
Masayuki Arai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4615343/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical analysis of fracture toughness in tessellated materials by continuous distributed dislocation technique. Engineering Fracture Mechanics, 2022, 261, 108192.	4.3	Ο
2	Thermal and mechanical properties of APS-YbTa ₃ O ₉ thermal barrier coatings. Transactions of the JSME (in Japanese), 2022, 88, 21-00366-21-00366.	0.2	0
3	Numerical simulation of damage and inelastic deformation of porous thermal barrier coatings system under high-temperature fatigue loading condition. Transactions of the JSME (in Japanese), 2022, 88, 22-00002-22-00002.	0.2	0
4	Numerical analysis of dynamic thermoelastic two-dimensional problem combined with non-Fourier heat transfer equation by finite-difference time-domain method. Transactions of the JSME (in Japanese), 2022, , .	0.2	0
5	Simple estimation method for strain rate sensitivity based on the difference between the indentation sizes formed by spherical-shaped impactors. International Journal of Mechanical Sciences, 2021, 189, 106007.	6.7	13
6	O-Integral evaluation for stress intensity factor of three-dimensional planar-crack with arbitrary shape. Mechanical Engineering Journal, 2021, 8, 21-00132-21-00132.	0.4	1
7	High-temperature tensile and fatigue strength properties of stainless steel repaired by laser metal deposition method. Transactions of the JSME (in Japanese), 2021, 87, 21-00092-21-00092.	0.2	1
8	Proposal of an Estimation Method for Temperature Dependence of Flow Stress in a Wide Range of Strain Rates Based on a Difference between Indentation Sizes. Zairyo/Journal of the Society of Materials Science, Japan, 2021, 70, 698-705.	0.2	2
9	Numerical simulation of damage and inelastic deformation of porous thermal barrier coatings system. Transactions of the JSME (in Japanese), 2021, 87, 21-00086-21-00086.	0.2	1
10	Numerical analysis of dynamic thermoelastic problem combined with non-Fourier heat transfer equation by finite-difference time-domain method. Transactions of the JSME (in Japanese), 2021, 87, .	0.2	2
11	Damage Evaluation of Thermal Barrier Coatings Subjected to a High-Velocity Impingement of a Solid Sphere under Room and High Temperature Conditions. Materials Transactions, 2021, 62, .	1.2	0
12	Numerical simulation of inelastic deformation and crack propagation in TBC-multilayered Ni-based superalloy subjected to thermo-mechanical loadings. Surface and Coatings Technology, 2020, 399, 126159.	4.8	10
13	Effectiveness of prediction method of indentation size formed by high-velocity impingement of a solid sphere. AIP Conference Proceedings, 2020, , .	0.4	0
14	Influence of chemical composition, grain size, and spray condition on cavitation erosion resistance of high-velocity oxygen fuel thermal-sprayed WC cermet coatings. Surface and Coatings Technology, 2020, 394, 125881.	4.8	12
15	Improvement of Oxidation Resistance and Adhesion Strength of Thermal Barrier Coating by Grinding and Grit-Blasting Treatments. Journal of Thermal Spray Technology, 2020, 29, 1728-1740.	3.1	5
16	Deposition Characteristics of Free-Falling Water Droplet on a Substrate at a Low Temperature. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 269-276.	0.2	0
17	Evaluation of Shear Fatigue Delamination Strength of Porous Thermal Barrier Coatings by Torsion Pin-Test Method. Journal of Thermal Spray Technology, 2020, 29, 1002-1015.	3.1	0
18	Fusion and TBC Penetration Characteristics of Volcanic Ash Collected from Active Volcano. Journal of Thermal Spray Technology, 2020, 29, 582-596.	3.1	3

MASAYUKI ARAI

#	Article	IF	CITATIONS
19	Numerical simulation on internal stress evolution based on formation of thermally grown oxide in thermal barrier coatings. Engineering Research Express, 2020, 2, 025037.	1.6	2
20	Expanding Cavity Model Combined With Johnson–Cook Constitutive Equation for the Dynamic Indentation Problem. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	1.4	11
21	Characterization of thermal barrier coatings via a rockwell indentation test. AIP Conference Proceedings, 2020, , .	0.4	1
22	Development of estimation method of strain rate dependency of materials based on a high-velocity impingement test with a solid sphere. Transactions of the JSME (in Japanese), 2020, 86, 20-00060-20-00060.	0.2	0
23	Brick model for nonlinear deformation and microcracking in thermal barrier coating. Mechanical Engineering Journal, 2020, 7, 20-00010-20-00010.	0.4	1
24	Numerical simulation of thermoelastic wave coupled with non-Fourier heat conduction equation. AIP Conference Proceedings, 2020, , .	0.4	3
25	Transfer matrix method for curved beam structures with a few branches in three-dimensional space. AIP Conference Proceedings, 2020, , .	0.4	0
26	On estimation of pedaling torque by accelerometer attached to the leg part. The Proceedings of the Symposium on Sports and Human Dynamics, 2020, 2020, A-1-1.	0.0	0
27	Estimation of creep constitutive equation by creep indentation test using cylindrical indenter. Mechanical Engineering Journal, 2020, 7, 20-00232-20-00232.	0.4	1
28	Damage evolution of TBC by rapid thermal cycling test based on a laser irradiation. Transactions of the JSME (in Japanese), 2020, 86, 19-00426-19-00426.	0.2	2
29	Study on Control of Fatigue Crack Propagation by Pulsed Laser Irradiation. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 733-739.	0.2	0
30	Application of distributed dislocation method to curved crack moving near a press-fitted inclusion in a two-dimensional infinite plate. Engineering Fracture Mechanics, 2019, 218, 106609.	4.3	6
31	Development of Small-Size Material Testing Device Using Shape Memory Alloy Actuator. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 68-73.	0.2	0
32	On Estimation of Creep Constitutive Equation for Welded Joint by High-Temperature Indentation Creep Testing Method. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 607-613.	0.2	1
33	Comprehensive Numerical Simulation on Thermally Grown Oxide and Internal Stress Evolutions in Thermal Barrier Coatings. Key Engineering Materials, 2019, 827, 343-348.	0.4	1
34	Study on damage evolution of TBC by rapid thermal cycling test based on a laser irradiation. The Proceedings of the Materials and Mechanics Conference, 2019, 2019, OS0307.	0.0	0
35	Solidification process of a water droplets freely dropped on a cooled substrate and development of crack initiation and delamination models. Transactions of the JSME (in Japanese), 2019, 85, 19-00204-19-00204.	0.2	0
36	Transfer matrix method for elastic-plastic problem of space-curved beam structure. Transactions of the JSME (in Japanese), 2019, 85, 19-00026-19-00026.	0.2	1

MASAYUKI ARAI

#	Article	IF	CITATIONS
37	Stress intensity factor of a penny-shaped crack with small-disturbed crack front line. Mechanical Engineering Journal, 2018, 5, 18-00244-18-00244.	0.4	1
38	Creep Life Prediction Method by Using High-Temperature Indentation Creep Test. Proceedings (mdpi), 2018, 2, 450.	0.2	1
39	Tensile and fatigue strength of SUS304 stainless steel repaired by a high velocity oxy-fuel thermal spraying. Transactions of the JSME (in Japanese), 2018, 84, 18-00016-18-00016.	0.2	2
40	Evaluation of deformation properties of porous thermal barrier coatings by indentation method. Transactions of the JSME (in Japanese), 2018, 84, 18-00147-18-00147.	0.2	0
41	Electrochemical Migration of Copper Caused by Volcanic Ash Deposited on Printed Circuit Boards. Journal of Electronic Materials, 2018, 47, 7179-7190.	2.2	3
42	Delaying Effect of Fatigue Crack Propagation by Single-Pulse Laser Irradiation. Proceedings (mdpi), 2018, 2, .	0.2	1
43	Interfacial elastic <i>J</i> integral for indentation test. Mechanical Engineering Journal, 2018, 5, 18-00360-18-00360.	0.4	0
44	Evaluation of deformation properties of porous thermal barrier coatings by indentation method. The Proceedings of Mechanical Engineering Congress Japan, 2018, 2018, J0450201.	0.0	0
45	Analytical Study on Damage Evaluation of Metallic Materials Subjected to High Velocity Impingement of a Solid Particle. Zairyo/Journal of the Society of Materials Science, Japan, 2018, 67, 861-868.	0.2	Ο
46	Mechanistic Study on the Degradation of Thermal Barrier Coatings Induced by Volcanic Ash Deposition. Journal of Thermal Spray Technology, 2017, 26, 1207-1221.	3.1	8
47	Deposition behaviour and its damage evaluation of natural volcanic ash deposited under a high temperature and a high gas flow condition. Transactions of the JSME (in Japanese), 2017, 83, 16-00281-16-00281.	0.2	Ο
48	Study on mechanical property and adhesive strength of ice under a low temperature condition. Transactions of the JSME (in Japanese), 2017, 83, 17-00150-17-00150.	0.2	1
49	Study on Electromotive Force Generated in Thermal Barrier Coatings at High-Temperature. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 211-217.	0.2	Ο
50	Interfacial Elastic J Integral for Indentation Test. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 836-843.	0.2	0
51	High-Temperature Oxidation Properties of MCrAlY Coatings Formed by Atmospheric Plasma Spraying. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 700-705.	0.2	1
52	Microdamage-coupled inelastic deformation analysis of ceramic thermal barrier coatings subjected to tensile loading. Surface and Coatings Technology, 2016, 304, 542-552.	4.8	10
53	Interfacial fatigue crack propagation of ceramic thermal barrier coating under a high temperature condition. Transactions of the JSME (in Japanese), 2016, 82, 15-00614-15-00614.	0.2	Ο
54	A novel low-thermal-conductivity plasma-sprayed thermal barrier coating controlled by large pores. Surface and Coatings Technology, 2016, 285, 120-127.	4.8	55

MASAYUKI ARAI

#	Article	IF	CITATIONS
55	Thermal Stress Analysis of Porous Ceramic Coating Heated with Harmonic Oscillation. The Proceedings of the Materials and Mechanics Conference, 2016, 2016, OS13-05.	0.0	0
56	Influence of Thermal Spray Process on High Temperature Oxidation Property of CoNiCrAlY Coatings. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 313-318.	0.2	2
57	Damage process of the high-temperature-exposed ceramic thermal barrier coatings under tensile loading. Transactions of the JSME (in Japanese), 2015, 81, 15-00340-15-00340.	0.2	2
58	On damage process of ceramic thermal barrier coatings subjected to high-temperature tensile loading. Transactions of the JSME (in Japanese), 2015, 81, 14-00511-14-00511.	0.2	2
59	OS1204-136 High Temperature Crack Propagation Behavior of Ceramic Thermal Barrier Coatings by In-situ Observation. The Proceedings of the Materials and Mechanics Conference, 2015, 2015, _OS1204-13.	0.0	0
60	OS11-5 Damage Process of Ceramic Thermal Barrier Coatings Exposed at High Temperature under Tensile Loading(Mechanical Properties of Coatings,OS11 Reliability of heat resisting alloys and) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 54
61	Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015.14, 179. OS11-1 Thermal Conductivity of Thermal Barrier Coatings with Porous microstructure(Characterization and Inspection of Coatings,OS11 Reliability of heat resisting alloys) Tj ETQq1 1 0.	784314 rg 0.0	gBT /Overloc
	Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015, 2015.14, 175.		
62	GS0601-372 Stress Intensity Factor of Penny-shaped Crack with Imperfect Crack Tip Shape. The Proceedings of the Materials and Mechanics Conference, 2015, 2015, _GS0601-37GS0601-37.	0.0	0
	OS7-9 Development of Small-size Tensile Testing Machine(Stress and strain measurement III,OS7 Stress) Tj ETQq1	1 0.7843	14 rgBT / <mark>O</mark> ∨
63	on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2015. 2015.14. 100.	0.0	0
64	J0430101 Evaluation of Fracture Toughness of Interfacial Cracks between Aluminum Alloy/PMMA by Indentation Test. The Proceedings of Mechanical Engineering Congress Japan, 2014, 2014, _J0430101J0430101	0.0	0
65	Determination of Interfacial Fracture Toughness of Thermal Spray Coatings by Indentation. Journal of Thermal Spray Technology, 2013, 22, 1358-1365.	3.1	32
66	Interfacial Fracture Toughness Evaluation of Ceramic Thermal Barrier Coatings Based on Indentation Test Method. Zairyo/Journal of the Society of Materials Science, Japan, 2009, 58, 917-923.	0.2	11
67	Comprehensive Numerical Simulation of Stress and Damage Fields under Thermo-Mechanical Loading for TBC-Coated Ni-Based Superalloy. Key Engineering Materials, 0, 774, 137-142.	0.4	7
68	Numerical Simulation of Volcanic Ash Infiltration into Thermal Barrier Coatings. Key Engineering Materials, 0, 827, 367-372.	0.4	2