
Jenny S Cory

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4615826/publications.pdf Version: 2024-02-01

LENNY S CORV

#	Article	IF	CITATIONS
1	Resource limitation has a limited impact on the outcome of virus–fungus coâ€ i nfection in an insect host. Ecology and Evolution, 2022, 12, e8707.	0.8	3
2	Post-release genetic assessment of two congeneric weed biological control agents. Biological Control, 2021, 152, 104462.	1.4	1
3	The effect of synthetic female sex pheromone on the transmission of the fungus Metarhizium brunneum by male Agriotes obscurus click beetles. Journal of Invertebrate Pathology, 2021, 179, 107534.	1.5	3
4	Transâ€generational viral transmission and immune priming are doseâ€dependent. Journal of Animal Ecology, 2021, 90, 1560-1569.	1.3	7
5	Modification of reproductive schedule in response to pathogen exposure in a wild insect: Support for the terminal investment hypothesis. Journal of Evolutionary Biology, 2020, 33, 1558-1566.	0.8	13
6	Effect of Collection Month, Visible Light, and Air Movement on the Attraction of Male Agriotes obscurus L. (Coleoptera: Elateridae) Click Beetles to Female Sex Pheromone. Insects, 2020, 11, 729.	1.0	3
7	The impact of baculovirus challenge on immunity: The effect of dose and time after infection. Journal of Invertebrate Pathology, 2019, 167, 107232.	1.5	8
8	The complete genome sequence of an alphabaculovirus from Spodoptera exempta, an agricultural pest of major economic significance in Africa. PLoS ONE, 2019, 14, e0209937.	1.1	5
9	Biodiversity, Evolution and Ecological Specialization of Baculoviruses: A Treasure Trove for Future Applied Research. Viruses, 2018, 10, 366.	1.5	33
10	Biological Control Agents: Invasive Species or Valuable Solutions?. , 2017, , 191-202.		16
11	Evolution of host resistance to insect pathogens. Current Opinion in Insect Science, 2017, 21, 54-59.	2.2	14
12	Phylloplane bacteria increase the negative impact of food limitation on insect fitness. Ecological Entomology, 2017, 42, 411-421.	1.1	7
13	Tradeâ€offs and mixed infections in an obligateâ€killing insect pathogen. Journal of Animal Ecology, 2016, 85, 1200-1209.	1.3	20
14	Altered nutrient intake by baculovirus-challenged insects: Self-medication or compensatory feeding?. Journal of Invertebrate Pathology, 2016, 139, 25-33.	1.5	17
15	Ecology and evolution of pathogens in natural populations of Lepidoptera. Evolutionary Applications, 2016, 9, 231-247.	1.5	69
16	Baculovirus-challenge and poor nutrition inflict within-generation fitness costs without triggering transgenerational immune priming. Journal of Invertebrate Pathology, 2016, 136, 35-42.	1.5	14
17	Impact Of Environmental Variation On Host Performance Differs With Pathogen Identity: Implications For Host-Pathogen Interactions In A Changing Climate. Scientific Reports, 2015, 5, 15351.	1.6	20
18	Impact of nonâ€pathogenic bacteria on insect disease resistance: importance of ecological context. Ecological Entomology, 2015, 40, 620-628.	1.1	14

#	Article	IF	CITATIONS
19	Development of a Real-Time qPCR Assay for Quantification of Covert Baculovirus Infections in a Major African Crop Pest. Insects, 2015, 6, 746-759.	1.0	10
20	Tradeâ€offs between transgenerational transfer of nutritional stress tolerance and immune priming. Functional Ecology, 2015, 29, 1156-1164.	1.7	34
21	Insect virus transmission: different routes to persistence. Current Opinion in Insect Science, 2015, 8, 130-135.	2.2	46
22	Dietary Mechanism behind the Costs Associated with Resistance to Bacillus thuringiensis in the Cabbage Looper, Trichoplusia ni. PLoS ONE, 2014, 9, e105864.	1.1	22
23	Genetic Resistance to Bacillus thuringiensis Alters Feeding Behaviour in the Cabbage Looper, Trichoplusia ni. PLoS ONE, 2014, 9, e85709.	1.1	18
24	Genetic Similarity of Island Populations of Tent Caterpillars during Successive Outbreaks. PLoS ONE, 2014, 9, e96679.	1.1	16
25	Population Cycles in Forest Lepidoptera Revisited. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 565-592.	3.8	99
26	Microsatellite population genetics of the emerald ash borer (Agrilus planipennis Fairmaire): comparisons between Asian and North American populations. Biological Invasions, 2013, 15, 1537-1559.	1.2	12
27	Lifeâ€history consequences and disease resistance of western tent caterpillars in response to localised, herbivoreâ€induced changes in alder leaf quality. Ecological Entomology, 2013, 38, 61-67.	1.1	9
28	Does rearing an aphid parasitoid on one host affect its ability to parasitize another species?. Agricultural and Forest Entomology, 2013, 15, 366-374.	0.7	5
29	Multiple Mating and Family Structure of the Western Tent Caterpillar, Malacosoma californicum pluviale: Impact on Disease Resistance. PLoS ONE, 2012, 7, e37472.	1.1	8
30	Evolution and the microbial control of insects. Evolutionary Applications, 2012, 5, 455-469.	1.5	40
31	Detection of single and mixed covert baculovirus infections in eastern spruce budworm, Choristoneura fumiferana populations. Journal of Invertebrate Pathology, 2011, 107, 202-205.	1.5	27
32	The effect of food limitation on immunity factors and disease resistance in the western tent caterpillar. Oecologia, 2011, 167, 647-655.	0.9	32
33	Fungal entomopathogens in a tritrophic context. BioControl, 2010, 55, 75-88.	0.9	64
34	Pathogen persistence in migratory insects: high levels of vertically-transmitted virus infection in field populations of the African armyworm. Evolutionary Ecology, 2010, 24, 147-160.	0.5	59
35	Indirect plant-mediated effects on insect immunity and disease resistance in a tritrophic system. Basic and Applied Ecology, 2010, 11, 15-22.	1.2	74
36	Mixed-genotype infections of Trichoplusia ni larvae with Autographa californica multicapsid nucleopolyhedrovirus: Speed of action and persistence of a recombinant in serial passage. Biological Control, 2010, 52, 77-83.	1.4	10

#	Article	IF	CITATIONS
37	Effects of single and mixed infections with wild type and genetically modified <i>Helicoverpa armigera</i> nucleopolyhedrovirus on movement behaviour of cotton bollworm larvae. Entomologia Experimentalis Et Applicata, 2010, 135, 56-67.	0.7	11

 $_{38}$ Transmission of Wild-Type and Recombinant HaSnpv Among Larvae of Helicoverpa armigera (Lepidoptera:) Tj ETQq0.0.0 rgBT $_{5}^{O}$ verlock 1

39	Dose dependency of time to death in single and mixed infections with a wildtype and egt deletion strain of Helicoverpa armigera nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2010, 104, 44-50.	1.5	20
40	High levels of genetic diversity in Spodoptera exempta NPV from Tanzania. Journal of Invertebrate Pathology, 2010, 105, 190-193.	1.5	27
41	An experimental test of the independent action hypothesis in virus–insect pathosystems. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 2233-2242.	1.2	76
42	Mixed infections and the competitive fitness of fasterâ€acting genetically modified viruses. Evolutionary Applications, 2009, 2, 209-221.	1.5	23
43	Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biological Control, 2009, 50, 66-72.	1.4	31
44	Within and between population variation in disease resistance in cyclic populations of western tent caterpillars: a test of the disease defence hypothesis. Journal of Animal Ecology, 2009, 78, 646-655.	1.3	36
45	Fungal entomopathogens in a tritrophic context. , 2009, , 75-88.		7
46	Density-related variation in vertical transmission of a virus in the African armyworm. Oecologia, 2008, 155, 237-246.	0.9	27
47	Development of a quantitative real-time PCR for determination of genotype frequencies for studies in baculovirus population biology. Journal of Virological Methods, 2008, 148, 146-154.	1.0	19
48	Host mediated selection of pathogen genotypes as a mechanism for the maintenance of baculovirus diversity in the field. Journal of Invertebrate Pathology, 2007, 94, 153-162.	1.5	33
49	Plant-mediated effects in insect–pathogen interactions. Trends in Ecology and Evolution, 2006, 21, 278-286.	4.2	233
50	The dispersal and establishment of pseudomonad populations in the phyllosphere of sugar beet by phytophagous caterpillars. FEMS Microbiology Ecology, 2006, 24, 151-157.	1.3	32
51	On the classification and nomenclature of baculoviruses: A proposal for revision. Archives of Virology, 2006, 151, 1257-1266.	0.9	481
52	Flexible diet choice offsets protein costs of pathogen resistance in a caterpillar. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 823-829.	1.2	328
53	The role of food plant and pathogen-induced behaviour in the persistence of a nucleopolyhedrovirus. Journal of Invertebrate Pathology, 2005, 88, 49-57.	1.5	38
54	European Leucoma salicis NPV is closely related to North American Orgyia pseudotsugata MNPV. Journal of Invertebrate Pathology, 2005, 88, 100-107.	1.5	12

#	Article	IF	CITATIONS
55	Differential crop damage by healthy and nucleopolyhedrovirus-infected Mamestra brassicae L. (Lepidoptera: Noctuidae) larvae: A field examination. Journal of Invertebrate Pathology, 2005, 88, 177-179.	1.5	5
56	Genotypic and phenotypic diversity of a baculovirus population within an individual insect host. Journal of Invertebrate Pathology, 2005, 89, 101-111.	1.5	111
57	Persistence and coexistence of engineered baculoviruses. Theoretical Population Biology, 2005, 67, 217-230.	0.5	9
58	Host ecology determines the relative fitness of virus genotypes in mixed-genotype nucleopolyhedrovirus infections. Journal of Evolutionary Biology, 2004, 17, 1018-1025.	0.8	107
59	Adaptation in an insect host-plant pathogen interaction. Ecology Letters, 2004, 7, 632-639.	3.0	58
60	Density-dependent prophylaxis and condition-dependent immune function in Lepidopteran larvae: a multivariate approach. Journal of Animal Ecology, 2004, 73, 283-293.	1.3	125
61	Ancient Coevolution of Baculoviruses and Their Insect Hosts. Journal of Virology, 2004, 78, 3244-3251.	1.5	144
62	Host range of an NPV and a GV isolated from the common cutworm, Agrotis segetum: pathogenicity within the cutworm complex. Biological Control, 2004, 31, 372-379.	1.4	14
63	Hierarchical spatial structure of genetically variable nucleopolyhedroviruses infecting cyclic populations of western tent caterpillars. Molecular Ecology, 2003, 12, 881-890.	2.0	35
64	The Ecology and Evolution of Insect Baculoviruses. Annual Review of Ecology, Evolution, and Systematics, 2003, 34, 239-272.	3.8	259
65	THEGENOMESEQUENCE ANDEVOLUTION OFBACULOVIRUSES. Annual Review of Entomology, 2003, 48, 211-234.	5.7	402
66	Nucleopolyhedroviruses of forest and western tent caterpillars: cross-infectivity and evidence for activation of latent virus in high-density field populations. Ecological Entomology, 2003, 28, 41-50.	1.1	55
67	Ecological Impacts of Virus Insecticides: Host Range and Non-Target Organisms. , 2003, , 73-91.		14
68	Whole genome analysis of the Epiphyas postvittana nucleopolyhedrovirus. Journal of General Virology, 2002, 83, 957-971.	1.3	88
69	TRANSMISSION PATTERNS OF NATURAL AND RECOMBINANT BACULOVIRUSES. Ecology, 2002, 83, 906-916.	1.5	32
70	Host plant species can influence the fitness of herbivore pathogens: the winter moth and its nucleopolyhedrovirus. Oecologia, 2002, 131, 533-541.	0.9	56
71	Escape from pupal predation as a potential cause of outbreaks of the winter moth, Operophtera brumata. Oikos, 2002, 98, 219-228.	1.2	35
72	Vertical transmission of sublethal granulovirus infection in the Indian meal moth, Plodia interpunctella. Molecular Ecology, 2002, 11, 547-555.	2.0	81

#	Article	IF	CITATIONS
73	Differential selection of baculovirus genotypes mediated by different species of host food plant. Ecology Letters, 2002, 5, 512-518.	3.0	65
74	Biopesticides. New Phytologist, 2001, 150, 516-516.	3.5	0
75	Behavior of a Recombinant Baculovirus in Lepidopteran Hosts with Different Susceptibilities. Applied and Environmental Microbiology, 2001, 67, 1140-1146.	1.4	31
76	Use of Whole Genome Sequence Data To Infer Baculovirus Phylogeny. Journal of Virology, 2001, 75, 8117-8126.	1.5	294
77	Effects of phenotypic plasticity on pathogen transmission in the field in a Lepidoptera-NPV system. Oecologia, 2000, 124, 373-380.	0.9	56
78	Narrow Host Range Nucleopolyhedrovirus for Control of the Browntail Moth (Lepidoptera:) Tj ETQq0 0 0 rgBT /(Overlock 1	0 Tf 50 542 T
79	Age-Related Effects of the Autographa californica Multiple Nucleopolyhedrovirus egt Gene in the Cabbage Looper (Trichoplusia ni). Biological Control, 2000, 19, 57-63.	1.4	35
80	Infectivity, Speed of Kill, and Productivity of a Baculovirus Expressing the Itch Mite Toxin Txp-1 in Second and Fourth Instar Larvae of Trichoplusia ni. Journal of Invertebrate Pathology, 2000, 75, 226-236.	1.5	63
81	Direct and indirect ecological effects of biological control. Trends in Ecology and Evolution, 2000, 15, 137-139.	4.2	68
82	Assessing the risks of releasing genetically modified virus insecticides: progress to date. Crop Protection, 2000, 19, 779-785.	1.0	38
83	Sublethal Nucleopolyhedrovirus Infection Effects on Female Pupal Weight, Egg Mass Size, and Vertical Transmission in Gypsy Moth (Lepidoptera: Lymantriidae). Environmental Entomology, 2000, 29, 1268-1272.	0.7	57
84	Foraging in a pathogen reservoir can lead to local host population extinction: a case study of a Lepidoptera-virus interaction. Oecologia, 1999, 118, 29-38.	0.9	26
85	Characterization of a Nucleopolyhedrovirus from the Vapourer Moth, Orgyia antiqua (Lepidoptera) Tj ETQq1 1 ().784314 ı 1.5	rgBT/Overloc
86	Response of Hosts of Varying Susceptibility to a Recombinant Baculovirus Insecticide in the Field. Biological Control, 1999, 16, 119-127.	1.4	16
87	Use of baculoviruses as biological insecticides. Molecular Biotechnology, 1997, 7, 303-313.	1.3	30
88	The ecology and biosafety of baculoviruses. Current Opinion in Biotechnology, 1997, 8, 323-327.	3.3	27
89	Baculovirus Ecology. , 1997, , 301-339.		38
90	Modified Behavior in Baculovirus-Infected Lepidopteran Larvae and Its Impact on the Spatial Distribution of Inoculum. Biological Control, 1996, 7, 299-306.	1.4	56

#	Article	IF	CITATIONS
91	Prey selection and baculovirus dissemination by carabid predators of Lepidoptera. Ecological Entomology, 1996, 21, 98-104.	1.1	48
92	Transmission Dynamics of a Virus in a Stage-Structured Insect Population. Ecology, 1995, 76, 392-401.	1.5	41
93	Responses of Mamestra brassicae (Lepidoptera: Noctuidae) to crowding: interactions with disease resistance, colour phase and growth. Oecologia, 1995, 104, 416-423.	0.9	91
94	Sublethal Effects of Baculovirus in the Cabbage Moth, Mamestra brassicae. Biological Control, 1995, 5, 361-367.	1.4	39
95	Field trial of a genetically improved baculovirus insecticide. Nature, 1994, 370, 138-140.	13.7	174
96	Genetically engineered viral insecticides: New insecticides with improved phenotypes. Pest Management Science, 1993, 39, 109-115.	0.7	10
97	Avian Dispersal of Nuclear Polyhedrosis Viruses after Induced Epizootics in the Pine Beauty Moth, Panolis flammea (Lepidoptera: Noctuidae). Biological Control, 1993, 3, 61-69.	1.4	45
98	Flower constancy and learning in foraging preferences of the greenâ€veined white butterfly <i>Pleris napi</i> . Ecological Entomology, 1993, 18, 315-320.	1.1	117
99	A Comparison of the Efficacy of Nuclear Polyhedrosis and Granulosis Viruses in Spray and Bait Formulations for the Control ofAgrotis segetum(Lepidoptera: Noctuidae) in Maize. Biocontrol Science and Technology, 1992, 2, 315-326.	0.5	18
100	DNA characterization of eight geographic isolates of granulosis virus from the potato tuber moth (Phthorimaea operculella) (lepidoptera, gelechiidae). Journal of Invertebrate Pathology, 1991, 57, 334-342.	1.5	40
101	The effect of time of spray application on infection of the pine beauty moth, <i>Panolis flammea</i> (Den. & Schiff.) (Lep., Noctuidae), with nuclear polyhedrosis virus. Journal of Applied Entomology, 1990, 110, 235-241.	0.8	11
102	Characterization of the DNA of granulosis viruses isolated from two closely related moths,Chilo infuscatellus andC. saccariphagus indicus. Archives of Virology, 1990, 110, 113-119.	0.9	12
103	Risk Assessment Studies: Detailed Host Range Testing of Wild-Type Cabbage Moth, <i>Mamestra brassicae</i> (Lepidoptera: Noctuidae), Nuclear Polyhedrosis Virus. Applied and Environmental Microbiology, 1990, 56, 2704-2710.	1.4	67
104	Recovery of pine beauty moth (Panolis flammea) nuclear polyhedrosis virus from pine foliage. Journal of Invertebrate Pathology, 1988, 52, 27-32.	1.5	20
105	TREE PESTS—14. TREE MITES; Order ACARINI. Arboricultural Journal, 1987, 11, 15-18.	0.3	0
106	Operculum closing as a defence against predatory leeches in four British freshwater prosobranch snails. Hydrobiologia, 1987, 144, 121-124.	1.0	18
107	TREE PESTS—13 GOAT AND CLEAR-WING MOTHS. (LEPIDOPTERA: <i>COSSIDAE</i> AND <i>SESSIDAE.</i>). Arboricultural Journal, 1986, 10, 113-116.	0.3	4