanistic study of boron trifluoride catalyzed É>-caprolactone polymerization in the presence of glycerol. Journal of Applied Polymer Science, 2006, 102, 3900-3906.                                                | 2.6  | 6         |
| 104 | XPS identification of surface-initiated polymerisation during monomer transfer moulding of poly(ɛ-caprolactone)/Bioglass® fibre composite. Applied Surface Science, 2005, 252, 1854-1862.                             | 6.1  | 11        |
| 105 | Preparation of poly(ε-caprolactone)/continuous bioglass fibre composite using monomer transfer<br>moulding for bone implant. Biomaterials, 2005, 26, 2281-2288.                                                       | 11.4 | 97        |
| 106 | The influence of processing variables on the energy absorption of composite tubes. Composites Part A:<br>Applied Science and Manufacturing, 2005, 36, 1291-1299.                                                      | 7.6  | 13        |
| 107 | Analysis of the vacuum infusion moulding process: I. Analytical formulation. Composites Part A:<br>Applied Science and Manufacturing, 2005, 36, 1645-1656.                                                            | 7.6  | 165       |
| 108 | Microwave heating as a means for carbon fibre recovery from polymer composites: a technical feasibility study. Materials Research Bulletin, 2004, 39, 1549-1556.                                                      | 5.2  | 120       |

| #   | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Synthesis and degradation of sodium iron phosphate glasses and theirin vitro cell response. Journal of Biomedical Materials Research Part B, 2004, 71A, 283-291.                                                                                                                 | 3.1 | 42        |
| 110 | The effect of production regime and crucible materials on the thermal properties of sodium phosphate glasses produced from salts. Journal of Biomedical Materials Research Part B, 2004, 71B, 22-29.                                                                             | 3.1 | 11        |
| 111 | Use of Resin Transfer Molding Simulation to Predict Flow, Saturation, and Compaction in the VARTM Process. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126, 210-215.                                                                                          | 1.5 | 67        |
| 112 | The effect of interlaminar toughening strategies on the energy absorption of composite tubes.<br>Composites Part A: Applied Science and Manufacturing, 2004, 35, 431-437.                                                                                                        | 7.6 | 46        |
| 113 | A constituent-based predictive approach to modelling the rheology of viscous textile composites.<br>Composites Part A: Applied Science and Manufacturing, 2004, 35, 915-931.                                                                                                     | 7.6 | 48        |
| 114 | Modelling the post treatment process of model implants prepared by in situ polymerized<br>poly(ε-caprolactone) using a BF3–glycerol catalyst system. Polymer, 2003, 44, 1809-1818.                                                                                               | 3.8 | 12        |
| 115 | Effect of resin properties and processing parameters on crash energy absorbing composite structures made by RTM. Composites Part A: Applied Science and Manufacturing, 2003, 34, 543-550.                                                                                        | 7.6 | 44        |
| 116 | Automatically generated geometric descriptions of textile and composite unit cells. Composites Part<br>A: Applied Science and Manufacturing, 2003, 34, 303-312.                                                                                                                  | 7.6 | 42        |
| 117 | Effects of fibre architecture on reinforcement fabric deformation. Plastics, Rubber and Composites, 2002, 31, 87-97.                                                                                                                                                             | 2.0 | 25        |
| 118 | Constitutive modelling of impregnated continuous fibre reinforced composites Micromechanical approach. Plastics, Rubber and Composites, 2002, 31, 76-86.                                                                                                                         | 2.0 | 22        |
| 119 | Geometric modelling of textiles for prediction of composite processing and performance characteristics. Plastics, Rubber and Composites, 2002, 31, 66-75.                                                                                                                        | 2.0 | 7         |
| 120 | Impact properties of compression moulded commingled E-glass–polypropylene composites. Plastics,<br>Rubber and Composites, 2002, 31, 270-277.                                                                                                                                     | 2.0 | 14        |
| 121 | Permeability prediction for industrial preforms. Plastics, Rubber and Composites, 2002, 31, 238-248.                                                                                                                                                                             | 2.0 | 0         |
| 122 | Characterisation of carbon fibres recycled from scrap composites using fluidised bed process.<br>Plastics, Rubber and Composites, 2002, 31, 278-282.                                                                                                                             | 2.0 | 139       |
| 123 | Use of Resin Transfer Molding Simulation to Predict Flow, Saturation and Compaction in the VARTM Process. , 2002, , 61.                                                                                                                                                          |     | 1         |
| 124 | Effect of resin formulation on crash energy absorbing composite structures made by RTM. Plastics,<br>Rubber and Composites, 2002, 31, 49-57.                                                                                                                                     | 2.0 | 9         |
| 125 | Synthesis, degradation, andin vitro cell responses of sodium phosphate glasses for craniofacial bone repair. Journal of Biomedical Materials Research Part B, 2002, 59, 481-489.                                                                                                 | 3.1 | 52        |
| 126 | Influence of microstructural voids on the mechanical and impact properties in commingled<br>E-glass/polypropylene thermoplastic composites. Proceedings of the Institution of Mechanical<br>Engineers, Part L: Journal of Materials: Design and Applications, 2002, 216, 85-100. | 1.1 | 0         |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Monomer transfer moulding and rapid prototyping methods for fibre reinforced thermoplastics for medical applications. Composites Part A: Applied Science and Manufacturing, 2001, 32, 969-976.                                                 | 7.6  | 32        |
| 128 | Experimental characterisation of the consolidation of a commingled glass/polypropylene composite.<br>Composites Science and Technology, 2001, 61, 1591-1603.                                                                                   | 7.8  | 83        |
| 129 | Physical and biocompatibility properties of poly-ε-caprolactone produced using in situ polymerisation:<br>a novel manufacturing technique for long-fibre composite materials. Biomaterials, 2000, 21, 713-724.                                 | 11.4 | 81        |
| 130 | Compression moulding of glass and polypropylene composites for optimised macro- and<br>micro-mechanical properties. 4: Technology demonstrator— a door cassette structure. Composites<br>Science and Technology, 2000, 60, 1901-1918.          | 7.8  | 27        |
| 131 | A fluidised-bed process for the recovery of glass fibres from scrap thermoset composites. Composites Science and Technology, 2000, 60, 509-523.                                                                                                | 7.8  | 287       |
| 132 | Compression moulding of glass and polypropylene composites for optimised macro- and micro-mechanical properties II. Glass-mat-reinforced thermoplastics. Composites Science and Technology, 1999, 59, 709-726.                                 | 7.8  | 46        |
| 133 | Compression moulding of glass and polypropylene composites for optimised macro- and micro-<br>mechanical properties 3. Sandwich structures of GMTS and commingled fabrics. Composites Science<br>and Technology, 1999, 59, 1153-1167.          | 7.8  | 19        |
| 134 | Experimental studies of embroidery for the local reinforcement of composites structures 1. Stress concentrations. Composites Science and Technology, 1999, 59, 2125-2137.                                                                      | 7.8  | 21        |
| 135 | Initial development into a novel technique for manufacturing a long fibre thermoplastic<br>bioabsorbable composite: in-situ polymerisation of poly-ϵ-caprolactone. Composites Part A: Applied<br>Science and Manufacturing, 1999, 30, 737-746. | 7.6  | 32        |
| 136 | Tow placement studies for liquid composite moulding. Composites Part A: Applied Science and Manufacturing, 1999, 30, 1105-1121.                                                                                                                | 7.6  | 36        |
| 137 | Compression moulding of glass and polypropylene composites for optimised macro- and micro-<br>mechanical properties—1 commingled glass and polypropylene. Composites Science and Technology,<br>1998, 58, 1879-1898.                           | 7.8  | 109       |
| 138 | Microwave assisted resin transfer moulding. Composites Part A: Applied Science and Manufacturing, 1998, 29, 71-86.                                                                                                                             | 7.6  | 22        |
| 139 | The characterisation and reuse of glass fibres recycled from scrap composites by the action of a fluidised bed process. Composites Part A: Applied Science and Manufacturing, 1998, 29, 839-845.                                               | 7.6  | 106       |
| 140 | The development of an integrated process model for liquid composite moulding. Composites Part A:<br>Applied Science and Manufacturing, 1998, 29, 847-854.                                                                                      | 7.6  | 12        |
| 141 | The effect of shear deformation on the processing and mechanical properties of aligned reinforcements. Composites Science and Technology, 1997, 57, 327-344.                                                                                   | 7.8  | 67        |
| 142 | Characterizing the processing and performance of aligned reinforcements during preform manufacture. Composites Part A: Applied Science and Manufacturing, 1996, 27, 247-253.                                                                   | 7.6  | 60        |
| 143 | Cycle time reduction in resin transfer moulding by phased catalyst injection. Composites Science and Technology, 1996, 56, 123-133.                                                                                                            | 7.8  | 17        |
| 144 | In-plane permeability determination for simulation of liquid composite molding of complex shapes.<br>Polymer Composites, 1996, 17, 52-59.                                                                                                      | 4.6  | 30        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Material characterization for flow modeling in structural reaction injection molding. Polymer Composites, 1996, 17, 124-135.                                                                                                             | 4.6 | 20        |
| 146 | Laminate Temperature Distributions and Filling Tine Prediction during Non-Isothermal Impregnation of Fibre Preforms. Journal of Reinforced Plastics and Composites, 1995, 14, 1069-1080.                                                 | 3.1 | 1         |
| 147 | Effects of fibre size formulations on the mechanical properties of unidirectional reinforced glass fibre/polyester resin laminates. Journal of Materials Science Letters, 1995, 14, 942-947.                                             | 0.5 | 9         |
| 148 | Design, Processing and Performance of Structural Preforms. Materials and Manufacturing Processes, 1995, 10, 89-102.                                                                                                                      | 4.7 | 1         |
| 149 | Cycle Time Reductions in Resin Transfer Moulding Using Microwave Preheating. Proceedings of the<br>Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1995, 209, 443-453.                                  | 2.4 | 7         |
| 150 | Processing and mechanical properties of bi-directional preforms for liquid composite moulding.<br>Composites Manufacturing, 1995, 6, 211-219.                                                                                            | 0.2 | 21        |
| 151 | A Simulation of Reinforcement Deformation during the Production of Preforms for Liquid Moulding<br>Processes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering<br>Manufacture, 1994, 208, 269-278. | 2.4 | 101       |
| 152 | Flow and cure phenomena in liquid composite molding. Polymer Composites, 1994, 15, 334-348.                                                                                                                                              | 4.6 | 21        |
| 153 | Modelling the processing and performance of preforms for liquid moulding processes. Composites<br>Manufacturing, 1994, 5, 177-186.                                                                                                       | 0.2 | 16        |
| 154 | Effects of post-cure on the interfacial properties of glass fibre-urethane methacrylate composites.<br>Journal of Materials Science Letters, 1993, 12, 894-897.                                                                          | 0.5 | 7         |
| 155 | Towards a Manufacturing Technology for High-Volume Production of Composite Components.<br>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,<br>1992, 206, 77-91.                       | 2.4 | 30        |
| 156 | Characterization of the resin transfer moulding process. Composites Manufacturing, 1992, 3, 235-249.                                                                                                                                     | 0.2 | 58        |
| 157 | Electrochemical effects during thermoset moulding. Journal of Materials Science, 1991, 26, 1259-1265.                                                                                                                                    | 3.7 | 2         |
| 158 | Effects of process variables on cycle time during resin transfer moulding for high volume<br>manufacture. Materials Science and Technology, 1990, 6, 656-665.                                                                            | 1.6 | 16        |
| 159 | Mechanical properties of weft knit glass fibre/polyester laminates. Composites Science and Technology, 1990, 39, 261-277.                                                                                                                | 7.8 | 77        |
| 160 | Fibre reinforcement for high volume resin transfer moulding (rtm). Composites Manufacturing, 1990, 1, 74-78.                                                                                                                             | 0.2 | 19        |
| 161 | Multi-Response Parameters Optimisation for Energy-Efficient Injection Moulding Process via Dynamic<br>Shainin DOE Method. Key Engineering Materials, 0, 554-557, 1669-1682.                                                              | 0.4 | 1         |
|     |                                                                                                                                                                                                                                          |     |           |

Biocomposites: Natural and Synthetic Fibers. , 0, , 585-601.