Daniel E Giammar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4614366/daniel-e-giammar-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 119 4,471 40 h-index g-index citations papers 8.3 130 5,200 5.91 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
119	Influence of point-of-use filters and stagnation on water quality at a preschool and under laboratory conditions <i>Water Research</i> , 2022 , 211, 118034	12.5	O
118	Impact of dissolved oxygen and pH on the removal of selenium from water by iron electrocoagulation <i>Water Research</i> , 2022 , 213, 118159	12.5	1
117	Lead phosphate deposition in porous media and implications for lead remediation <i>Water Research</i> , 2022 , 214, 118200	12.5	1
116	Cost and Energy Metrics for Municipal Water Reuse. ACS ES&T Engineering, 2022, 2, 489-507		1
115	Ligand-Induced U Mobilization from Chemogenic Uraninite and Biogenic Noncrystalline U(IV) under Anoxic Conditions <i>Environmental Science & Environmental Science & Environme</i>	10.3	O
114	Copper availability governs nitrous oxide accumulation in wetland soils and stream sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2022 , 327, 96-115	5.5	0
113	Consistent Controls on Trace Metal Micronutrient Speciation in Wetland Soils and Stream Sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2021 ,	5.5	1
112	National Alliance for Water Innovation (NAWI) Municipal Sector Technology Roadmap 2021 2021 ,		2
111	Pilot-scale comparison of sodium silicates, orthophosphate and pH adjustment to reduce lead release from lead service lines. <i>Water Research</i> , 2021 , 195, 116955	12.5	4
110	Intercomparison and Refinement of Surface Complexation Models for U(VI) Adsorption onto Goethite Based on a Metadata Analysis. <i>Environmental Science & Environmental Science </i>	10.3	3
109	Effect of sodium silicate on lead release from lead service lines. Water Research, 2021, 188, 116485	12.5	8
108	Lead Phosphate Particles in Tap Water: Challenges for Point-of-Use Filters. <i>Environmental Science and Technology Letters</i> , 2021 , 8, 244-249	11	7
107	Effects of Cu(II) and Zn(II) on PbO Reductive Dissolution under Drinking Water Conditions: Short-term Inhibition and Long-term Enhancement. <i>Environmental Science & amp; Technology</i> , 2021 , 55, 14397-14406	10.3	1
106	Worth a Closer Look: Raman Spectra of Lead-Pipe Scale. <i>Minerals (Basel, Switzerland)</i> , 2021 , 11, 1047	2.4	2
105	Surface functionalized nanoscale metal oxides for arsenic(V), chromium(VI), and uranium(VI) sorption: considering single- and multi-sorbate dynamics. <i>Environmental Science: Nano</i> , 2020 , 7, 3805-3	873 ¹	2
104	Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese. <i>Frontiers of Environmental Science and Engineering</i> , 2020 , 14, 1	5.8	5
103	Modeling performance of rhamnolipid-coated engineered magnetite nanoparticles for U(VI) sorption and separation. <i>Environmental Science: Nano</i> , 2020 , 7, 2010-2020	7.1	6

(2018-2020)

102	Formation and Transport of Cr(III)-NOM-Fe Colloids upon Reaction of Cr(VI) with NOM-Fe(II) Colloids at Anoxic-Oxic Interfaces. <i>Environmental Science & Environmental Science </i>	10.3	27
101	Effect of Cu(II) on Mn(II) Oxidation by Free Chlorine To Form Mn Oxides at Drinking Water Conditions. <i>Environmental Science & Environmental Science &</i>	10.3	8
100	Effect of Aluminum on Lead Release to Drinking Water from Scales of Corrosion Products. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	7
99	Impact of orthophosphate on lead release from pipe scale in high pH, low alkalinity water. <i>Water Research</i> , 2020 , 177, 115764	12.5	13
98	The Ability of Phosphate To Prevent Lead Release from Pipe Scale When Switching from Free Chlorine to Monochloramine. <i>Environmental Science & Environmental Science & Environ</i>	10.3	17
97	Accumulation on and extraction of lead from point-of-use filters for evaluating lead exposure from drinking water. <i>Environmental Science: Water Research and Technology</i> , 2020 , 6, 2734-2741	4.2	5
96	Cr(VI) Formation from CrxFe1II(OH)3 Induced by Mn(II) Oxidation on the Surface of CrxFe1II(OH)3. <i>ACS Earth and Space Chemistry</i> , 2020 , 4, 1558-1564	3.2	6
95	Impact of iron-rich scale in service lines on lead release to water. AWWA Water Science, 2020, 2, e1188	1.6	2
94	Cr(VI) Adsorption on Engineered Iron Oxide Nanoparticles: Exploring Complexation Processes and Water Chemistry. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	37
93	Understanding the Roles of Dissolution and Diffusion in Cr(OH)3 Oxidation by EMnO2. <i>ACS Earth and Space Chemistry</i> , 2019 , 3, 357-365	3.2	13
92	Role of Manganese in Accelerating the Oxidation of Pb(II) Carbonate Solids to Pb(IV) Oxide at Drinking Water Conditions. <i>Environmental Science & Environmental Science & Envi</i>	10.3	24
91	Tackling Deficiencies in the Presentation and Interpretation of Adsorption Results for New Materials. <i>Environmental Science & Environmental Science &</i>	10.3	17
90	Geochemical Stability of Dissolved Mn(III) in the Presence of Pyrophosphate as a Model Ligand: Complexation and Disproportionation. <i>Environmental Science & Environmental Sci</i>	10.3	33
89	Impact of Cu(II) and Zn(II) on the Reductive Dissolution of Pb(IV) Oxide. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 745-751	11	3
88	CO2 Mineral Sequestration in Naturally Porous Basalt. <i>Environmental Science and Technology Letters</i> , 2018 , 5, 142-147	11	28
87	Enhanced Uranium Immobilization by Phosphate Amendment under Variable Geochemical and Flow Conditions: Insights from Reactive Transport Modeling. <i>Environmental Science & Environmental Science & Env</i>	10.3	19
86	Engineered superparamagnetic nanomaterials for arsenic(V) and chromium(VI) sorption and separation: quantifying the role of organic surface coatings. <i>Environmental Science: Nano</i> , 2018 , 5, 556-5	563 ¹	19
85	Heterogeneous Lead Phosphate Nucleation at Organic Water Interfaces: Implications for Lead Immobilization. ACS Earth and Space Chemistry, 2018, 2, 869-877	3.2	10

84	Permanent CO Trapping through Localized and Chemical Gradient-Driven Basalt Carbonation. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	15
83	Water metal contaminants in a potentially mineral-deficient population of Haiti. <i>International Journal of Environmental Health Research</i> , 2018 , 28, 626-634	3.6	4
82	Formation and Aggregation of Lead Phosphate Particles: Implications for Lead Immobilization in Water Supply Systems. <i>Environmental Science & Environmental Science & Environm</i>	10.3	40
81	Carbon Sequestration in Olivine and Basalt Powder Packed Beds. <i>Environmental Science & Emp; Technology</i> , 2017 , 51, 2105-2112	10.3	15
80	Spatially-variable carbonation reactions in polycrystalline olivine. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 204, 252-266	5.5	5
79	Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation. <i>Environmental Science & Electrocoagulation</i> (2017), 51, 6308-6318	10.3	58
78	Formation, Aggregation, and Deposition Dynamics of NOM-Iron Colloids at Anoxic-Oxic Interfaces. <i>Environmental Science & Environmental Science & Envir</i>	10.3	58
77	Rates of Cr(VI) Generation from CrFe(OH) Solids upon Reaction with Manganese Oxide. <i>Environmental Science & Environmental Sci</i>	10.3	49
76	CO2 mineral trapping in fractured basalt. International Journal of Greenhouse Gas Control, 2017, 66, 204	I-2.1 ₂ 7	23
75	Roles of Transport Limitations and Mineral Heterogeneity in Carbonation of Fractured Basalts. <i>Environmental Science & Environmental &</i>	10.3	15
74	Effect of transport limitations and fluid properties on reaction products in fractures of unaltered and serpentinized basalt exposed to high PCO2 fluids. <i>International Journal of Greenhouse Gas Control</i> , 2017 , 63, 310-320	4.2	19
73	Measurement and Surface Complexation Modeling of U(VI) Adsorption to Engineered Iron Oxide Nanoparticles. <i>Environmental Science & Environmental Scien</i>	10.3	36
72	Dissolution and surface roughening of Columbia River flood basalt at geologic carbon sequestration conditions. <i>Chemical Geology</i> , 2017 , 467, 100-109	4.2	8
71	Evidence from 29Si Solid-State Nuclear Magnetic Resonance of Dissolution Reactions of Forsterite. <i>Environmental Engineering Science</i> , 2016 , 33, 799-805	2	8
70	Synergistic Effects between Biogenic Ligands and a Reductant in Fe Acquisition from Calcareous Soil. <i>Environmental Science & Environmental Science & </i>	10.3	18
69	Effect of Reaction Pathway on the Extent and Mechanism of Uranium(VI) Immobilization with Calcium and Phosphate. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	33
68	Element mobilization from Bakken shales as a function of water chemistry. <i>Chemosphere</i> , 2016 , 149, 286-93	8.4	29
67	Phosphate-Induced Immobilization of Uranium in Hanford Sediments. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 13486-13494	10.3	22

(2014-2016)

66	Dynamics of Chromium(VI) Removal from Drinking Water by Iron Electrocoagulation. <i>Environmental Science & Environmental Scienc</i>	10.3	78
65	Effect of phosphate on U(VI) sorption to montmorillonite: Ternary complexation and precipitation barriers. <i>Geochimica Et Cosmochimica Acta</i> , 2016 , 175, 86-99	5.5	52
64	MINFIT: A Spreadsheet-Based Tool for Parameter Estimation in an Equilibrium Speciation Software Program. <i>Environmental Science & Environmental Scienc</i>	10.3	17
63	Effects of pH, dissolved oxygen, and aqueous ferrous iron on the adsorption of arsenic to lepidocrocite. <i>Journal of Colloid and Interface Science</i> , 2015 , 448, 331-8	9.3	73
62	Measurement and Modeling of U(IV) Adsorption to Metal Oxide Minerals. <i>Environmental Science and Technology Letters</i> , 2015 , 2, 227-232	11	31
61	Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium. <i>Environmental Science & Enp.; Technology</i> , 2015 , 49, 7340-7	10.3	21
60	Impact of Water Chemistry on Element Mobilization from Eagle Ford Shale. <i>Environmental Engineering Science</i> , 2015 , 32, 310-320	2	37
59	Interaction of Fe(II) with phosphate and sulfate on iron oxide surfaces. <i>Geochimica Et Cosmochimica Acta</i> , 2015 , 158, 130-146	5.5	63
58	Synergistic effect of reductive and ligand-promoted dissolution of goethite. <i>Environmental Science & Environmental Science</i> & Environmental Science & Environmental &	10.3	54
57	Transport of U(VI) through sediments amended with phosphate to induce in situ uranium immobilization. <i>Water Research</i> , 2015 , 69, 307-317	12.5	33
56	Metal Contaminant Oxidation Mediated by Manganese Redox Cycling in Subsurface Environment. <i>ACS Symposium Series</i> , 2015 , 29-50	0.4	15
55	Determining pH at elevated pressure and temperature using in situ IIC NMR. <i>Environmental Science & Environmental Science</i>	10.3	5
54	Effect of co-solutes on the products and solubility of uranium(VI) precipitated with phosphate. <i>Chemical Geology</i> , 2014 , 364, 66-75	4.2	57
53	Speciation and reactivity of uranium products formed during in situ bioremediation in a shallow alluvial aquifer. <i>Environmental Science & Environmental Science & Environment</i>	10.3	42
52	Effects of Mn(II) on UO2 dissolution under anoxic and oxic conditions. <i>Environmental Science & Environmental Science & Technology</i> , 2014 , 48, 5546-54	10.3	29
51	Forsterite Carbonation in Zones with Transport Limited by Diffusion. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 333-338	11	18
50	Effect of water chemistry on the dissolution rate of the lead corrosion product hydrocerussite. <i>Water Research</i> , 2014 , 54, 237-46	12.5	42
49	Oxidative UO2 dissolution induced by soluble Mn(III). <i>Environmental Science & amp; Technology</i> , 2014 , 48, 289-98	10.3	69

48	Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions. <i>Environmental Science & Environmental Scie</i>	10.3	19
47	Impacts of geochemical reactions on geologic carbon sequestration. <i>Environmental Science & Environmental Science & Technology</i> , 2013 , 47, 3-8	10.3	107
46	Mass action expressions for bidentate adsorption in surface complexation modeling: theory and practice. <i>Environmental Science & Environmental Science</i>	10.3	68
45	Uraninite oxidation and dissolution induced by manganese oxide: A redox reaction between two insoluble minerals. <i>Geochimica Et Cosmochimica Acta</i> , 2013 , 100, 24-40	5.5	76
44	Kinetics of lead(IV) oxide (PbO2) reductive dissolution: role of lead(II) adsorption and surface speciation. <i>Journal of Colloid and Interface Science</i> , 2013 , 389, 236-43	9.3	26
43	Forsterite dissolution in saline water at elevated temperature and high CO2 pressure. <i>Environmental Science & Environmental &</i>	10.3	44
42	Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	160
41	Relative reactivity of biogenic and chemogenic uraninite and biogenic noncrystalline U(IV). <i>Environmental Science & Diagram (Note: Technology, 2013)</i> , 47, 9756-63	10.3	69
40	Effect of connection methods on lead release from galvanic corrosion. <i>Journal - American Water Works Association</i> , 2013 , 105, E337-E351	0.5	25
39	Impact of galvanic corrosion on lead release from aged lead service lines. Water Research, 2012, 46, 50	49 <u>-6</u> .g	53
38	Effect of diffusive transport limitations on UO2 dissolution. Water Research, 2012, 46, 6023-32	12.5	14
37	Kinetics of the reductive dissolution of lead(IV) oxide by iodide. <i>Environmental Science & Environmental Science & Technology</i> , 2012 , 46, 5859-66	10.3	14
36	Metal release and speciation changes during wet aging of coal fly ashes. <i>Environmental Science & Environmental & Envi</i>	10.3	37
35	Effect of Ca2+ and Zn2+ on UO2 dissolution rates. <i>Environmental Science & Environmental Science & Env</i>	10.3	29
34	Molecular-scale structure of uranium(VI) immobilized with goethite and phosphate. <i>Environmental Science & Environmental</i> (Science & Environmental	10.3	75
33	Fate of Metals in Fly Ash During Aging in Laboratory-Scale Ash Impoundments. <i>Environmental Engineering Science</i> , 2012 , 29, 1085-1091	2	4
32	Precipitation of Magnesium Carbonates as a Function of Temperature, Solution Composition, and Presence of a Silicate Mineral Substrate. <i>Environmental Engineering Science</i> , 2011 , 28, 881-889	2	26
31	Uranium speciation and stability after reductive immobilization in aquifer sediments. <i>Geochimica Et Cosmochimica Acta</i> , 2011 , 75, 6497-6510	5.5	95

(2008-2011)

30	Effects of water chemistry on arsenic removal from drinking water by electrocoagulation. <i>Water Research</i> , 2011 , 45, 384-92	12.5	164
29	Effects of flow and water chemistry on lead release rates from pipe scales. <i>Water Research</i> , 2011 , 45, 6525-34	12.5	78
28	U(VI) reduction by Fe(II) on hematite nanoparticles. <i>Journal of Nanoparticle Research</i> , 2011 , 13, 3741-37	5<u>4</u>3	19
27	Speciation of Selenium, Arsenic, and Zinc in Class C Fly Ash. <i>Energy & Description</i> 25, 2980-2987	4.1	50
26	Oxidative Dissolution of Biogenic Uraninite in Groundwater at Old Rifle, CO. <i>Environmental Science</i> & Samp; Technology, 2011 , 45, 8748-54	10.3	63
25	Speciation-Dependent Kinetics of Uranium(VI) Bioreduction. <i>Geomicrobiology Journal</i> , 2011 , 28, 396-40	92.5	25
24	Formation of lead(IV) oxides from lead(II) compounds. <i>Environmental Science & Environmental Science &</i>	10.3	45
23	Impact of chlorine disinfectants on dissolution of the lead corrosion product PbO2. <i>Environmental Science & Environmental Sci</i>	10.3	35
22	Impact of phosphate on U(VI) immobilization in the presence of goethite. <i>Geochimica Et Cosmochimica Acta</i> , 2010 , 74, 6324-6343	5.5	77
21	Effects of pH and carbonate concentration on dissolution rates of the lead corrosion product PbO(2). <i>Environmental Science & Environmental Science & </i>	10.3	40
20	Effect of Mn(II) on the structure and reactivity of biogenic uraninite. <i>Environmental Science & Environmental Science & Technology</i> , 2009 , 43, 6541-7	10.3	30
19	Comparative dissolution kinetics of biogenic and chemogenic uraninite under oxidizing conditions in the presence of carbonate. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 6065-6083	5.5	86
18	Nanoscale size effects on uranium(VI) adsorption to hematite. <i>Environmental Science & Environmental &</i>	10.3	124
17	Indirect UO2 oxidation by Mn(II)-oxidizing spores of Bacillus sp. strain SG-1 and the effect of U and Mn concentrations. <i>Environmental Science & Environmental Science & Envi</i>	10.3	42
16	Individual and competitive adsorption of arsenate and phosphate to a high-surface-area iron oxide-based sorbent. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	157
15	Report from the third workshop on future directions of solid-state chemistry: The status of solid-state chemistry and its impact in the physical sciences. <i>Progress in Solid State Chemistry</i> , 2008 , 36, 1-133	8	51
14	Effects of water chemistry and flow rate on arsenate removal by adsorption to an iron oxide-based sorbent. <i>Water Research</i> , 2008 , 42, 4629-36	12.5	54
13	Microbial reduction of Fe(III) in hematite nanoparticles by Geobacter sulfurreducens. <i>Environmental Science & Environmental &</i>	10.3	55

12	Dissolution of biogenic and synthetic UO2 under varied reducing conditions. <i>Environmental Science & Environmental Science & Environmental Science</i>	10.3	83
11	Evaluation of Nanostructured Sorbents in Differential Bed Reactors for Elemental Mercury Capture. <i>Environmental Engineering Science</i> , 2008 , 25, 1061-1070	2	13
10	Immobilization of Lead with Nanocrystalline Carbonated Apatite Present in Fish Bone. <i>Environmental Engineering Science</i> , 2008 , 25, 725-736	2	31
9	Equilibrium solubility and dissolution rate of the lead phosphate chloropyromorphite. <i>Environmental Science & Environmental S</i>	10.3	50
8	Evaluation of a sequential extraction process used for determining mercury binding mechanisms to coal combustion byproducts. <i>Journal of the Air and Waste Management Association</i> , 2007 , 57, 856-67	2.4	27
7	Evaluation of chemical indicators for tracking and apportionment of phosphorus sources to Table Rock Lake in Southwest Missouri, USA. <i>Water Research</i> , 2007 , 41, 1525-33	12.5	1
6	Effects of Particle Size and Crystalline Phase on Lead Adsorption to Titanium Dioxide Nanoparticles. <i>Environmental Engineering Science</i> , 2007 , 24, 85-95	2	133
5	Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. <i>Chemical Geology</i> , 2005 , 217, 257-276	4.2	284
4	Influence of dissolved sodium and cesium on uranyl oxide hydrate solubility. <i>Environmental Science & Environmental Science</i>	10.3	35
3	Equilibrium and kinetic aspects of soddyite dissolution and secondary phase precipitation in aqueous suspension. <i>Geochimica Et Cosmochimica Acta</i> , 2002 , 66, 3235-3245	5.5	24
2	Time scales for sorption-desorption and surface precipitation of uranyl on goethite. <i>Environmental Science & Environmental Sc</i>	10.3	116
1	Copper Complexation with the Mellitic Acid Series. <i>Journal of Solution Chemistry</i> , 1998 , 27, 89-105	1.8	12