
Jean Guy LeBlanc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4614506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Current Opinion in Biotechnology, 2013, 24, 160-168.	6.6	1,101
2	Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microbial Cell Factories, 2017, 16, 79.	4.0	581
3	B-Group vitamin production by lactic acid bacteria - current knowledge and potential applications. Journal of Applied Microbiology, 2011, 111, 1297-1309.	3.1	359
4	Immunomodulating Effects of Peptidic Fractions Issued from Milk Fermented with Lactobacillus helveticus. Journal of Dairy Science, 2002, 85, 2733-2742.	3.4	168
5	Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn's disease in mice. Journal of Biotechnology, 2011, 151, 287-293.	3.8	141
6	Oral administration of a catalase-producing Lactococcus lactis can prevent a chemically induced colon cancer in mice. Journal of Medical Microbiology, 2008, 57, 100-105.	1.8	114
7	Anti-inflammatory effects of Lactococcus lactis NCDO 2118 during the remission period of chemically induced colitis. Gut Pathogens, 2014, 6, 33.	3.4	112
8	Importance of IL-10 Modulation by Probiotic Microorganisms in Gastrointestinal Inflammatory Diseases. ISRN Gastroenterology, 2011, 2011, 1-11.	1.5	93
9	Production of natural folates by lactic acid bacteria starter cultures isolated from artisanal Argentinean yogurts. Canadian Journal of Microbiology, 2012, 58, 581-588.	1.7	90
10	Riboflavin producing lactic acid bacteria as a biotechnological strategy to obtain bio-enriched soymilk. Food Research International, 2014, 62, 1015-1019.	6.2	87
11	Genetically Engineered Immunomodulatory Streptococcus thermophilus Strains Producing Antioxidant Enzymes Exhibit Enhanced Anti-Inflammatory Activities. Applied and Environmental Microbiology, 2014, 80, 869-877.	3.1	85
12	Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World Journal of Gastroenterology, 2014, 20, 16518.	3.3	80
13	Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya) — From isolation to application: Characterization of a bacteriocin. Food Research International, 2011, 44, 1351-1363.	6.2	76
14	Mucosal targeting of therapeutic molecules using genetically modified lactic acid bacteria: an update. FEMS Microbiology Letters, 2013, 344, 1-9.	1.8	73
15	Tropical fruit by-products water extracts as sources of soluble fibres and phenolic compounds with potential antioxidant, anti-inflammatory, and functional properties. Journal of Functional Foods, 2019, 52, 724-733.	3.4	73
16	A novel dairy product fermented with Propionibacterium freudenreichii improves the riboflavin status of deficient rats. Nutrition, 2006, 22, 645-651.	2.4	70
17	Effect of pH on Lactobacillus fermentum growth, raffinose removal, ?-galactosidase activity and fermentation products. Applied Microbiology and Biotechnology, 2004, 65, 119-23.	3.6	67
18	Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World Journal of Microbiology and Biotechnology, 2012, 28, 973-984.	3.6	60

#	Article	IF	CITATIONS
19	Anti-cancer effect of lactic acid bacteria expressing antioxidant enzymes or IL-10 in a colorectal cancer mouse model. International Immunopharmacology, 2017, 42, 122-129.	3.8	57
20	Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. Journal of Functional Foods, 2013, 5, 1848-1853.	3.4	55
21	Current Review of Genetically Modified Lactic Acid Bacteria for the Prevention and Treatment of Colitis Using Murine Models. Gastroenterology Research and Practice, 2015, 2015, 1-8.	1.5	55
22	Relationships between the genome and some phenotypical properties of Lactobacillus fermentum CECT 5716, a probiotic strain isolated from human milk. Applied Microbiology and Biotechnology, 2015, 99, 4343-4353.	3.6	55
23	Biochemical, antimicrobial and molecular characterization of a noncytotoxic bacteriocin produced by Lactobacillus plantarum ST71KS. Food Microbiology, 2013, 34, 376-381.	4.2	54
24	Applicability of a Lactobacillus amylovorus strain as co-culture for natural folate bio-enrichment of fermented milk. International Journal of Food Microbiology, 2014, 191, 10-16.	4.7	52
25	Implications of the human microbiome in inflammatory bowel diseases. FEMS Microbiology Letters, 2013, 342, 10-17.	1.8	50
26	Ancestral Andean grain quinoa as source of lactic acid bacteria capable to degrade phytate and produce B-group vitamins. Food Research International, 2016, 89, 488-494.	6.2	48
27	Technological properties of Lactic acid bacteria isolated from raw cereal material. LWT - Food Science and Technology, 2016, 70, 185-191.	5.2	47
28	Evaluation of the effect of soymilk fermented by a riboflavin-producing Lactobacillus plantarum strain in a murine model of colitis. Beneficial Microbes, 2017, 8, 65-72.	2.4	46
29	Passion fruit by-product and fructooligosaccharides stimulate the growth and folate production by starter and probiotic cultures in fermented soymilk. International Journal of Food Microbiology, 2017, 261, 35-41.	4.7	44
30	A Thermostable α-Galactosidase from Lactobacillus fermentum CRL722: Genetic Characterization and Main Properties. Current Microbiology, 2006, 53, 374-378.	2.2	43
31	Quinoa pasta fermented with lactic acid bacteria prevents nutritional deficiencies in mice. Food Research International, 2020, 127, 108735.	6.2	42
32	Effect of indigenous lactic acid bacteria isolated from goat milk and cheeses on folate and riboflavin content of fermented goat milk. LWT - Food Science and Technology, 2016, 71, 155-161.	5.2	41
33	Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucositis in mice. Nutrition, 2018, 54, 165-172.	2.4	41
34	Ingestion of Milk Fermented by Genetically Modified Lactococcus lactis Improves the Riboflavin Status of Deficient Rats. Journal of Dairy Science, 2005, 88, 3435-3442.	3.4	39
35	Lactococcus lactisis capable of improving the riboflavin status in deficient rats. British Journal of Nutrition, 2005, 94, 262-267.	2.3	38
36	Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Applied Microbiology and Biotechnology, 2020, 104, 3331-3337.	3.6	38

#	Article	IF	CITATIONS
37	Evaluation of the Anti-Inflammatory Effect of Milk Fermented by a Strain of IL-10-Producing Lactococcus lactis Using a Murine Model of Crohn's Disease. Journal of Molecular Microbiology and Biotechnology, 2011, 21, 138-146.	1.0	35
38	Protective Effects of Lactococci Strains Delivering Either IL-10 Protein or cDNA in a TNBS-induced Chronic Colitis Model. Journal of Clinical Gastroenterology, 2014, 48, S12-S17.	2.2	35
39	Production of Fibronectin Binding Protein A at the Surface of Lactococcus lactis Increases Plasmid Transfer In Vitro and In Vivo. PLoS ONE, 2012, 7, e44892.	2.5	35
40	Effect of riboflavin-producing bacteria against chemically induced colitis in mice. Journal of Applied Microbiology, 2018, 124, 232-240.	3.1	34
41	Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nutrition, 2010, 26, 835-841.	2.4	33
42	Recent update on lactic acid bacteria producing riboflavin and folates: application for food fortification and treatment of intestinal inflammation. Journal of Applied Microbiology, 2021, 130, 1412-1424.	3.1	33
43	Reduction of non-digestible oligosaccharides in soymilk: application of engineered lactic acid bacteria that produce alpha-galactosidase. Genetics and Molecular Research, 2004, 3, 432-40.	0.2	33
44	Milk fermented with selected strains of lactic acid bacteria is able to improve folate status of deficient rodents and also prevent folate deficiency. Journal of Functional Foods, 2015, 17, 22-32.	3.4	32
45	Real-Time Detection of Riboflavin Production by Lactobacillus plantarum Strains and Tracking of Their Gastrointestinal Survival and Functionality in vitro and in vivo Using mCherry Labeling. Frontiers in Microbiology, 2019, 10, 1748.	3.5	32
46	Reduction of alpha-galactooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722: in vitro and in vivo evaluation of fermented soyamilk. Journal of Applied Microbiology, 2004, 97, 876-881.	3.1	30
47	Lactic Acid Bacteria from Andean Grain Amaranth: A Source of Vitamins and Functional Value Enzymes. Journal of Molecular Microbiology and Biotechnology, 2017, 27, 289-298.	1.0	30
48	Folate-producing lactic acid bacteria reduce inflammation in mice with induced intestinal mucositis. Journal of Applied Microbiology, 2018, 125, 1494-1501.	3.1	29
49	Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson's disease model. Nutrition, 2020, 79-80, 110995.	2.4	29
50	A Novel Interleukin-10 Dna Mucosal Delivery System Attenuates Intestinal Inflammation in a Mouse Model. European Journal of Inflammation, 2013, 11, 641-654.	0.5	28
51	Soyamilk fermented with riboflavin-producing <i>Lactobacillus plantarum</i> CRL 2130 reverts and prevents ariboflavinosis in murine models. British Journal of Nutrition, 2016, 116, 1229-1235.	2.3	28
52	Egg albumin–folic acid nanocomplexes: Performance as a functional ingredient and biological activity. Journal of Functional Foods, 2015, 18, 379-386.	3.4	27
53	Ability of Lactobacillus fermentum to overcome host α-galactosidase deficiency, as evidenced by reduction of hydrogen excretion in rats consuming soya α-galacto-oligosaccharides. BMC Microbiology, 2008, 8, 22.	3.3	26
54	Nutritional, functional, thermal and structural characteristics of Citrullus lanatus and Limonia acidissima seed flours. Journal of Food Measurement and Characterization, 2016, 10, 72-79.	3.2	26

#	Article	IF	CITATIONS
55	Increasing the folate content of tuber based foods using potentially probiotic lactic acid bacteria. Food Research International, 2018, 109, 168-174.	6.2	26
56	Comparative assessment of algal oil with other vegetable oils for deep frying. Algal Research, 2018, 31, 99-106.	4.6	26
57	Bioprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Scientific Reports, 2020, 10, 7235.	3.3	26
58	Supplementation with fruit and okara soybean by-products and amaranth flour increases the folate production by starter and probiotic cultures. International Journal of Food Microbiology, 2016, 236, 26-32.	4.7	25
59	Development of a potential probiotic yoghurt using selected anti-inflammatory lactic acid bacteria for prevention of colitis and carcinogenesis in mice. Journal of Applied Microbiology, 2016, 121, 821-830.	3.1	23
60	Production of fermented skim milk supplemented with different grape pomace extracts: Effect on viability and acidification performance of probiotic cultures. PharmaNutrition, 2018, 6, 64-68.	1.7	23
61	Risk Assessment of Genetically Modified Lactic Acid Bacteria Using the Concept of Substantial Equivalence. Current Microbiology, 2010, 61, 590-595.	2.2	22
62	Evaluation of a Streptococcus thermophilus strain with innate anti-inflammatory properties as a vehicle for IL-10 cDNA delivery in an acute colitis model. Cytokine, 2015, 73, 177-183.	3.2	22
63	A Novel Functional Soyâ€based Food Fermented by Lactic Acid Bacteria: Effect of Heat Treatment. Journal of Food Science, 2004, 69, M246.	3.1	21
64	Lactobacillus fermentumCRL 722 is able to deliver active α-galactosidase activity in the small intestine of rats. FEMS Microbiology Letters, 2005, 248, 177-182.	1.8	21
65	Potential Application of Probiotics in the Prevention and Treatment of Inflammatory Bowel Diseases. Ulcers, 2011, 2011, 1-13.	1.0	18
66	Thiamine-producing lactic acid bacteria and their potential use in the prevention of neurodegenerative diseases. Applied Microbiology and Biotechnology, 2021, 105, 2097-2107.	3.6	17
67	Probiotics and Trained Immunity. Biomolecules, 2021, 11, 1402.	4.0	17
68	Evaluation of the biosafety of recombinant lactic acid bacteria designed to prevent and treat colitis. Journal of Medical Microbiology, 2016, 65, 1038-1046.	1.8	17
69	Influence of passion fruit by-product and fructooligosaccharides on the viability of Streptococcus thermophilus TH-4 and Lactobacillus rhamnosus LGG in folate bio-enriched fermented soy products and their effect on probiotic survival and folate bio-accessibility under in vitro simulated gastrointestinal conditions. International Journal of Food Microbiology, 2019, 292, 126-136.	4.7	16
70	Maternal dietary omega-3 deficiency worsens the deleterious effects of prenatal inflammation on the gut-brain axis in the offspring across lifetime. Neuropsychopharmacology, 2021, 46, 579-602.	5.4	16
71	Factors stimulating riboflavin produced by <i>Lactobacillus plantarum</i> CRL 725 grown in a semiâ€defined medium. Journal of Basic Microbiology, 2017, 57, 245-252.	3.3	15
72	Vitamin Producing Lactic Acid Bacteria as Complementary Treatments for Intestinal Inflammation. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2018, 17, 50-56.	1.1	15

#	Article	IF	CITATIONS
73	Beneficial effect of a mixture of vitamin-producing and immune-modulating lactic acid bacteria as adjuvant for therapy in a recurrent mouse colitis model. Applied Microbiology and Biotechnology, 2019, 103, 8937-8945.	3.6	15
74	Characterization of folate production and probiotic potential of Streptococcus gallolyticus subsp. macedonicus CRL415. Food Microbiology, 2019, 79, 20-26.	4.2	14
75	Action modes of the immune modulating activities of crude mushroom polysaccharide from Phallus atrovolvatus. Bioactive Carbohydrates and Dietary Fibre, 2020, 23, 100216.	2.7	13
76	Production of bacteriocinâ€like inhibitory substances (<scp>BLIS</scp>) by <i>Bifidobacterium lactis</i> using whey as a substrate. International Journal of Dairy Technology, 2016, 69, 236-242.	2.8	12
77	Anti-inflammatory Properties of Lactic Acid Bacteria: Current Knowledge,Applications and Prospects. Anti-Infective Agents in Medicinal Chemistry, 2008, 7, 148-154.	0.6	10
78	Effect of fermentation in nutritional, textural and sensorial parameters of vegan-spread products using a probiotic folate-producing Lactobacillus sakei strain. LWT - Food Science and Technology, 2020, 127, 109339.	5.2	9
79	Quinoa sourdough-based biscuits with high antioxidant activity fermented with autochthonous lactic acid bacteria. Journal of Applied Microbiology, 2022, 132, 2093-2105.	3.1	9
80	Folate Production by Lactic Acid Bacteria. , 2018, , 15-29.		8
81	Evaluation of vitaminâ€producing and immunomodulatory lactic acid bacteria as a potential coâ€adjuvant for cancer therapy in a mouse model. Journal of Applied Microbiology, 2021, 130, 2063-2074.	3.1	8
82	Effect of processing on polyphenol profile, aflatoxin concentration and allergenicity of peanuts. Journal of Food Science and Technology, 2021, 58, 2714-2724.	2.8	8
83	Neuroprotective Effect of Riboflavin Producing Lactic Acid Bacteria in Parkinsonian Models. Neurochemical Research, 2022, 47, 1269-1279.	3.3	8
84	B-Group Vitamins Production by Probiotic Lactic Acid Bacteria. , 0, , 211-232.		7
85	Functional Food Biotechnology. , 2018, , 105-128.		7
86	Folate production and fol genes expression by the dairy starter culture Streptococcus thermophilus CRL803 in free and controlled pH batch fermentations. LWT - Food Science and Technology, 2017, 85, 146-150.	5.2	5
87	The Ability of Riboflavin-Overproducing Lactiplantibacillus plantarum Strains to Survive Under Gastrointestinal Conditions. Frontiers in Microbiology, 2020, 11, 591945.	3.5	5
88	Chemical composition and microbial evaluation of Argentinean Corrientes cheese. International Journal of Dairy Technology, 2008, 61, 222-228.	2.8	4
89	Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CRL871, a Folate-Producing Strain Isolated from a Northwestern Argentinian Yogurt. Genome Announcements, 2015, 3, .	0.8	4

90 Probiotics in Inflammatory Bowel Diseases and Cancer Prevention., 2016,, 755-771.

4

#	Article	IF	CITATIONS
91	Increasing B Vitamins in Foods to Prevent Intestinal Inflammation and Cancer. , 2017, , 193-204.		4
92	Neuroprotective effect of thiamine-producing lactic acid bacteria in a murine Parkinsonian model. Food and Function, 2022, 13, 8056-8067.	4.6	2
93	Probiotics in Cancer Prevention. , 2010, , 497-511.		1
94	Bioactive compounds of fruit by-products as potential prebiotics. , 2021, , 47-59.		1
95	B-Group Vitamin-Producing Lactic Acid Bacteria. , 2020, , 106-123.		1
96	Uso potencial de bacterias lácticas como vehÃeulos vacunales. Vacunas, 2012, 13, 15-20.	2.0	0
97	Folate Production by Lactic Acid Bacteria. , 2013, , 251-270.		0
98	Anti-Inflammatory Properties of Genetically Modified Lactic Acid Bacteria. , 2013, , 581-600.		0