Kumbakonam R Rajagopal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4615290/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A CONSTRAINED MIXTURE MODEL FOR GROWTH AND REMODELING OF SOFT TISSUES. Mathematical Models and Methods in Applied Sciences, 2002, 12, 407-430.	3.3	619
2	Fluids of differential type: Critical review and thermodynamic analysis. International Journal of Engineering Science, 1995, 33, 689-729.	5.0	504
3	Flow of a viscoelastic fluid over a stretching sheet. Rheologica Acta, 1984, 23, 213-215.	2.4	450
4	A thermodynamic frame work for rate type fluid models. Journal of Non-Newtonian Fluid Mechanics, 2000, 88, 207-227.	2.4	395
5	Mathematical modeling of electrorheological materials. Continuum Mechanics and Thermodynamics, 2001, 13, 59-78.	2.2	353
6	On Implicit Constitutive Theories. Applications of Mathematics, 2003, 48, 279-319.	0.9	353
7	Anomalous features in the model of "second order fluids― Archive for Rational Mechanics and Analysis, 1979, 70, 145-152.	2.4	292
8	A note on unsteady unidirectional flows of a non-Newtonian fluid. International Journal of Non-Linear Mechanics, 1982, 17, 369-373.	2.6	263
9	An exact solution for the flow of a non-newtonian fluid past an infinite porous plate. Meccanica, 1984, 19, 158-160.	2.0	246
10	A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms. Journal of Biomechanical Engineering, 2006, 128, 142-149.	1.3	245
11	Theory of small on large: Potential utility in computations of fluid–solid interactions in arteries. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 3070-3078.	6.6	241
12	Intelligent cruise control systems and traffic flow stability. Transportation Research Part C: Emerging Technologies, 1999, 7, 329-352.	7.6	236
13	ON A HIERARCHY OF APPROXIMATE MODELS FOR FLOWS OF INCOMPRESSIBLE FLUIDS THROUGH POROUS SOLIDS. Mathematical Models and Methods in Applied Sciences, 2007, 17, 215-252.	3.3	228
14	Exact solutions for some simple flows of an Oldroyd-B fluid. Acta Mechanica, 1995, 113, 233-239.	2.1	211
15	Mechanics of the inelastic behavior of materials—part 1, theoretical underpinnings. International Journal of Plasticity, 1998, 14, 945-967.	8.8	199
16	The elasticity of elasticity. Zeitschrift Fur Angewandte Mathematik Und Physik, 2007, 58, 309-317.	1.4	199
17	ON THE OBERBECK-BOUSSINESQ APPROXIMATION. Mathematical Models and Methods in Applied Sciences, 1996, 06, 1157-1167.	3.3	192
18	A constitutive equation for nonlinear solids which undergo deformation induced microstructural changes. International Journal of Plasticity, 1992, 8, 385-395.	8.8	189

#	Article	IF	CITATIONS
19	On flows of granular materials. Continuum Mechanics and Thermodynamics, 1994, 6, 81-139.	2.2	174
20	A note on the falkner-skan flows of a non-newtonian fluid. International Journal of Non-Linear Mechanics, 1983, 18, 313-320.	2.6	173
21	Start-up flows of second grade fluids in domains with one finite dimension. International Journal of Non-Linear Mechanics, 1995, 30, 817-839.	2.6	172
22	On implicit constitutive theories for fluids. Journal of Fluid Mechanics, 2006, 550, 243.	3.4	169
23	On the creeping flow of the second-order fluid. Journal of Non-Newtonian Fluid Mechanics, 1984, 15, 239-246.	2.4	167
24	The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica, 1999, 135, 113-126.	2.1	152
25	A thermodynamic framework for the modeling of crystallizable shape memory polymers. International Journal of Engineering Science, 2008, 46, 325-351.	5.0	150
26	A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomechanics and Modeling in Mechanobiology, 2003, 2, 109-126.	2.8	148
27	On the response of non-dissipative solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463, 357-367.	2.1	145
28	Review of the uses and modeling of bitumen from ancient to modern times. Applied Mechanics Reviews, 2003, 56, 149-214.	10.1	144
29	On the uniqueness of flow of a Navier-Stokes fluid due to a stretching boundary. Archive for Rational Mechanics and Analysis, 1987, 98, 385-393.	2.4	142
30	Flow of viscoelastic fluids between rotating disks. Theoretical and Computational Fluid Dynamics, 1992, 3, 185-206.	2.2	134
31	The flow of blood in tubes: theory and experiment. Mechanics Research Communications, 1998, 25, 257-262.	1.8	133
32	On thermomechanical restrictions of continua. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 631-651.	2.1	133
33	Mechanics of the inelastic behavior of materials. Part II: inelastic response. International Journal of Plasticity, 1998, 14, 969-995.	8.8	132
34	On a class of non-dissipative materials that are not hyperelastic. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 493-500.	2.1	130
35	On the thermomechanics of materials that have multiple natural configurations Part I: Viscoelasticity and classical plasticity. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 861-893.	1.4	128
36	On the modeling of electrorheological materials. Mechanics Research Communications, 1996, 23, 401-407.	1.8	127

#	Article	IF	CITATIONS
37	A Single Integral Finite Strain Viscoelastic Model of Ligaments and Tendons. Journal of Biomechanical Engineering, 1996, 118, 221-226.	1.3	127
38	Simple flows of fluids with pressure–dependent viscosities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 1603-1622.	2.1	124
39	On boundary conditions for a certain class of problems in mixture theory. International Journal of Engineering Science, 1986, 24, 1453-1463.	5.0	122
40	A Mathematical Model for Shearâ€induced Hemolysis. Artificial Organs, 1995, 19, 576-582.	1.9	122
41	A Model Incorporating Some of the Mechanical and Biochemical Factors Underlying Clot Formation and Dissolution in Flowing Blood. Journal of Theoretical Medicine, 2003, 5, 183-218.	0.5	120
42	A Model for the Formation and Lysis of Blood Clots. Pathophysiology of Haemostasis and Thrombosis: International Journal on Haemostasis and Thrombosis Research, 2005, 34, 109-120.	0.3	117
43	EXISTENCE AND REGULARITY OF SOLUTIONS AND THE STABILITY OF THE REST STATE FOR FLUIDS WITH SHEAR DEPENDENT VISCOSITY. Mathematical Models and Methods in Applied Sciences, 1995, 05, 789-812.	3.3	114
44	On the thermomechanics of shape memory wires. Zeitschrift Fur Angewandte Mathematik Und Physik, 1999, 50, 459.	1.4	108
45	A note on the flow induced by a constantly accelerating plate in an Oldroyd-B fluid. Applied Mathematical Modelling, 2007, 31, 647-654.	4.2	108
46	A study of strain-induced crystallization of polymers. International Journal of Solids and Structures, 2001, 38, 1149-1167.	2.7	104
47	On the mechanical behavior of asphalt. Mechanics of Materials, 2005, 37, 1085-1100.	3.2	104
48	A model for the formation, growth, and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. Journal of Theoretical Biology, 2008, 253, 725-738.	1.7	98
49	Flow of a non-Newtonian fluid past a wedge. Acta Mechanica, 1991, 88, 113-123.	2.1	97
50	A thermodynamic framework for the study of crystallization in polymers. Zeitschrift Fur Angewandte Mathematik Und Physik, 2002, 53, 365-406.	1.4	97
51	An existence theorem for the flow of a non-newtonian fluid past an infinite porous plate. International Journal of Non-Linear Mechanics, 1986, 21, 279-289.	2.6	90
52	Navier's slip and evolutionary Navier-Stokes-like systems with pressure and shear-rate dependent viscosity. Indiana University Mathematics Journal, 2007, 56, 51-86.	0.9	89
53	Global Analysis of the Flows of Fluids with Pressure-Dependent Viscosities. Archive for Rational Mechanics and Analysis, 2002, 165, 243-269.	2.4	88
54	Flow of a fluid—solid mixture between flat plates. Chemical Engineering Science, 1991, 46, 1713-1723.	3.8	86

#	Article	IF	CITATIONS
55	Stagnation point flow of a non-newtonian fluid. Mechanics Research Communications, 1990, 17, 415-421.	1.8	84
56	Thermodynamic Framework for the Constitutive Modeling of Asphalt Concrete: Theory and Applications. Journal of Materials in Civil Engineering, 2004, 16, 155-166.	2.9	84
57	On the shear and bending of a degrading polymer beam. International Journal of Plasticity, 2007, 23, 1618-1636.	8.8	81
58	On the inelastic behavior of solids — Part 1: Twinning. International Journal of Plasticity, 1995, 11, 653-678.	8.8	79
59	On a class of exact solutions to the equations of motion of a second grade fluid. International Journal of Engineering Science, 1981, 19, 1009-1014.	5.0	76
60	Information Flow and Its Relation to Stability of the Motion of Vehicles in a Rigid Formation. IEEE Transactions on Automatic Control, 2006, 51, 1315-1319.	5.7	76
61	Non-Linear Elastic Bodies Exhibiting Limiting Small Strain. Mathematics and Mechanics of Solids, 2011, 16, 122-139.	2.4	76
62	On the nonlinear elastic response of bodies in the small strain range. Acta Mechanica, 2014, 225, 1545-1553.	2.1	76
63	Uniqueness and drag for fluids of second grade in steady motion. International Journal of Non-Linear Mechanics, 1978, 13, 131-137.	2.6	75
64	Modeling anisotropic fluids within the framework of bodies with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 2001, 99, 109-124.	2.4	74
65	Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. International Journal of Non-Linear Mechanics, 1995, 30, 391-405.	2.6	73
66	On the flow of a simple fluid in an orthogonal rheometer. Archive for Rational Mechanics and Analysis, 1982, 79, 39-47.	2.4	69
67	Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid. Acta Mechanica, 1983, 49, 281-285.	2.1	69
68	Mathematical Issues Concerning the Navier–Stokes Equations and Some of Its Generalizations. Handbook of Differential Equations: Evolutionary Equations, 2005, 2, 371-459.	0.9	68
69	Mathematical Analysis of Unsteady Flows of Fluids with Pressure, Shear-Rate, and Temperature Dependent Material Moduli that Slip at Solid Boundaries. SIAM Journal on Mathematical Analysis, 2009, 41, 665-707.	1.9	68
70	Flow of a non-Newtonian fluid between heated parallel plates. International Journal of Non-Linear Mechanics, 1985, 20, 91-101.	2.6	67
71	Swirling flow between rotating plates. Archive for Rational Mechanics and Analysis, 1984, 86, 305-315.	2.4	66
72	Natural convection flow of a non-Newtonian fluid between two vertical flat plates. Acta Mechanica, 1985, 54, 239-246.	2.1	66

#	Article	IF	CITATIONS
73	Flow of electro-rheological materials. Acta Mechanica, 1992, 91, 57-75.	2.1	66
74	On an inconsistency in the derivation of the equations of elastohydrodynamic lubrication. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 2771-2786.	2.1	66
75	Competition Between Radial Expansion and Thickening in the Enlargement of an Intracranial Saccular Aneurysm. Journal of Elasticity, 2005, 80, 13-31.	1.9	66
76	Modeling fracture in the context of a strain-limiting theory of elasticity: a single anti-plane shear crack. International Journal of Fracture, 2011, 169, 39-48.	2.2	66
77	On the Oberbeck–Boussinesq approximation for fluids with pressure dependent viscosities. Nonlinear Analysis: Real World Applications, 2009, 10, 1139-1150.	1.7	65
78	Modeling the Pneumatic Subsystem of an S-cam Air Brake System. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2004, 126, 36-46.	1.6	64
79	Applications of the theory of interacting continua to the diffusion of a fluid through a non-linear elastic media. International Journal of Engineering Science, 1981, 19, 871-889.	5.0	63
80	A note on the flow of a Burgers' fluid in an orthogonal rheometer. International Journal of Engineering Science, 2004, 42, 1973-1985.	5.0	63
81	On the thermodynamics of fluids defined by implicit constitutive relations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2008, 59, 715-729.	1.4	63
82	Modeling the response of nonlinear viscoelastic biodegradable polymeric stents. International Journal of Solids and Structures, 2012, 49, 989-1000.	2.7	63
83	On the development and generalizations of Cahn–Hilliard equations within a thermodynamic framework. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 145-169.	1.4	62
84	Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomechanics and Modeling in Mechanobiology, 2010, 9, 177-186.	2.8	61
85	A Gibbs-potential-based formulation for obtaining the response functions for a class of viscoelastic materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2011, 467, 39-58.	2.1	60
86	Identification of elastic properties of homogeneous, orthotropic vascular segments in distension. Journal of Biomechanics, 1995, 28, 501-512.	2.1	59
87	A new development and interpretation of the Navier–Stokes fluid which reveals why the "Stokes assumption―is inapt. International Journal of Non-Linear Mechanics, 2013, 50, 141-151.	2.6	58
88	Flow of a fluid infused with solid particles through a pipe. International Journal of Engineering Science, 1991, 29, 649-661.	5.0	56
89	A Diagnostic System for Air Brakes in Commercial Vehicles. IEEE Transactions on Intelligent Transportation Systems, 2006, 7, 360-376.	8.0	56
90	Towards an understanding of the mechanics underlying aortic dissection. Biomechanics and Modeling in Mechanobiology, 2007, 6, 345-359.	2.8	56

Kumbakonam R Rajagopal

#	Article	IF	CITATIONS
91	Diffusion through polymeric solids undergoing large deformations. Materials Science and Technology, 2003, 19, 1175-1180.	1.6	55
92	On the thermomechanics of materials that have multiple natural configurations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 1074-1093.	1.4	55
93	Anti-plane stress state of a plate with a V-notch for a new class of elastic solids. International Journal of Fracture, 2013, 179, 59-73.	2.2	55
94	The flow of a second order fluid between rotating parallel plates. Journal of Non-Newtonian Fluid Mechanics, 1981, 9, 185-190.	2.4	53
95	Inelastic behavior of materials. Part II. Energetics associated with discontinuous deformation twinning. International Journal of Plasticity, 1997, 13, 1-35.	8.8	53
96	Flow and stability of a second grade fluid between two parallel plates rotating about noncoincident axes. International Journal of Engineering Science, 1981, 19, 1401-1409.	5.0	52
97	Asymmetric flow between parallel rotating disks. Journal of Fluid Mechanics, 1984, 146, 203-225.	3.4	52
98	Some nonlinear diffusion problems within the context of the theory of interacting continua. International Journal of Engineering Science, 1987, 25, 1441-1457.	5.0	52
99	Solutions of some simple boundary value problems within the context of a new class of elastic materials. International Journal of Non-Linear Mechanics, 2011, 46, 376-386.	2.6	51
100	Remarks on the modeling of fluidized systems. AICHE Journal, 1992, 38, 471-472.	3.6	49
101	Flows of Incompressible Fluids subject to Navier's slip on the boundary. Computers and Mathematics With Applications, 2008, 56, 2128-2143.	2.7	49
102	A thermodynamical framework for chemically reacting systems. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 331-363.	1.4	49
103	Remarks on the notion of "pressure― International Journal of Non-Linear Mechanics, 2015, 71, 165-172.	2.6	49
104	Analysis of Squeeze Film Dampers Operating With Bubbly Lubricants. Journal of Tribology, 2000, 122, 205-210.	1.9	48
105	A Note on Plane Strain and Plane Stress Problems for a New Class of Elastic Bodies. Mathematics and Mechanics of Solids, 2010, 15, 229-238.	2.4	48
106	On steady flows of fluids with pressure– and shear–dependent viscosities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 651-670.	2.1	47
107	On the nature of constraints for continua undergoing dissipative processes. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 2785-2795.	2.1	46
108	Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities. Cardiovascular Engineering and Technology, 2010, 1, 52-65.	1.6	46

#	Article	IF	CITATIONS
109	A thermomechanical framework for modeling the compaction of asphalt mixes. Mechanics of Materials, 2008, 40, 846-864.	3.2	45
110	New universal relations for nonlinear isotropic elastic materials. Journal of Elasticity, 1987, 17, 75-83.	1.9	44
111	Global existence of solutions for flows of fluids with pressure and shear dependent viscosities. Applied Mathematics Letters, 2002, 15, 961-967.	2.7	44
112	Flow of fluids with pressure- and shear-dependent viscosity down an inclined plane. Journal of Fluid Mechanics, 2012, 706, 173-189.	3.4	44
113	A note on a reappraisal and generalization of the Kelvin–Voigt model. Mechanics Research Communications, 2009, 36, 232-235.	1.8	43
114	A numerical study of a plate with a hole for a new class of elastic bodies. Acta Mechanica, 2012, 223, 1971-1981.	2.1	43
115	Modeling fracture in the context of a strain-limiting theory of elasticity: A single plane-strain crack. International Journal of Engineering Science, 2015, 88, 73-82.	5.0	43
116	Lubrication With Binary Mixtures: Liquid-Liquid Emulsion. Journal of Tribology, 1993, 115, 46-55.	1.9	42
117	Triaxial testing and stress relaxation of asphalt concrete. Mechanics of Materials, 2004, 36, 849-864.	3.2	42
118	A continuum model for the creep of single crystal nickel-base superalloys. Acta Materialia, 2005, 53, 669-679.	7.9	42
119	A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations. International Journal of Non-Linear Mechanics, 2014, 58, 162-166.	2.6	42
120	Some simple flows of a Johnson-Segalman fluid. Acta Mechanica, 1999, 132, 209-219.	2.1	41
121	Generalizations of the Navier–Stokes fluid from a new perspective. International Journal of Engineering Science, 2010, 48, 1907-1924.	5.0	41
122	A thermomechanical framework for the glass transition phenomenon in certain polymers and its application to fiber spinning. Journal of Rheology, 2002, 46, 977.	2.6	40
123	Numerical simulations and global existence of solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities. Mathematics and Computers in Simulation, 2003, 61, 297-315.	4.4	40
124	A note on the linearization of the constitutive relations of non-linear elastic bodies. Mechanics Research Communications, 2018, 93, 132-137.	1.8	40
125	On a boundary layer theory for non-Newtonian fluids. International Journal of Engineering Science, 1980, 18, 875-883.	5.0	39
126	New exact solutions in non-linear elasticity. International Journal of Engineering Science, 1985, 23,	5.0	39

217-234.

#	Article	IF	CITATIONS
127	Asymmetric flow above a rotating disk. Journal of Fluid Mechanics, 1985, 157, 471-492.	3.4	39
128	Circular shearing and torsion of generalized neo-Hookean materials. IMA Journal of Applied Mathematics, 1992, 48, 23-37.	1.6	39
129	Flow through porous media due to high pressure gradients. Applied Mathematics and Computation, 2008, 199, 748-759.	2.2	39
130	Nonlinear elasticity with limiting small strain for cracks subject to non-penetration. Mathematics and Mechanics of Solids, 2017, 22, 1334-1346.	2.4	39
131	Lubrication With Binary Mixtures: Bubbly Oil. Journal of Tribology, 1993, 115, 253-260.	1.9	37
132	On the fully developed flow of a dense particulate mixture in a pipe. Powder Technology, 1999, 104, 258-268.	4.2	37
133	A review of mathematical models for the flow of traffic and some recent results. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69, 950-970.	1.1	37
134	On Maxwell fluids with relaxation time and viscosity depending on the pressure. International Journal of Non-Linear Mechanics, 2011, 46, 819-827.	2.6	37
135	A new class of quasi-linear models for describing the nonlinear viscoelastic response of materials. Acta Mechanica, 2013, 224, 2169-2183.	2.1	37
136	On constitutive equations for electrorheological materials. Continuum Mechanics and Thermodynamics, 1995, 7, 1-22.	2.2	36
137	Secondary flows due to axial shearing of a third grade fluid between two eccentrically placed cylinders. International Journal of Engineering Science, 1999, 37, 411-429.	5.0	36
138	A numerical study of fluids with pressureâ€dependent viscosity flowing through a rigid porous medium. International Journal for Numerical Methods in Fluids, 2011, 67, 342-368.	1.6	36
139	On a variant of the Maxwell and Oldroyd-B models within the context of a thermodynamic basis. International Journal of Non-Linear Mechanics, 2015, 76, 42-47.	2.6	36
140	On Fully Developed Flows of Fluids with a Pressure Dependent Viscosity in a Pipe. Applications of Mathematics, 2005, 50, 341-353.	0.9	35
141	On Kelvin-Voigt model and its generalizations. Evolution Equations and Control Theory, 2012, 1, 17-42.	1.3	35
142	On the conditional stability of the rest state of a fluid of second grade in unbounded domains. Archive for Rational Mechanics and Analysis, 1990, 109, 173-182.	2.4	34
143	Steady flows of non-Newtonian fluids past a porous plate with suction or injection. International Journal for Numerical Methods in Fluids, 1993, 17, 927-941.	1.6	34
144	Chemorheological Relaxation, Residual Stress, and Permanent Set Arising in Radial Deformation of Elastomeric Hollow Spheres. Mathematics and Mechanics of Solids, 1996, 1, 267-299.	2.4	34

#	Article	IF	CITATIONS
145	On the modeling of inhomogeneous incompressible fluid-like bodies. Mechanics of Materials, 2006, 38, 233-242.	3.2	34
146	A promising approach for modeling biological fibers. Acta Mechanica, 2016, 227, 1609-1619.	2.1	34
147	On the Classification of Incompressible Fluids and a Mathematical Analysis of the Equations That Govern Their Motion. SIAM Journal on Mathematical Analysis, 2020, 52, 1232-1289.	1.9	34
148	A BOUNDARY VALUE PROBLEM IN GROUNDWATER MOTION ANALYSIS — COMPARISON OF PREDICTIONS BASED ON DARCY'S LAW AND THE CONTINUUM THEORY OF MIXTURES. Mathematical Models and Methods in Applied Sciences, 1993, 03, 231-248.	3.3	33
149	A mixture theory for heat-induced alterations in hydration and mechanical properties in soft tissues. International Journal of Engineering Science, 2001, 39, 1535-1556.	5.0	33
150	Pulsatile Flow of a Chemically-Reacting Nonlinear Fluid. Computers and Mathematics With Applications, 2006, 52, 1131-1144.	2.7	33
151	On a new class of electroelastic bodies. I. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120521.	2.1	33
152	Existence of solutions for the anti-plane stress for a new class of "strain-limiting―elastic bodies. Calculus of Variations and Partial Differential Equations, 2015, 54, 2115-2147.	1.7	32
153	Nonlinear Reynolds equation for hydrodynamic lubrication. Applied Mathematical Modelling, 2015, 39, 5299-5309.	4.2	32
154	Determination of pressure data from velocity data with a view toward its application in cardiovascular mechanics. Part 1. Theoretical considerations. International Journal of Engineering Science, 2016, 105, 108-127.	5.0	32
155	A thermodynamic framework for a mixture of two liquids. Nonlinear Analysis: Real World Applications, 2008, 9, 1649-1660.	1.7	31
156	A numerical study of elastic bodies that are described by constitutive equations that exhibit limited strains. International Journal of Solids and Structures, 2014, 51, 875-885.	2.7	31
157	Inelastic response of solids described by implicit constitutive relations with nonlinear small strain elastic response. International Journal of Plasticity, 2015, 71, 1-9.	8.8	31
158	Stability analysis of the Rayleigh–Bénard convection for a fluid with temperature and pressure dependent viscosity. Zeitschrift Fur Angewandte Mathematik Und Physik, 2009, 60, 739-755.	1.4	30
159	Shear flows of a new class of power-law fluids. Applications of Mathematics, 2013, 58, 153-177.	0.9	30
160	Unsteady motions of a new class of elastic solids. Wave Motion, 2014, 51, 833-843.	2.0	30
161	A thermodynamically consistent constitutive equation for describing the response exhibited by several alloys and the study of a meaningful physical problem. International Journal of Solids and Structures, 2017, 108, 1-10.	2.7	30
162	On the effect of dissipation in shape-memory alloys. Nonlinear Analysis: Real World Applications, 2003, 4, 581-597.	1.7	29

#	Article	IF	CITATIONS
163	Study of a variant of Stokes' first and second problems for fluids with pressure dependent viscosities. International Journal of Engineering Science, 2009, 47, 1357-1366.	5.0	29
164	A Thermomechanical Framework for the Transition of a Viscoelastic Liquid to a Viscoelastic Solid. Mathematics and Mechanics of Solids, 2004, 9, 37-59.	2.4	29
165	Lubrication With Binary Mixtures: Liquid-Liquid Emulsion in an EHL Conjunction. Journal of Tribology, 1993, 115, 515-522.	1.9	28
166	Boundary layers in finite thermoelasticity. Journal of Elasticity, 1995, 36, 271-301.	1.9	28
167	An implicit thermomechanical theory based on a Gibbs potential formulation for describing the response of thermoviscoelastic solids. International Journal of Engineering Science, 2013, 70, 15-28.	5.0	28
168	A thermodynamic framework for additive manufacturing, using amorphous polymers, capable of predicting residual stress, warpage and shrinkage. International Journal of Engineering Science, 2021, 159, 103412.	5.0	28
169	A class of exact solutions to the Navier-Stokes equations. International Journal of Engineering Science, 1984, 22, 451-455.	5.0	27
170	On an inhomogeneous deformation of a generalized Neo-Hookean material. Journal of Elasticity, 1992, 28, 165-184.	1.9	27
171	The mechanics and mathematics of the effect of pressure on the shear modulus of elastomers. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 3859-3874.	2.1	27
172	On the Modeling of the Synovial Fluid. Advances in Tribology, 2010, 2010, 1-12.	2.1	27
173	A nonlinear viscoelastic constitutive model for polymeric solids based on multiple natural configuration theory. International Journal of Solids and Structures, 2016, 100-101, 95-110.	2.7	27
174	Finite element modelling of field compaction of hot mix asphalt. Part II: Applications. International Journal of Pavement Engineering, 2016, 17, 24-38.	4.4	27
175	A continuum model for the anisotropic creep of single crystal nickel-based superalloys. Acta Materialia, 2006, 54, 1487-1500.	7.9	26
176	A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot. Theoretical and Computational Fluid Dynamics, 2006, 20, 239-250.	2.2	26
177	A note on the flow through porous solids at high pressures. Computers and Mathematics With Applications, 2007, 53, 260-275.	2.7	26
178	A note on the classification of anisotropy of bodies defined by implicit constitutive relations. Mechanics Research Communications, 2015, 64, 38-41.	1.8	26
179	Combined extension and torsion of a swollen cylinder within the context of mixture theory. Acta Mechanica, 1989, 79, 81-95.	2.1	25
180	Multiplicity of solutions in von karman flows of viscoelastic fluids. Journal of Non-Newtonian Fluid Mechanics, 1990, 36, 1-25.	2.4	25

#	Article	IF	CITATIONS
181	Some inhomogeneous motions and deformations within the context of a non-linear elastic solid. International Journal of Engineering Science, 1992, 30, 919-938.	5.0	25
182	Flow of granular materials between rotating disks. Mechanics Research Communications, 1994, 21, 629-634.	1.8	25
183	On the Diffusion of Fluids Through Solids Undergoing Large Deformations. Mathematics and Mechanics of Solids, 2006, 11, 291-305.	2.4	25
184	Development of three dimensional constitutive theories based on lower dimensional experimental data. Applications of Mathematics, 2009, 54, 147-176.	0.9	25
185	On implicit constitutive relations for materials with fading memory. Journal of Non-Newtonian Fluid Mechanics, 2012, 181-182, 22-29.	2.4	25
186	Solutions of some boundary value problems for a new class of elastic bodies undergoing small strains. Comparison with the predictions of the classical theory of linearized elasticity: Part I. Problems with cylindrical symmetry. Acta Mechanica, 2015, 226, 1815-1838.	2.1	25
187	Implicit constitutive models with a thermodynamic basis: a study of stress concentration. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 191-208.	1.4	25
188	An implicit constitutive relation for describing the small strain response of porous elastic solids whose material moduli are dependent on the density. Mathematics and Mechanics of Solids, 2021, 26, 1138-1146.	2.4	25
189	Remarks on "a class of exact solutions to the equations of motion of a second grade fluidâ€. International Journal of Engineering Science, 1983, 21, 61-63.	5.0	24
190	Incompressible rate type fluids with pressure and shear-rate dependent material moduli. Nonlinear Analysis: Real World Applications, 2007, 8, 156-164.	1.7	24
191	On a new interpretation of the classical Maxwell model. Mechanics Research Communications, 2007, 34, 509-514.	1.8	24
192	A quasi-correspondence principle for Quasi-Linear viscoelastic solids. Mechanics of Time-Dependent Materials, 2008, 12, 1-14.	4.4	24
193	Fully developed flow of granular materials down a heated inclined plane. Acta Mechanica, 1994, 103, 63-78.	2.1	23
194	On Constitutive Equations For Anisotropic Nonlinearly Viscoelastic Solids. Mathematics and Mechanics of Solids, 2007, 12, 131-147.	2.4	23
195	The status of the K-BKZ model within the framework of materials with multiple natural configurations. Journal of Non-Newtonian Fluid Mechanics, 2007, 141, 79-84.	2.4	23
196	A systematic approximation for the equations governing convection–diffusion in a porous medium. Nonlinear Analysis: Real World Applications, 2010, 11, 2366-2375.	1.7	23
197	Unsteady flows of fluids with pressure dependent viscosity. Journal of Mathematical Analysis and Applications, 2013, 404, 362-372.	1.0	23
198	An implicit three-dimensional model for describing the inelastic response of solids undergoing finite deformation. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	23

#	Article	IF	CITATIONS
199	An experimental investigation of the flow of non-Newtonian fluids between rotating disks. Journal of Fluid Mechanics, 1988, 186, 243-256.	3.4	22
200	Lubrication With Emulsion in Cold Rolling. Journal of Tribology, 1993, 115, 523-531.	1.9	22
201	Mathematical Properties of the Solutions to the Equations Governing the Flow of Fluids with Pressure and Shear Rate Dependent Viscosities [*] *The contribution of J. MÃjlek to this work is a part of the research projects MSM 0021620839 and LC06052 financed by MSMT. J. MÃjlek thanks also the Czech Science Foundation, the project GACR 201/06/0321, for its support. K.R. Rajagopal thanks the National	0.1	22
202	A semi-inverse problem of flows of fluids with pressure-dependent viscosities. Inverse Problems in Science and Engineering, 2008, 16, 269-280.	1.2	22
203	On a New Class of Models in Elasticity. Mathematical and Computational Applications, 2010, 15, 506-528.	1.3	22
204	On a new class of electro-elastic bodies.Âll. Boundary value problems. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20130106.	2.1	22
205	A nonlinear integral model for describing responses of viscoelastic solids. International Journal of Solids and Structures, 2015, 58, 146-156.	2.7	22
206	Finite element modelling of field compaction of hot mix asphalt. Part I: Theory. International Journal of Pavement Engineering, 2016, 17, 13-23.	4.4	22
207	On the states of stress and strain adjacent to a crack in a strain-limiting viscoelastic body. Mathematics and Mechanics of Solids, 2018, 23, 433-444.	2.4	22
208	DETERMINING MATERIAL PROPERTIES OF NATURAL RUBBER USING FEWER MATERIAL MODULI IN VIRTUE OF A NOVEL CONSTITUTIVE APPROACH FOR ELASTIC BODIES. Rubber Chemistry and Technology, 2018, 91, 375-389.	1.2	22
209	Gibbs free energy based representation formula within the context of implicit constitutive relations for elastic solids. International Journal of Non-Linear Mechanics, 2020, 121, 103433.	2.6	22
210	On constitutive equations for branching of response with selectivity. International Journal of Non-Linear Mechanics, 1980, 15, 83-91.	2.6	21
211	Changes in material symmetry associated with deformation: Uniaxial extension. International Journal of Engineering Science, 1988, 26, 1307-1318.	5.0	21
212	Modeling electro-rheological materials through mixture theory. International Journal of Engineering Science, 1994, 32, 481-500.	5.0	21
213	On some unresolved issues in non-linear fluid dynamics. Russian Mathematical Surveys, 2003, 58, 319-330.	0.6	21
214	On the modeling of quiescent crystallization of polymer melts. Polymer Engineering and Science, 2004, 44, 123-130.	3.1	21
215	On the propagation of waves through porous solids. International Journal of Non-Linear Mechanics, 2005, 40, 373-380.	2.6	21
216	Implicit constitutive relations for nonlinear magnetoelastic bodies. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20140959.	2.1	21

#	Article	IF	CITATIONS
217	Representations for implicit constitutive relations describing non-dissipative response of isotropic materials. Zeitschrift Fur Angewandte Mathematik Und Physik, 2017, 68, 1.	1.4	21
218	Shear induced redistribution of fluid within a uniformly swollen nonlinear elastic cylinder. International Journal of Engineering Science, 1992, 30, 1583-1595.	5.0	20
219	Slow motion of a body in a fluid of second grade. International Journal of Engineering Science, 1997, 35, 33-54.	5.0	20
220	A note on viscoelastic materials that can age. International Journal of Non-Linear Mechanics, 2004, 39, 1547-1554.	2.6	20
221	Inflation, Extension, Torsion and Shearing of an Inhomogeneous Compressible Elastic Right Circular Annular Cylinder. Mathematics and Mechanics of Solids, 2005, 10, 603-650.	2.4	20
222	A model of the relay valve used in an air brake system. Nonlinear Analysis: Hybrid Systems, 2007, 1, 430-442.	3.5	20
223	A thermodynamically consistent model for viscoelastic polymers undergoing microstructural changes. International Journal of Engineering Science, 2019, 142, 106-124.	5.0	20
224	A Review of Automatic Vehicle Following Systems. Journal of the Indian Institute of Science, 2019, 99, 567-587.	1.9	20
225	Flow of K-BKZ fluids between parallel plates rotating about distinct axes: shear thinning and inertial effects. Journal of Non-Newtonian Fluid Mechanics, 1987, 22, 289-307.	2.4	19
226	An experimental investigation of the flow of dilute polymer solutions through corrugated channels. Journal of Non-Newtonian Fluid Mechanics, 1995, 58, 243-277.	2.4	19
227	ON NECESSARY AND SUFFICIENT CONDITIONS FOR TURBULENT SECONDARY FLOWS IN A STRAIGHT TUBE. Mathematical Models and Methods in Applied Sciences, 1995, 05, 111-123.	3.3	19
228	A phenomenological model of twinning based on dual reference structures. Acta Materialia, 1998, 46, 1235-1248.	7.9	19
229	LIMIT OF A COLLECTION OF DYNAMICAL SYSTEMS: AN APPLICATION TO MODELING THE FLOW OF TRAFFIC. Mathematical Models and Methods in Applied Sciences, 2002, 12, 1381-1399.	3.3	19
230	On the development of fluid models of the differential type within a new thermodynamic framework. Mechanics Research Communications, 2008, 35, 483-489.	1.8	19
231	A dynamical systems approach based on averaging to model the macroscopic flow of freeway traffic. Nonlinear Analysis: Hybrid Systems, 2008, 2, 590-612.	3.5	19
232	A review of the mathematical models for traffic flow. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2009, 1, 53-68.	1.1	19
233	Simulation of the Three-Dimensional Flow of Blood Using a Shear-Thinning Viscoelastic Fluid Model. Mathematical Modelling of Natural Phenomena, 2011, 6, 1-24.	2.4	19
234	Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Mathematics and Mechanics of Solids, 2012, 17, 131-164.	2.4	19

#	Article	IF	CITATIONS
235	On the inhomogeneous shearing of a new class of elastic bodies. Mathematics and Mechanics of Solids, 2012, 17, 762-778.	2.4	19
236	A Short Review of Advances in the Modelling of Blood Rheology and Clot Formation. Fluids, 2017, 2, 35.	1.7	19
237	A nonlinear model for describing the mechanical behaviour of rock. Acta Mechanica, 2018, 229, 251-272.	2.1	19
238	Derivation of the Variants of the Burgers Model Using a Thermodynamic Approach and Appealing to the Concept of Evolving Natural Configurations. Fluids, 2018, 3, 69.	1.7	19
239	FLOW OF A FLUID THROUGH A POROUS SOLID DUE TO HIGH PRESSURE GRADIENTS. Journal of Porous Media, 2013, 16, 193-203.	1.9	19
240	Flow of viscoelastic fluids between plates rotating about distinct axes. Rheologica Acta, 1986, 25, 459-467.	2.4	18
241	Flow of a Fluid of the Differential Type in a Journal Bearing. Journal of Tribology, 1987, 109, 100-107.	1.9	18
242	Non-homogeneous deformations in a wedge of Mooney-Rivlin material. International Journal of Non-Linear Mechanics, 1990, 25, 375-387.	2.6	18
243	Diffusion through non-linear orthotropic cylinders. International Journal of Engineering Science, 1991, 29, 419-445.	5.0	18
244	Inhomogeneous deformations of non-linearly elastic wedges. International Journal of Solids and Structures, 1992, 29, 735-744.	2.7	18
245	On The Role of the Eshelby Energy-Momentum Tensor in Materials with Multiple Natural Configurations. Mathematics and Mechanics of Solids, 2005, 10, 3-24.	2.4	18
246	On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph. , 2012, , 23-51.		18
247	A model for the thermo-oxidative degradation of polyimides. Mechanics of Time-Dependent Materials, 2012, 16, 329-342.	4.4	18
248	A note on novel generalizations of the Maxwell fluid model. International Journal of Non-Linear Mechanics, 2012, 47, 72-76.	2.6	18
249	A note on some new classes of constitutive relations for elastic bodies. IMA Journal of Applied Mathematics, 2015, 80, 1287-1299.	1.6	18
250	A thermodynamically compatible model for describing the response of asphalt binders. International Journal of Pavement Engineering, 2015, 16, 297-314.	4.4	18
251	A Novel Approach to the Description of Constitutive Relations. Frontiers in Materials, 2016, 3, .	2.4	18
252	Title is missing!. Journal of Elasticity, 1997, 48, 103-123.	1.9	17

#	Article	IF	CITATIONS
253	Modeling of the microwave drying process of aqueous dielectrics. Zeitschrift Fur Angewandte Mathematik Und Physik, 2002, 53, 923-948.	1.4	17
254	Response of Anisotropic Nonlinearly Viscoelastic Solids. Mathematics and Mechanics of Solids, 2009, 14, 490-501.	2.4	17
255	Compressible generalized Newtonian fluids. Zeitschrift Fur Angewandte Mathematik Und Physik, 2010, 61, 1097-1110.	1.4	17
256	Applications of viscoelastic clock models in biomechanics. Acta Mechanica, 2010, 213, 255-266.	2.1	17
257	On the development and generalizations of Allen–Cahn and Stefan equations within a thermodynamic framework. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 759-776.	1.4	17
258	Nonlinear viscoelastic response of asphalt binders: An experimental study of the relaxation of torque and normal force in torsion. Mechanics Research Communications, 2012, 43, 66-74.	1.8	17
259	A thermodynamic framework to model thixotropic materials. International Journal of Non-Linear Mechanics, 2013, 55, 48-54.	2.6	17
260	Flow of a Burgers fluid due to time varying loads on deforming boundaries. Journal of Non-Newtonian Fluid Mechanics, 2014, 210, 66-77.	2.4	17
261	Pulsating poiseuille flow of a non-newtonian fluid. Mathematics and Computers in Simulation, 1984, 26, 276-288.	4.4	16
262	Non-axisymmetric flow of a viscoelastic fluid between rotating disks. Journal of Non-Newtonian Fluid Mechanics, 1987, 23, 423-434.	2.4	16
263	Deformation twinning during impact - numerical calculations using a constitutive theory based on multiple natural configurations. Computational Mechanics, 1998, 21, 20-27.	4.0	16
264	Pressure control scheme for air brakes in commercial vehicles. IEE Proceedings - Intelligent Transport Systems, 2006, 153, 21.	0.9	16
265	Thermomechanical Framework for the Constitutive Modeling of Asphalt Concrete. International Journal of Geomechanics, 2006, 6, 36-45.	2.7	16
266	A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity. Acta Mechanica, 2009, 205, 105-119.	2.1	16
267	Modelling sand–asphalt mixtures within a thermodynamic framework: theory and application to to to to to to solve and the toto of toto o	4.4	16
268	Role of pressure dependent viscosity in measurements with falling cylinder viscometer. International Journal of Non-Linear Mechanics, 2012, 47, 743-750.	2.6	16
269	Circularly polarized wave propagation in a class of bodies defined by a new class of implicit constitutive relations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2014, 65, 1003-1010.	1.4	16
270	On the determination of semi-inverse solutions of nonlinear Cauchy elasticity: The not so simple case of anti-plane shear. International Journal of Engineering Science, 2015, 88, 3-14.	5.0	16

#	Article	IF	CITATIONS
271	Crack problem within the context of implicitly constituted quasi-linear viscoelasticity. Mathematical Models and Methods in Applied Sciences, 2019, 29, 355-372.	3.3	16
272	A Thermohydrodynamic Analysis of Journal Bearings Lubricated by a Non-Newtonian Fluid. Journal of Tribology, 1988, 110, 414-420.	1.9	15
273	Diffusion of fluids through transversely isotropic solids. Acta Mechanica, 1990, 82, 61-98.	2.1	15
274	Flow of an Oldroyd-B fluid between intersecting planes. Journal of Non-Newtonian Fluid Mechanics, 1993, 46, 49-67.	2.4	15
275	Flow of granular materials in a vertical channel under the action of gravity. Powder Technology, 1994, 81, 65-73.	4.2	15
276	A RHEOMETER FOR MEASURING THE PROPERTIES OF GRANULAR MATERIALS. Particulate Science and Technology, 2000, 18, 39-55.	2.1	15
277	On the dynamics of non-linear viscoelastic solids with material moduli that depend upon pressure. International Journal of Engineering Science, 2007, 45, 41-54.	5.0	15
278	Quasi-linear viscoelastic modeling of light-activated shape memory polymers. Journal of Intelligent Material Systems and Structures, 2017, 28, 2500-2515.	2.5	15
279	The State of Stress and Strain Adjacent to Notches in a New Class of Nonlinear Elastic Bodies. Journal of Elasticity, 2019, 135, 375-397.	1.9	15
280	The Boussinesq flat-punch indentation problem within the context of linearized viscoelasticity. International Journal of Engineering Science, 2020, 151, 103272.	5.0	15
281	A Review of Implicit Constitutive Theories to Describe the Response of Elastic Bodies. Solid Mechanics and Its Applications, 2020, , 187-230.	0.2	15
282	Unsteady Exact Solution for Flows of Fluids with Pressure-Dependent Viscosities. Proceedings of the Royal Irish Academy, 2006, 106, 115-130.	0.2	15
283	Non-uniform extension of a non-linear viscoelastic slab. International Journal of Solids and Structures, 1992, 29, 911-930.	2.7	14
284	Finite Thermoelasticity of Constrained Elastomers Subject to Biaxial Loading. Journal of Elasticity, 1997, 49, 189-200.	1.9	14
285	Measurements Related to the Flow of Granular Material in a Torsional Rheometer. Particulate Science and Technology, 2001, 19, 175-186.	2.1	14
286	Degradation of an Elastic Composite Cylinder due to the Diffusion of a Fluid. Journal of Composite Materials, 2009, 43, 1225-1249.	2.4	14
287	Jump conditions in stress relaxation and creep experiments of Burgers type fluids: a study in the application of Colombeau algebra of generalized functions. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 707-740.	1.4	14
288	Modeling the non-linear viscoelastic response of high temperature polyimides. Mechanics of Materials, 2011, 43, 54-61.	3.2	14

#	Article	IF	CITATIONS
289	Modeling the response of light-activated shape memory polymers. Mathematics and Mechanics of Solids, 2017, 22, 1116-1143.	2.4	14
290	A decomposition of Laplace stretch with applications in inelasticity. Acta Mechanica, 2019, 230, 3423-3429.	2.1	14
291	On a generalized nonlinearK-? model for turbulence that models relaxation effects. Theoretical and Computational Fluid Dynamics, 1996, 8, 275-288.	2.2	13
292	On Burgers fluids. Mathematical Methods in the Applied Sciences, 2006, 29, 2133-2147.	2.3	13
293	DISCRETIZATION OF AN UNSTEADY FLOW THROUGH A POROUS SOLID MODELED BY DARCY'S EQUATIONS. Mathematical Models and Methods in Applied Sciences, 2008, 18, 2087-2123.	3.3	13
294	On modeling the response of the synovial fluid: Unsteady flow of a shear-thinning, chemically-reacting fluid mixture. Computers and Mathematics With Applications, 2010, 60, 2333-2349.	2.7	13
295	Spherical inflation of a class of compressible elastic bodies. International Journal of Non-Linear Mechanics, 2011, 46, 1167-1176.	2.6	13
296	Revisiting total, matric, and osmotic suction in partially saturated geomaterials. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 373-394.	1.4	13
297	On the modeling of the non-linear response of soft elastic bodies. International Journal of Non-Linear Mechanics, 2013, 56, 20-24.	2.6	13
298	A model for the flow of rock glaciers. International Journal of Non-Linear Mechanics, 2013, 48, 59-64.	2.6	13
299	ON MODELS FOR VISCOELASTIC MATERIALS THAT ARE MECHANICALLY INCOMPRESSIBLE AND THERMALLY COMPRESSIBLE OR EXPANSIBLE AND THEIR OBERBECK–BOUSSINESQ TYPE APPROXIMATIONS. Mathematical Models and Methods in Applied Sciences, 2013, 23, 1761-1794.	3.3	13
300	Nonlinear Viscoelastic Model for Describing the Response of Asphalt Binders within the Context of a Gibbs-Potential–Based Thermodynamic Framework. Journal of Engineering Mechanics - ASCE, 2015, 141, 04014116.	2.9	13
301	Solutions of some boundary value problems for a new class of elastic bodies. Comparison with predictions of the classical theory of linearized elasticity: Part II. A problem with spherical symmetry. Acta Mechanica, 2015, 226, 1807-1813.	2.1	13
302	On the anti-plane state of stress near pointed or sharply radiused notches in strain limiting elastic materials: closed form solution and implications for fracture assessements. International Journal of Fracture, 2016, 199, 169-184.	2.2	13
303	Stabilized mixed threeâ€field formulation for a generalized incompressible Oldroydâ€B model. International Journal for Numerical Methods in Fluids, 2017, 83, 704-734.	1.6	13
304	Reversal of flow of a non-Newtonian fluid in an expanding channel. International Journal of Non-Linear Mechanics, 2018, 101, 44-55.	2.6	13
305	Well-posedness of the problem of non-penetrating cracks in elastic bodies whose material moduli depend on the mean normal stress. International Journal of Engineering Science, 2019, 136, 17-25.	5.0	13
306	Stress concentration due to the biâ€axial deformation of a plate of a porous elastic body with a hole. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2021, 101, e202100103.	1.6	13

#	Article	IF	CITATIONS
307	Modeling of the Aorta: Complexities and Inadequacies. Aorta, 2020, 08, 091-097.	0.5	13
308	On a Class of Deformations of a Material with Nonconvex Stored Energy Functionâ^—. Journal of Structural Mechanics, 1984, 12, 471-482.	0.6	12
309	Non-similar flow of a non-newtonian fluid past a wedge. International Journal of Engineering Science, 1993, 31, 637-647.	5.0	12
310	Inhomogeneous deformations in finite thermo-elasticity. International Journal of Engineering Science, 1996, 34, 1005-1017.	5.0	12
311	A continuum theory for the thermomechanics of solidification. International Journal of Non-Linear Mechanics, 1997, 32, 3-20.	2.6	12
312	A constitutive equation for non-linear electro-active solids. Acta Mechanica, 1999, 135, 219-228.	2.1	12
313	A note on a correspondence principle in nonlinear viscoelastic materials. International Journal of Fracture, 2005, 131, L47-L52.	2.2	12
314	On the Deformation of the Circumflex Coronary Artery During Inflation Tests at Constant Length. Experimental Mechanics, 2006, 46, 647-656.	2.0	12
315	Further remarks on simple flows of fluids with pressure-dependent viscosities. Nonlinear Analysis: Real World Applications, 2011, 12, 394-402.	1.7	12
316	Extension, inflation and circumferential shearing of an annular cylinder for a class of compressible elastic bodies. Mathematics and Mechanics of Solids, 2012, 17, 473-499.	2.4	12
317	Determination of pressure data from velocity data with a view towards its application in cardiovascular mechanics. Part 2. A study of aortic valve stenosis. International Journal of Engineering Science, 2017, 114, 1-15.	5.0	12
318	Some remarks and clarifications concerning the restrictions placed on thermodynamic processes. International Journal of Engineering Science, 2019, 140, 26-34.	5.0	12
319	Stress concentration due to the presence of a hole within the context of elastic bodies. Material Design and Processing Communications, 2021, 3, e219.	0.9	12
320	Channel flows of shear-thinning fluids that mimic the mechanical response of a Bingham fluid. International Journal of Non-Linear Mechanics, 2022, 138, 103847.	2.6	12
321	Finite circumferential shearing of nonlinear solids in the context of thennoelasticity. IMA Journal of Applied Mathematics, 1994, 53, 111-125.	1.6	11
322	On the existence and uniqueness of flows multipolar fluids of grade 3 and their stability. International Journal of Engineering Science, 1999, 37, 75-96.	5.0	11
323	Inhomogeneous Non-Unidirectional Deformations of a Wedge of a Non-Linearly Elastic Material. Archive for Rational Mechanics and Analysis, 1999, 147, 179-196.	2.4	11
324	Load maximum behavior in the inflation of hollow spheres of incompressible material with strain-dependent damage. Quarterly of Applied Mathematics, 2001, 59, 193-223.	0.7	11

#	Article	IF	CITATIONS
325	A Comparison of the Response of Isotropic Inhomogeneous Elastic Cylindrical and Spherical Shells and Their Homogenized Counterparts. Journal of Elasticity, 2003, 71, 205-234.	1.9	11
326	A Thermodynamic Framework for Describing Solidification of Polymer Melts. Journal of Engineering Materials and Technology, Transactions of the ASME, 2006, 128, 55-63.	1.4	11
327	Homogenization of a generalization of Brinkman's equation for the flow of a fluid with pressure dependent viscosity through a rigid porous solid. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2011, 91, 630-648.	1.6	11
328	Unsteady flows of a class of novel generalizations of the Navier–Stokes fluid. Applied Mathematics and Computation, 2013, 219, 9935-9946.	2.2	11
329	On the nonlinear viscoelastic deformations of composites with prestressed inclusions. Composite Structures, 2016, 149, 279-291.	5.8	11
330	On the flow of fluids through inhomogeneous porous media due to high pressure gradients. International Journal of Non-Linear Mechanics, 2016, 78, 112-120.	2.6	11
331	Density-driven damage mechanics (D3-M) model for concrete I: mechanical damage. International Journal of Pavement Engineering, 2022, 23, 1161-1174.	4.4	11
332	Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta. Annals of Biomedical Engineering, 2020, 48, 1751-1767.	2.5	11
333	A new type of constitutive equation for nonlinear elastic bodies. Fitting with experimental data for rubber-like materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	11
334	Pure bending of an elastic prismatic beam made of a material with density-dependent material parameters. Mathematics and Mechanics of Solids, 2022, 27, 1546-1558.	2.4	11
335	Flow of a non-Newtonian fluid between eccentric rotating cylinders. International Journal of Engineering Science, 1987, 25, 1029-1047.	5.0	10
336	A numerical study of the flow of a K—BKZ fluid between plates rotating about non-coincident axes. Journal of Non-Newtonian Fluid Mechanics, 1991, 38, 289-312.	2.4	10
337	On a class of elastodynamic motions in a neo-Hookean elastic solid. International Journal of Non-Linear Mechanics, 1998, 33, 397-405.	2.6	10
338	Aggregation of a class of interconnected, linear dynamical systems. Systems and Control Letters, 2001, 43, 387-401.	2.3	10
339	Simulation of the Film Blowing Process for Semicrystalline Polymers. Mechanics of Advanced Materials and Structures, 2005, 12, 129-146.	2.6	10
340	On the Bending of Shape Memory Wires. Mechanics of Advanced Materials and Structures, 2005, 12, 319-330.	2.6	10
341	Couette flow with frictional heating in a fluid with temperature and pressure dependent viscosity. International Journal of Heat and Mass Transfer, 2011, 54, 783-789.	4.8	10
342	A thermodynamically compatible rate type fluid to describe the response of asphalt. Mathematics and Computers in Simulation, 2012, 82, 1853-1873.	4.4	10

#	Article	IF	CITATIONS
343	Nonlinear viscoelastic response of asphalt binders in transient tests. Road Materials and Pavement Design, 2012, 13, 191-202.	4.0	10
344	Algorithms for synthesizing mechanical systems with maximal natural frequencies. Nonlinear Analysis: Real World Applications, 2012, 13, 2154-2162.	1.7	10
345	On the approximation of isochoric motions of fluids under different flow conditions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471, 20150159.	2.1	10
346	Modelling the nonlinear viscoelastic response of asphalt binders. International Journal of Pavement Engineering, 2016, 17, 123-132.	4.4	10
347	On the consequences of the constraint of incompressibility with regard to a new class of constitutive relations for elastic bodies: small displacement gradient approximation. Continuum Mechanics and Thermodynamics, 2016, 28, 293-303.	2.2	10
348	A thermodynamically compatible model for describing asphalt binders: solutions of problems. International Journal of Pavement Engineering, 2016, 17, 550-564.	4.4	10
349	Implicit equations for thermoelastic bodies. International Journal of Non-Linear Mechanics, 2017, 92, 144-152.	2.6	10
350	Simulation of inextensible elasto-plastic beams based on an implicit rate type model. International Journal of Non-Linear Mechanics, 2018, 99, 165-172.	2.6	10
351	Thin-Film Flow of an Inhomogeneous Fluid with Density-Dependent Viscosity. Fluids, 2019, 4, 30.	1.7	10
352	On an Implicit Model Linear in Both Stress and Strain to Describe the Response of Porous Solids. Journal of Elasticity, 2021, 144, 107-118.	1.9	10
353	Jeffery–Hamel flow of a shear-thinning fluid that mimics the response of viscoplastic materials. International Journal of Non-Linear Mechanics, 2022, 144, 104084.	2.6	10
354	A note on the temperature dependence of the normal stress moduli. International Journal of Engineering Science, 1981, 19, 237-241.	5.0	9
355	On the existence of a manifold for temperature. Archive for Rational Mechanics and Analysis, 1983, 81, 317-332.	2.4	9
356	A plane nonlinear shear for an elastic layer with a nonconvex stored energy function. International Journal of Solids and Structures, 1986, 22, 1129-1135.	2.7	9
357	Secondary deformation due to axial shearing of a cylinder of non-circular cross-section. International Journal of Engineering Science, 1992, 30, 1247-1256.	5.0	9
358	On the Form for the Plastic Velocity Gradient Lp in Crystal Plasticity. Mathematics and Mechanics of Solids, 2001, 6, 471-480.	2.4	9
359	Effect of Nonlinear Stiffness on the Motion of a Flexible Pendulum. Nonlinear Dynamics, 2002, 27, 1-18.	5.2	9
360	Modelling constant displacement rate experiments of asphalt concrete using a thermodynamic framework. International Journal of Pavement Engineering, 2005, 6, 241-256.	4.4	9

#	Article	IF	CITATIONS
361	Flow of a fluid with pressure dependent viscosity due to a boundary that is being stretched. Applied Mathematics and Computation, 2006, 173, 50-68.	2.2	9
362	Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling ν(p, Â) → + â^ž AS p → + â^ž. Czechoslovak Mathematical Journal, 2009, 59, 503-528.	0.3	9
363	A generalized framework for studying the vibrations of lumped parameter systems. Mechanics Research Communications, 2010, 37, 463-466.	1.8	9
364	On the cavalier attitude towards referencing. International Journal of Engineering Science, 2012, 51, 338-343.	5.0	9
365	Wave propagation due to impact through layered polymer composites. Composite Structures, 2014, 115, 1-11.	5.8	9
366	On the natural structure of thermodynamic potentials and fluxes in the theory of chemically non-reacting binary mixtures. Acta Mechanica, 2014, 225, 3157-3186.	2.1	9
367	Mechanical behaviour of asphalt binders at high temperatures and specification for rutting. International Journal of Pavement Engineering, 2017, 18, 916-927.	4.4	9
368	Contacting crack faces within the context of bodies exhibiting limiting strains. JSIAM Letters, 2017, 9, 61-64.	0.5	9
369	Density driven damage mechanics (D3-M) model for concrete II: fully coupled chemo-mechanical damage. International Journal of Pavement Engineering, 2022, 23, 1175-1185.	4.4	9
370	Asymptotic beam theory for non-classical elastic materials. International Journal of Mechanical Sciences, 2021, 189, 105950.	6.7	9
371	On lower-dimensional models in lubrication, Part B: Derivation of a Reynolds type of equation for incompressible piezo-viscous fluids. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1703-1718.	1.8	9
372	ON BOUNDARY CONDITIONS IN MIXTURE THEORY. Series on Advances in Mathematics for Applied Sciences, 1995, , 130-149.	0.1	9
373	A note on the drag for fluids of grade three. International Journal of Non-Linear Mechanics, 1979, 14, 361-364.	2.6	8
374	A universal relation in torsion for a mixture of solid and fluid. Journal of Elasticity, 1985, 15, 155-165.	1.9	8
375	A note on an unsteady viscometric flow. International Journal of Engineering Science, 1988, 26, 649-652.	5.0	8
376	UNSTEADY DIFFUSION OF FLUIDS THROUGH SOLIDS UNDERGOING LARGE DEFORMATIONS. Mathematical Models and Methods in Applied Sciences, 1991, 01, 311-346.	3.3	8
377	Wave propagation in elastic solids infused with fluids. International Journal of Engineering Science, 1992, 30, 1209-1232.	5.0	8
378	Deformations of Nonlinear Elastic Solids in Unbounded Domains. Mathematics and Mechanics of Solids, 1996, 1, 463-472.	2.4	8

#	Article	IF	CITATIONS
379	Homogenization and Global Responses of Inhomogeneous Spherical Nonlinear Elastic Shells. Journal of Elasticity, 2006, 82, 193-214.	1.9	8
380	MODELING MATERIALS WITH A STRETCHING THRESHOLD. Mathematical Models and Methods in Applied Sciences, 2007, 17, 1799-1847.	3.3	8
381	Characterization of the non-linear response of asphalt mixtures using a torsional rheometer. Mechanics Research Communications, 2007, 34, 432-443.	1.8	8
382	On the response of non-dissipative solids. Communications in Nonlinear Science and Numerical Simulation, 2008, 13, 1089-1100.	3.3	8
383	On the Modeling of the Viscoelastic Response of Embryonic Tissues. Mathematics and Mechanics of Solids, 2008, 13, 81-91.	2.4	8
384	Changes in the response of viscoelastic solids to changes in their internal structure. Acta Mechanica, 2011, 217, 297-316.	2.1	8
385	Exact, approximate and numerical solutions for a variant of Stokes× ³ first problem for a new class of non-linear fluids. International Journal of Non-Linear Mechanics, 2015, 77, 41-50.	2.6	8
386	On the response of physical systems governed by non-linear ordinary differential equations to step input. International Journal of Non-Linear Mechanics, 2016, 81, 207-221.	2.6	8
387	Mixture model for thermo-chemo-mechanical processes in fluid-infused solids. International Journal of Engineering Science, 2022, 174, 103576.	5.0	8
388	On necessary conditions for the secondary flow of non-Newtonian fluids in straight tubes. International Journal of Engineering Science, 1994, 32, 1277-1281.	5.0	7
389	A linearized theory for materials undergoing microstructural change. ARI Bulletin of the Istanbul Technical University, 1998, 51, 160-168.	0.2	7
390	Remarks on large eddy simulation. Communications in Nonlinear Science and Numerical Simulation, 2000, 5, 85-90.	3.3	7
391	The application of ideas associated with materials with memory to modeling the inelastic behavior of solid bodies. International Journal of Plasticity, 2001, 17, 1087-1117.	8.8	7
392	Normal stress and stress relaxation data for sand asphalt undergoing torsional flow. Mechanics Research Communications, 2005, 32, 43-52.	1.8	7
393	Information flow and its relation to the stability of the motion of vehicles in a rigid formation. , 0, , .		7
394	Stability analysis of Rayleigh–Bénard convection in a porous medium. Zeitschrift Fur Angewandte Mathematik Und Physik, 2011, 62, 149-160.	1.4	7
395	Equilibrium of partially dried porous media influenced by dissolved species and the development of new interfaces. International Journal of Engineering Science, 2011, 49, 711-725.	5.0	7
396	Study of a new class of nonlinear inextensible elastic bodies. Zeitschrift Fur Angewandte Mathematik Und Physik, 2015, 66, 3663-3677.	1.4	7

#	Article	IF	CITATIONS
397	On the use of compatibility conditions for the strain in linear and non-linear theories of mechanics. Mathematics and Mechanics of Solids, 2015, 20, 614-618.	2.4	7
398	On a possible methodology for identifying the initiation of damage of a class of polymeric materials. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472, 20160231.	2.1	7
399	Wave patterns in a nonclassic nonlinearly-elastic bar under Riemann data. International Journal of Non-Linear Mechanics, 2017, 91, 76-85.	2.6	7
400	An adaptive finite element method for the inequality-constrained Reynolds equation. Computer Methods in Applied Mechanics and Engineering, 2018, 336, 156-170.	6.6	7
401	On lower-dimensional models in lubrication, Part A: Common misinterpretations and incorrect usage of the Reynolds equation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 1692-1702.	1.8	7
402	Lagrange multiplier approach to unilateral indentation problems: Well-posedness and application to linearized viscoelasticity with non-invertible constitutive response. Mathematical Models and Methods in Applied Sciences, 2021, 31, 649-674.	3.3	7
403	Inflation of residually stressed Fung-type membrane models of arteries. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104699.	3.1	7
404	A thermomechanical and photochemical description of the phase change process in roll-to-roll nanoimprinting lithography. International Journal of Engineering Science, 2021, 169, 103564.	5.0	7
405	Stress concentration due to an elliptic hole in a porous elastic plate. Mathematics and Mechanics of Solids, 2023, 28, 854-869.	2.4	7
406	A BOUNDARY INTEGRAL EQUATION METHOD FOR THE STUDY OF SOME LAMINAR FORCED CONVECTION PROBLEMS. Numerical Heat Transfer, 1985, 8, 485-496.	0.5	6
407	Diffusion of a fluid through an anisotropic thick spherical shell. Acta Mechanica, 1990, 85, 79-97.	2.1	6
408	Conditions of compatibility for the solid-liquid interface. Quarterly of Applied Mathematics, 1997, 55, 401-420.	0.7	6
409	Modeling of the response of elastic plastic materials treated as a mixture of hard and soft regions. Zeitschrift Fur Angewandte Mathematik Und Physik, 2004, 55, 500-518.	1.4	6
410	Some issues in constitutive modeling. Communications in Nonlinear Science and Numerical Simulation, 2004, 9, 305-312.	3.3	6
411	Development of a model for an air brake system with leaks. , 2009, , .		6
412	Remarks on The Use and Misuse of The Semi-Inverse Method in The Nonlinear Theory of Elasticity. Quarterly Journal of Mechanics and Applied Mathematics, 2009, 62, 451-464.	1.3	6
413	Unsteady motions of degrading or aging linearized elastic solids. International Journal of Non-Linear Mechanics, 2009, 44, 478-485.	2.6	6
414	On the vibrations of lumped parameter systems governed by differential-algebraic equations. Journal of the Franklin Institute, 2010, 347, 87-101.	3.4	6

#	Article	IF	CITATIONS
415	Synthesizing robust communication networks for UAVs. , 2012, , .		6
416	Mechanical oscillators described by a system of differential-algebraic equations. Applications of Mathematics, 2012, 57, 129-142.	0.9	6
417	Flow of an electrorheological fluid between eccentric rotating cylinders. Theoretical and Computational Fluid Dynamics, 2012, 26, 1-21.	2.2	6
418	Particle-free bodies and point-free spaces. International Journal of Engineering Science, 2013, 72, 155-176.	5.0	6
419	On viscoelastic beams undergoing cyclic loading: Determining the onset of structural instabilities. International Journal of Non-Linear Mechanics, 2018, 99, 40-50.	2.6	6
420	Modeling deformation induced anisotropy of light-activated shape memory polymers. International Journal of Non-Linear Mechanics, 2020, 120, 103376.	2.6	6
421	Chemo-mechanical coupling and material evolution in finitely deforming solids with advancing fronts of reactive fluids. Acta Mechanica, 2020, 231, 1933-1961.	2.1	6
422	A note on viscoelastic bodies whose material properties depend on the density. Mathematics and Mechanics of Solids, 2021, 26, 1726-1731.	2.4	6
423	The derivation of the FENE-P model within the context of a thermodynamic perspective for bodies with evolving natural configurations. International Journal of Non-Linear Mechanics, 2021, 134, 103729.	2.6	6
424	FLOW OF FLUIDS THROUGH POROUS MEDIA DUE TO HIGH PRESSURE GRADIENTS: PART 2 - UNSTEADY FLOWS. Journal of Porous Media, 2014, 17, 751-762.	1.9	6
425	Upper and lower bounds for the pressure error in the rectilinear flow along a slot with a pressure gradient. Rheologica Acta, 1979, 18, 456-462.	2.4	5
426	Unsteady diffusion of fluids through a non-linearly elastic cylindrical annulus. International Journal of Non-Linear Mechanics, 1993, 28, 43-55.	2.6	5
427	Flow of a non-Newtonian fluid between intersecting planes of which one is moving. Rheologica Acta, 1993, 32, 490-498.	2.4	5
428	Remarks on "On a Generalized Nonlinear K -ε Model and the Use of Extended Thermodynamics in Turbulence". Theoretical and Computational Fluid Dynamics, 1999, 13, 167-169.	2.2	5
429	Deformation twinning during impact of a titanium cylinder – numerical calculations using a constitutive theory based on multiple natural configurations. Computer Methods in Applied Mechanics and Engineering, 2000, 188, 527-541.	6.6	5
430	Aggregation of a class of large-scale, interconnected, nonlinear dynamical systems. Mathematical Problems in Engineering, 2001, 7, 379-392.	1.1	5
431	A Thermodynamic Framework for the Superplastic Response of Materials. Materials Science Forum, 2001, 357-359, 261-272.	0.3	5
432	Material Identification of Nonlinear Solids Infused with a Fluid. Mathematics and Mechanics of Solids, 2002, 7, 629-646.	2.4	5

#	Article	IF	CITATIONS
433	Modeling the pneumatic subsystem of a s-cam air brake system. , 0, , .		5
434	Coupled heat conduction and deformation inÂaÂviscoelastic composite cylinder. Mechanics of Time-Dependent Materials, 2009, 13, 121-147.	4.4	5
435	Linear stability of Hagen–Poiseuille flow in a chemically reacting fluid. Computers and Mathematics With Applications, 2011, 61, 460-469.	2.7	5
436	Further mathematical results concerning Burgers fluids and their generalizations. Zeitschrift Fur Angewandte Mathematik Und Physik, 2012, 63, 191-202.	1.4	5
437	A viscoelastic model for describing the response of biological fibers. Acta Mechanica, 2016, 227, 3367-3380.	2.1	5
438	Large deformations of a new class of incompressible elastic bodies. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	5
439	A three dimensional finite deformation viscoelastic model for a layered polymeric material subject to blast. Composite Structures, 2017, 159, 382-389.	5.8	5
440	Initiation of damage in a class of polymeric materials embedded with multiple localized regions of lower density. Mathematics and Mechanics of Solids, 2018, 23, 865-878.	2.4	5
441	Bodies described by non-monotonic strain-stress constitutive equations containing a crack subject to anti-plane shear stress. International Journal of Mechanical Sciences, 2018, 149, 494-499.	6.7	5
442	Viscoelastic transitions exhibited by modified and unmodified bitumen. International Journal of Pavement Engineering, 2020, 21, 766-780.	4.4	5
443	Implicit nonlinear elastic bodies with density dependent material moduli and its linearization. International Journal of Solids and Structures, 2022, 234-235, 111255.	2.7	5
444	SOME INHOMOGENEOUS MOTIONS AND DEFORMATIONS WITHIN THE CONTEXT OF THERMOELASTICITY. Transactions of the Canadian Society for Mechanical Engineering, 1995, 19, 93-125.	0.8	5
445	Flow past a porous plate of non-Newtonian fluids with implicit shear stress shear rate relationships. European Journal of Mechanics, B/Fluids, 2022, 92, 166-173.	2.5	5
446	Investigation of implicit constitutive relations in which both the stress and strain appear linearly, adjacent to non-penetrating cracks. Mathematical Models and Methods in Applied Sciences, 2022, 32, 1475-1492.	3.3	5
447	Constitutive modeling of the mechanical response of arterial tissues. Applications in Engineering Science, 2022, 11, 100111.	0.8	5
448	A boundary integral approach for determining the pressure error. Rheologica Acta, 1980, 19, 12-18.	2.4	4
449	Universal relations for instantaneous deformations of viscoelastic fluids. Rheologica Acta, 1988, 27, 555-556.	2.4	4
450	Flow of a non-newtonian fluid through axisymmetric pipes of varying cross-sections. International Journal of Non-Linear Mechanics, 1991, 26, 777-792.	2.6	4

#	Article	IF	CITATIONS
451	Discrete large eddy simulation. Communications in Nonlinear Science and Numerical Simulation, 2001, 6, 17-22.	3.3	4
452	ON THE INFLUENCE OF THE DEFORMATION OF THE FORMING SOLID IN THE SOLIDIFICATION OF A SEMI-INFINITE WATER LAYER OF FLUID. Mathematical Models and Methods in Applied Sciences, 2001, 11, 367-386.	3.3	4
453	An Experimental Investigation into the Influence of Fillers on the Development of Normal Stresses and Stress Relaxation in Asphalt Mixtures Due to Torsion. Particulate Science and Technology, 2007, 25, 309-325.	2.1	4
454	Development of a model for an air brake system with leaks and a scheme for the estimation of the steady-state pushrod stroke. Vehicle System Dynamics, 2011, 49, 1267-1282.	3.7	4
455	A note on the decay of vortices in a viscous fluid. Meccanica, 2011, 46, 875-880.	2.0	4
456	On the response of viscoelastic biodegradable polymeric solids. Mechanics Research Communications, 2012, 39, 51-58.	1.8	4
457	Modeling bodies that can only undergo isochoric motions subject to mechanical stimuli but are compressible or expansible with respect to thermal stimuli. Zeitschrift Fur Angewandte Mathematik Und Physik, 2013, 64, 885-894.	1.4	4
458	Restrictions placed on constitutive relations by angular momentum balance and Galilean invariance. Zeitschrift Fur Angewandte Mathematik Und Physik, 2013, 64, 391-401.	1.4	4
459	Universal relations for a new class of elastic bodies. Mathematics and Mechanics of Solids, 2014, 19, 440-448.	2.4	4
460	On the stability and uniqueness of the flow of a fluid through a porous medium. Zeitschrift Fur Angewandte Mathematik Und Physik, 2016, 67, 1.	1.4	4
461	On power-law fluids with the power-law index proportional to the pressure. Applied Mathematics Letters, 2016, 62, 118-123.	2.7	4
462	Numerical and approximate analytical solutions for cylindrical and spherical annuli for a new class of elastic materials. Archive of Applied Mechanics, 2016, 86, 1815-1826.	2.2	4
463	A fully coupled model for diffusion-induced deformation in polymers. Acta Mechanica, 2016, 227, 837-856.	2.1	4
464	On stress-based piecewise elasticity for limited strain extensibility materials. International Journal of Non-Linear Mechanics, 2016, 81, 303-309.	2.6	4
465	Lubrication approximation of flows of a special class of non-Newtonian fluids defined by rate type constitutive equations. Applied Mathematical Modelling, 2018, 60, 508-525.	4.2	4
466	Chemo-mechanical coupling in curing and material-interphase evolution in multi-constituent materials. Acta Mechanica, 2018, 229, 3393-3414.	2.1	4
467	Modelling residual stresses in elastic bodies described by implicit constitutive relations. International Journal of Non-Linear Mechanics, 2018, 105, 113-129.	2.6	4
468	Analysis of reclaimed asphalt blended binders using linear and nonlinear viscoelasticity frameworks. Materials and Structures/Materiaux Et Constructions, 2020, 53, 1.	3.1	4

#	ARTICLE	IF	CITATIONS
469	A model for a solid undergoing rate-independent dissipative mechanical processes. Mathematics and Mechanics of Solids, 2021, 26, 230-243.	2.4	4
470	Unconditional finite amplitude stability of a fluid in a mechanically isolated vessel with spatially non-uniform wall temperature. Continuum Mechanics and Thermodynamics, 2021, 33, 515-543.	2.2	4
471	On the nonlinear stability of flow of a conducting fluid past a porous flat plate in a transverse magnetic field. Archive for Rational Mechanics and Analysis, 1983, 83, 91-98.	2.4	3
472	Proportional shearing of a non-linear viscoelastic layer. International Journal of Non-Linear Mechanics, 1993, 28, 57-68.	2.6	3
473	A formulation on large eddy simulation. Communications in Nonlinear Science and Numerical Simulation, 1999, 4, 245-248.	3.3	3
474	GAS MIXING FOR ACHIEVING SUITABLE CONDITIONS FOR SINGLE POINT AEROSOL SAMPLING IN A STRAIGHT TUBE: EXPERIMENTAL AND NUMERICAL RESULTS. Health Physics, 2003, 84, 82-91.	0.5	3
475	A note on the flow of a fluid with pressure-dependent viscosity in the annulus of two infinitely long coaxial cylinders. Applied Mathematical Modelling, 2010, 34, 3255-3263.	4.2	3
476	Turbulence modeling from a new perspective. Nonlinear Analysis: Real World Applications, 2010, 11, 39-54.	1.7	3
477	The one-dimensional flow of a fluid with limited strain-rate. Quarterly of Applied Mathematics, 2011, 69, 549-568.	0.7	3
478	Response of an Elastic Body whose Heat Conduction Is Pressure Dependent. Journal of Elasticity, 2011, 105, 173-185.	1.9	3
479	Modeling a class of geological materials. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2011, 3, 2-13.	1.1	3
480	Controlling the deformation in elastic and viscoelastic structures due to temperature and moisture changes using piezoelectric actuators. Journal of Intelligent Material Systems and Structures, 2012, 23, 1949-1967.	2.5	3
481	A note on the modeling of incompressible fluids with material moduli dependent on the mean normal stress. International Journal of Non-Linear Mechanics, 2013, 52, 41-45.	2.6	3
482	Wave propagation due to impact through layered polymer composites: Part 2 – Planar problems. Composite Structures, 2015, 131, 356-365.	5.8	3
483	Numerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearing. Meccanica, 2018, 53, 209-228.	2.0	3
484	A damage initiation criterion for a class of viscoelastic solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20180064.	2.1	3
485	Lubrication Approximation for Fluids with Shear-Dependent Viscosity. Fluids, 2019, 4, 98.	1.7	3
486	Flow of a new class of non-Newtonian fluids in tubes of non-circular cross-sections. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180069.	3.4	3

#	Article	IF	CITATIONS
487	Implicit constitutive relations for describing the response of visco-elastic bodies. International Journal of Non-Linear Mechanics, 2020, 126, 103526.	2.6	3
488	Implicit constitutive relations for visco-elastic solids: Part II. Non-homogeneous deformations. International Journal of Non-Linear Mechanics, 2020, 126, 103560.	2.6	3
489	Modeling Approaches and Some Physical Considerations Concerning Thermodynamics and the Theory of Mixtures Applied to Time-Dependent Behaviors in Heterogeneous Materials. Experimental Mechanics, 2020, 60, 591-609.	2.0	3
490	A two-constituent nonlinear viscoelastic model for asphalt mixtures. Road Materials and Pavement Design, 2021, 22, 910-924.	4.0	3
491	Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids. Fluids, 2021, 6, 131.	1.7	3
492	On Some Finite Deformations of Inhomogeneous Compressible Elastic Solids. Proceedings of the Royal Irish Academy, 2007, 107, 43-72.	0.2	3
493	Stress concentration factors around a circular hole in two fiber reinforced materials under large deformations. Mechanics of Materials, 2021, 163, 104089.	3.2	3
494	Experimental Investigation of the Anisotropic Mechanical Response of the Porcine Thoracic Aorta. Annals of Biomedical Engineering, 2022, 50, 452-466.	2.5	3
495	On the falling of objects in non-Newtonian fluids. Annali Dell'Universita Di Ferrara, 1994, 40, 71-95.	1.3	3
496	Flow of a non-Newtonian fluid between intersecting planes, one of which is moving. Rheologica Acta, 1996, 35, 520-522.	2.4	2
497	Aggregation of a class of linear, interconnected dynamical systems. , 1999, , .		2
498	Simulation of Flow Induced Crystallization in Fiber Spinning Using the Radial Resolution Approximation. Mechanics of Advanced Materials and Structures, 2005, 12, 413-424.	2.6	2
499	Rate-Type Model for Bituminous Mixtures and Its Application to Sand Asphalt. Journal of Engineering Mechanics - ASCE, 2006, 132, 632-640.	2.9	2
500	Diagnosing the air brake system of commercial vehicles. , 2006, , .		2
501	A parameter estimation scheme for a class of sequential hybrid systems. Nonlinear Analysis: Hybrid Systems, 2008, 2, 1113-1124.	3.5	2
502	Degradation and healing in a generalized neo-Hookean solid due to infusion of a fluid. Mechanics of Time-Dependent Materials, 2012, 16, 85-104.	4.4	2
503	A methodology to assess the safety of automatically controlled vehicles. International Journal of Advances in Engineering Sciences and Applied Mathematics, 2013, 5, 87-93.	1.1	2
504	Vibrations of a lumped parameter mass–spring–dashpot system wherein the spring is described by a non-invertible elongation-force constitutive function. International Journal of Non-Linear Mechanics, 2015, 76, 154-163.	2.6	2

#	Article	IF	CITATIONS
505	A constitutive theory for multi-functional fiber reinforced composites. Acta Mechanica, 2015, 226, 2671-2679.	2.1	2
506	Deformations of infinite slabs of non-linear viscoelastic solids containing an elliptic hole. Meccanica, 2016, 51, 3067-3080.	2.0	2
507	Response of a class of mechanical oscillators described by a novel system of differential-algebraic equations. Applications of Mathematics, 2016, 61, 79-102.	0.9	2
508	On the lubrication approximation for a class of viscoelastic fluids. International Journal of Non-Linear Mechanics, 2016, 87, 30-37.	2.6	2
509	A New Class of Models to Describe the Response of Electrorheological and Other Field Dependent Fluids. Advanced Structured Materials, 2018, , 655-673.	0.5	2
510	A study of the dissipation of energy in the helmet due to a blast on a helmet–skull–brain assembly. Composite Structures, 2021, 257, 113124.	5.8	2
511	A benchmark problem to evaluate implementational issues for three-dimensional flows of incompressible fluids subject to slip boundary conditions. Applications in Engineering Science, 2021, 6, 100038.	0.8	2
512	The residually stressed unloaded state of arteries: Membrane and thin cylinder approximations. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 122, 104521.	3.1	2
513	Prediction of the Onset of Failure in Elastomeric Solids With Weld Lines Being Represented as Localized Regions of Lower Density. Journal of Engineering Materials and Technology, Transactions of the ASME, 2022, 144, .	1.4	2
514	On the response of anisotropic elastic bodies described by implicit constitutive relations. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2022, 102, .	1.6	2
515	A boundary integral method for some laminar forced convection problems. Mechanics Research Communications, 1983, 10, 181-186.	1.8	1
516	Viscoelastic Models for Ligaments and Tendons. Applied Mechanics Reviews, 1994, 47, S282-S286.	10.1	1
517	Buoyancy-induced deformations in a compressible elastic solid. International Journal of Non-Linear Mechanics, 1996, 31, 811-822.	2.6	1
518	Boundary Layer Solutions in Elastic Solids. Journal of Elasticity, 2001, 62, 203-216.	1.9	1
519	A new perspective on random walk modeling of particle dispersion. Communications in Nonlinear Science and Numerical Simulation, 2002, 7, 155-162.	3.3	1
520	Inhomogeneous deformations of a cone of a neo-Hookean solid. International Journal of Non-Linear Mechanics, 2003, 38, 957-967.	2.6	1
521	On the deformation of an elastoplastic body when placed between flat plates rotating about non-coincident axes. International Journal of Plasticity, 2005, 21, 2255-2276.	8.8	1
522	Mechanics: The well-spring of mathematics (volume 2). Computers and Mathematics With Applications, 2007, 53, 345.	2.7	1

#	Article	IF	CITATIONS
523	On the need for compatibility of thermal and mechanical data in flow problems. International Journal of Engineering Science, 2011, 49, 537-543.	5.0	1
524	On the response of Burgers' fluid and its generalizations with pressure dependent moduli. Mechanics of Time-Dependent Materials, 2013, 17, 147-169.	4.4	1
525	On the Flows of Fluids Defined through Implicit Constitutive Relations between the Stress and the Symmetric Part of the Velocity Gradient. Fluids, 2016, 1, 5.	1.7	1
526	Determination of pressure data from velocity data with a view towards its application in cardiovascular mechanics. Part 2: A study of aortic valve stenosis. International Journal of Engineering Science, 2017, 113, 37-50.	5.0	1
527	Motion of a finite composite cylindrical annulus comprised of nonlinear elastic solids subject to periodic shear. International Journal of Non-Linear Mechanics, 2019, 113, 31-43.	2.6	1
528	A constitutive model for wet granular materials. Particulate Science and Technology, 2021, 39, 903-910.	2.1	1
529	The circumferential shearing of a cylindrical annulus of viscoelastic solids described by implicit constitutive relations. Acta Mechanica, 2021, 232, 2679.	2.1	1
530	Finite element approximation of steady flows of colloidal solutions. ESAIM: Mathematical Modelling and Numerical Analysis, 2021, 55, 1963-2011.	1.9	1
531	Start-up shear flow of a shear-thinning fluid that approximates the response of viscoplastic fluids. Applied Mathematics and Computation, 2022, 412, 126571.	2.2	1
532	A Note on Unsteady Inhomogeneous Extensions of a Class of Neo-Hookean Elastic Solids. Proceedings of the Royal Irish Academy, 2004, 104, 47-57.	0.2	1
533	Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete and Continuous Dynamical Systems - Series S, 2017, 10, 1351-1373.	1.1	1
534	Closure to "Discussion of â€`Lubrication With Binary Mixtures: Liquid-Liquid Emulsion' and â€`Lubrication With Binary Mixtures: Liquid-Liquid Emulsion in an EHL Conjunction'―(1993, ASME J. Tribol., 115, p. 707). Journal of Tribology, 1993, 115, 708-708.	1.9	0
535	Mechanics of electrorheological materials. Rheology Series, 1999, 8, 637-658.	0.1	0
536	Modeling of Entropy Producing Processes. AIP Conference Proceedings, 2008, , .	0.4	0
537	A note on the applicability of recurrence theorems. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 2587-2591.	3.3	0
538	Identification and estimation of parameters defining a class of hybrid systems. Nonlinear Analysis: Hybrid Systems, 2011, 5, 446-456.	3.5	0
539	The thermo-mechanics of rate-type fluids. Discrete and Continuous Dynamical Systems - Series S, 2012, 5, 1133-1145.	1.1	0
540	Correction to â€~On a new class of electroelastic bodies. I'. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, .	2.1	0

Kumbakonam R Rajagopal

#	Article	IF	CITATIONS
541	Numerical simulations describing inhomogeneous non-unidirectional deformations of an elastic wedge. AIP Conference Proceedings, 2019, , .	0.4	0
542	Inhomogeneous non-unidirectional deformations of an elastic wedge. Quarterly Journal of Mechanics and Applied Mathematics, 2019, 72, 1-23.	1.3	0
543	A class of transversely isotropic non-linear elastic bodies that is not Green elastic. Journal of Engineering Mathematics, 2021, 127, 1.	1.2	0
544	On the instability, nonexistence and spatial behaviour of the one-dimensional response of a new class of elastic bodies. IMA Journal of Applied Mathematics, 2021, 86, 565-576.	1.6	0
545	Computational corroboration of the flow of rock glaciers against borehole measurements. International Journal of Non-Linear Mechanics, 2021, 132, 103710.	2.6	0
546	Function Follows Form. ASAIO Journal, 2021, Publish Ahead of Print, 734-736.	1.6	0
547	The Mechanics and Mathematics of Bodies Described by Implicit Constitutive Equations. Mathematics for Industry, 2020, , 49-65.	0.4	0
548	Some Remarks on the Equilibrium of Granular Materials Described by Constitutive Relations That Depend on the Gradients of the Density or Volume Fraction. Journal of Engineering Materials and Technology, Transactions of the ASME, 2020, 142, .	1.4	0
549	A Model to Describe the Response of Arctic Sea Ice. Springer INdAM Series, 2020, , 163-178.	0.5	0
550	Mathematical Modeling of Rock Glacier Flow with Temperature Effects. Springer INdAM Series, 2020, , 149-161.	0.5	0
551	A note on the stability of flows of fluids whose symmetric part of the velocity gradient is a function of the stress. Applications in Engineering Science, 2021, 8, 100072.	0.8	0