
Hideyuki Katsumata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4614337/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Efficient Photocatalytic Activity of g-C ₃ N ₄ /Ag ₃ PO ₄ Hybrid Photocatalysts through Z-Scheme Photocatalytic Mechanism under Visible Light. Industrial & Engineering Chemistry Research, 2014, 53, 8018-8025.	3.7	375
2	Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163, 419-424.	3.9	234
3	Z-scheme photocatalytic hydrogen production over WO ₃ /g-C ₃ N ₄ composite photocatalysts. RSC Advances, 2014, 4, 21405-21409.	3.6	196
4	Degradation of bisphenol A in water by the photo-Fenton reaction. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 297-305.	3.9	190
5	Removal of Arsenic in Aqueous Solutions by Adsorption onto Waste Rice Husk. Industrial & Engineering Chemistry Research, 2006, 45, 8105-8110.	3.7	175
6	Photocatalytic hydrogen production from aqueous methanol solution with CuO/Al2O3/TiO2 nanocomposite. International Journal of Hydrogen Energy, 2010, 35, 6554-6560.	7.1	133
7	Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chemical Engineering Journal, 2006, 125, 59-66.	12.7	131
8	Photocatalytic degradation of bisphenol A by Ag3PO4 under visible light. Catalysis Communications, 2013, 34, 30-34.	3.3	111
9	Electrochemical reduction of CO2 in methanol with aid of CuO and Cu2O. Catalysis Today, 2009, 148, 329-334.	4.4	109
10	Electrochemical Reduction of CO2to Methane at the Cu Electrode in Methanol with Sodium Supporting Salts and Its Comparison with Other Alkaline Salts. Energy & Fuels, 2006, 20, 409-414.	5.1	104
11	Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 325, 97-103.	3.9	97
12	Removal of heavy metals in rinsing wastewater from plating factory by adsorption with economical viable materials. Journal of Environmental Management, 2003, 69, 187-191.	7.8	90
13	Photocatalytic Hydrogen Production from Aqueous Na ₂ S + Na ₂ SO ₃ Solution with B-Doped ZnO. ACS Sustainable Chemistry and Engineering, 2013, 1, 982-988.	6.7	89
14	Photo-Fenton degradation of alachlor in the presence of citrate solution. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 180, 38-45.	3.9	80
15	Preconcentration of diazinon using multiwalled carbon nanotubes as solid-phase extraction adsorbents. Microchemical Journal, 2008, 88, 82-86.	4.5	79
16	Photocatalytic hydrogen production with aid of simultaneous metal deposition using titanium dioxide from aqueous glucose solution. International Journal of Hydrogen Energy, 2013, 38, 5517-5524.	7.1	77
17	Humic acid degradation in aqueous solution by the photo-Fenton process. Chemical Engineering Journal, 2008, 137, 225-230.	12.7	75
18	Photocatalytic degradation of diuron in aqueous solution by platinized TiO2. Journal of Hazardous Materials. 2009. 171. 1081-1087.	12.4	74

#	Article	IF	CITATIONS
19	Photocatalytic hydrogen production with CuS/ZnO from aqueous Na2SÂ+ÂNa2SO3 solution. International Journal of Hydrogen Energy, 2013, 38, 8625-8630.	7.1	74
20	Photoelectrocatalytic reduction of CO2 in LiOH/methanol at metal-modified p-InP electrodes. Applied Catalysis B: Environmental, 2006, 64, 139-145.	20.2	73
21	Photocatalytic activity of Ag/CuO/WO3 under visible-light irradiation. RSC Advances, 2013, 3, 5028.	3.6	70
22	Electrochemical conversion of carbon dioxide to methane in aqueous NaHCO3 solution at less than 273 K. Electrochimica Acta, 2002, 48, 51-55.	5.2	67
23	Degradation of linuron in aqueous solution by the photo-Fenton reaction. Chemical Engineering Journal, 2005, 108, 269-276.	12.7	64
24	Photoelectrochemical reduction of carbon dioxide at p-type gallium arsenide and p-type indium phosphide electrodes in methanol. Chemical Engineering Journal, 2006, 116, 227-231.	12.7	63
25	Effect of sodium cation on the electrochemical reduction of CO2 at a copper electrode in methanol. Journal of Solid State Electrochemistry, 2007, 11, 490-495.	2.5	60
26	Preconcentration of atrazine and simazine with multiwalled carbon nanotubes as solid-phase extraction disk. Microchemical Journal, 2010, 96, 348-351.	4.5	59
27	Electrochemical reduction of high pressure CO2 at a Cu electrode in cold methanol. Electrochimica Acta, 2006, 51, 4880-4885.	5.2	58
28	Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu. International Journal of Hydrogen Energy, 2013, 38, 11840-11846.	7.1	58
29	Degradation of carbofuran in aqueous solution by Fe(III) aquacomplexes as effective photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170, 239-245.	3.9	57
30	Electrochemical reduction of carbon dioxide to ethylene at a copper electrode in methanol using potassium hydroxide and rubidium hydroxide supporting electrolytes. Electrochimica Acta, 2006, 51, 3316-3321.	5.2	57
31	Highly efficient visible-light driven AgBr/Ag3PO4 hybrid photocatalysts with enhanced photocatalytic activity. Materials Science in Semiconductor Processing, 2014, 25, 68-75.	4.0	53
32	Degradation of fenitrothion by ultrasound/ferrioxalate/UV system. Ultrasonics Sonochemistry, 2010, 17, 200-206.	8.2	52
33	High Efficiency Electrochemical CO2-to-Methane Conversion Method Using Methanol with Lithium Supporting Electrolytes. Industrial & Engineering Chemistry Research, 2002, 41, 5165-5170.	3.7	51
34	Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: Kinetics and mineralization. Chemical Engineering Journal, 2009, 148, 50-56.	12.7	51
35	Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 2011, 166, 468-473.	12.7	51
36	Photoelectrochemical reduction of CO2 at p-InP electrode in copper particle-suspended methanol. Chemical Engineering Journal, 2009, 148, 57-62.	12.7	47

#	Article	IF	CITATIONS
37	Determination of atrazine and simazine in water samples by high-performance liquid chromatography after preconcentration with heat-treated diatomaceous earth. Analytica Chimica Acta, 2006, 577, 214-219.	5.4	43
38	Dual-defect-modified graphitic carbon nitride with boosted photocatalytic activity under visible light. Scientific Reports, 2019, 9, 14873.	3.3	43
39	Removal of Natural Organic Polyelectrolytes by Adsorption onto Tobermorite. Environmental Science & Technology, 2003, 37, 1448-1451.	10.0	42
40	Electrochemical reduction of high pressure carbon dioxide at a Cu electrode in cold methanol with CsOH supporting salt. Chemical Engineering Journal, 2007, 128, 47-50.	12.7	38
41	Degradation of marine humic acids by ozone-initiated radical reactions. Chemical Engineering Journal, 2009, 148, 336-341.	12.7	37
42	Evaluation of Reaction Mechanism for Photocatalytic Degradation of Dye with Self-Sensitized TiO ₂ under Visible Light Irradiation. Open Journal of Inorganic Non-metallic Materials, 2017, 07, 1-7.	2.7	37
43	Electrochemical reduction of CO2 in copper particle-suspended methanol. Chemical Engineering Journal, 2006, 119, 107-112.	12.7	35
44	AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity. Materials Research Bulletin, 2015, 63, 116-122.	5.2	35
45	Photocatalytic degradation of diazinon in aqueous solution by platinized TiO ₂ . Desalination and Water Treatment, 2010, 13, 427-436.	1.0	34
46	Electrochemical reduction of CO2 using Cu electrode in methanol/LiClO4 electrolyte. International Journal of Hydrogen Energy, 2015, 40, 6740-6744.	7.1	32
47	Photocatalytic Reduction of Hexavalent Chromium with Nanosized TiO2 in Presence of Formic Acid. ChemEngineering, 2019, 3, 33.	2.4	32
48	Flow-injection determination of copper(II) based on its catalysis on the redox reaction of cysteine with iron(III) in the presence of 1,10-phenanthroline. Talanta, 1999, 50, 41-47.	5.5	31
49	Removal of thiobencarb in aqueous solution by zero valent iron. Chemosphere, 2008, 70, 511-515.	8.2	31
50	Enhanced photocatalytic reduction of toxic Cr(VI) with Cu modified ZnO nanoparticles in presence of EDTA under UV illumination. SN Applied Sciences, 2019, 1, 1.	2.9	29
51	Mineralization of Diazinon with nanosized-photocatalyst TiO ₂ in water under sunlight irradiation: optimization of degradation conditions and reaction pathway. Environmental Technology (United Kingdom), 2020, 41, 3524-3533.	2.2	28
52	Structurally modified graphitic carbon nitride with highly photocatalytic activity in the presence of visible light. Catalysis Today, 2020, 352, 47-53.	4.4	28
53	Z-scheme photocatalytic activity of g-C 3 N 4 /tetrahedral Ag 3 PO 4 hybrids under visible light. Materials Letters, 2017, 201, 66-69.	2.6	27
54	High-efficiency electrochemical CO2-to-methane reduction method using aqueous KHCO3 media at less than 273ÂK. Journal of Solid State Electrochemistry, 2003, 7, 152-156.	2.5	26

#	Article	IF	CITATIONS
55	Degradation of polychlorinated dibenzo-p-dioxins in aqueous solution by Fe(II)/H2O2/UV system. Chemosphere, 2006, 63, 592-599.	8.2	26
56	Highly Efficient Photocatalytic Hydrogen Production over PdS@CdS+ZnS(en) _{0.5} Photocatalyst under Visible Light Irradiation. Industrial & Engineering Chemistry Research, 2015, 54, 3532-3535.	3.7	26
57	Sonochemical degradation of 2,3,7,8-tetrachlorodibenzo-p-dioxins in aqueous solution with Fe(III)/UV system. Chemosphere, 2007, 69, 1261-1266.	8.2	25
58	Determination of linuron in water samples by high performance liquid chromatography after preconcentration with octadecyl silanized magnetite. Microchemical Journal, 2007, 85, 285-289.	4.5	24
59	Effect of temperature on wastewater treatment with natural and waste materials. Clean Technologies and Environmental Policy, 2005, 7, 198-202.	4.1	23
60	Visible-Light-Induced AgI/Bi7O9I3 Composites with Enhanced Photocatalytic Activity. Catalysis Letters, 2017, 147, 1503-1509.	2.6	23
61	Photocatalytic Decolorization of Dye with Self-Dye-Sensitization under Fluorescent Light Irradiation. ChemEngineering, 2017, 1, 8.	2.4	23
62	Wastewater treatment with multilayer media of waste and natural indigenous materials. Journal of Environmental Management, 2005, 74, 107-110.	7.8	22
63	Indirect photocatalytic reduction of arsenate to arsenite in aqueous solution with TiO 2 in the presence of hole scavengers. Chinese Journal of Chemical Engineering, 2018, 26, 529-533.	3.5	22
64	Degradation of Reactive Yellow 86 with photo-Fenton process driven by solar light. Journal of Environmental Sciences, 2010, 22, 1455-1461.	6.1	20
65	Dual Z-scheme heterojunction g-C3N4/Ag3PO4/AgBr photocatalyst with enhanced visible-light photocatalytic activity. Ceramics International, 2022, 48, 21898-21905.	4.8	20
66	Biodegradation of Phthalic Acid Esters by Bakery Yeast Saccharomyces cerevisiae. Bulletin of Environmental Contamination and Toxicology, 2003, 70, 255-261.	2.7	19
67	Preconcentration of phthalic acid esters in water samples by Saccharomyces cerevisiae immobilized on silica gel. Analytica Chimica Acta, 2004, 502, 167-172.	5.4	19
68	Studies of Effects of Calcination Temperature on the Crystallinity and Optical Properties of Ag-Doped ZnO Nanocomposites. Journal of Composites Science, 2019, 3, 18.	3.0	19
69	Formic acid motivated photocatalytic reduction of Cr(VI) to Cr(III) with ZnFe ₂ O ₄ nanoparticles under UV irradiation. Environmental Technology (United Kingdom), 2021, 42, 1-9.	2.2	18
70	Fabrication of Ag-doped ZnO by mechanochemical combustion method and their application into photocatalytic Famotidine degradation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 914-923.	1.7	17
71	Removal of organic polyelectrolytes and their metal complexes by adsorption onto xonotlite. Chemosphere, 2003, 52, 909-915.	8.2	16
72	Tetrahedral UMOFNs/Ag ₃ PO ₄ Core–Shell Photocatalysts for Enhanced Photocatalytic Activity under Visible Light. ACS Omega, 2019, 4, 15975-15984.	3.5	16

#	Article	IF	CITATIONS
73	Ternary dual <i>Z</i> -scheme graphitic carbon nitride/ultrathin metal–organic framework nanosheet/Ag ₃ PO ₄ photocatalysts for boosted photocatalytic performance under visible light. RSC Advances, 2019, 9, 39843-39853.	3.6	16
74	Photocatalytic degradation of a typical neonicotinoid insecticide: nitenpyrum by ZnO nanoparticles under solar irradiation. Environmental Science and Pollution Research, 2020, 27, 20446-20456.	5.3	16
75	Determination of simazine in water samples by HPLC after preconcentration with diatomaceous earth. Talanta, 2004, 65, 129-34.	5.5	15
76	Optimization of Alachlor Photocatalytic Degradation with Nano-TiO2 in Water under Solar Illumination: Reaction Pathway and Mineralization. Clean Technologies, 2018, 1, 141-153.	4.2	15
77	Polynuclear Aromatic Thiophenes in the Murchison Carbonaceous Chondrite. Chemistry Letters, 2001, 30, 202-203.	1.3	14
78	Photocatalytic hydrogen production from aqueous Na2SO3 + Na2S solution with B/CuO/ZnO under visible light irradiation. RSC Advances, 2013, 3, 20429.	3.6	14
79	Potentiometric flow titration of iron(II) and chromium(VI) based on flow rate ratio of a titrant to a sample. Talanta, 1999, 48, 135-141.	5.5	13
80	Successive Potentiometric Titration of Iron(II) and Iron(III) with Cobalt(II) in the Presence of 1,10-Phenanthroline Analytical Sciences, 1999, 15, 657-660.	1.6	13
81	Development of Novel Redox Systems by Use of Ligand Effect and Its Application to Potentiometry Analytical Sciences, 2000, 16, 901-911.	1.6	13
82	Enhanced hydrogen production from aqueous methanol solution using TiO2/Cu as photocatalysts. Frontiers of Chemical Science and Engineering, 2014, 8, 197-202.	4.4	13
83	Photoelectrochemical Reduction of CO ₂ in Methanol with TiO ₂ Photoanode and Metal Cathode. ECS Transactions, 2017, 75, 31-37.	0.5	13
84	Successive Potentiometric Titration of Chromium(VI) and Iron(III) with Cobalt(II) in the Presence of 1,10-Phenanthroline. Bulletin of the Chemical Society of Japan, 1997, 70, 2151-2154.	3.2	12
85	PHOTOCATALYTIC DEGRADATION OF FENITROTHION IN WATER WITH TIO2 UNDER SOLAR IRRADIATION. Water Conservation and Management, 2018, 2, 01-05.	0.5	12
86	Novel Photocatalytic NH3 Synthesis by NO3â^'ÂReduction over CuAg/TiO2. ChemEngineering, 2019, 3, 49.	2.4	11
87	Potentiometric Titration of Cobalt(II) with Cerium(IV) in the Presence of 1,10-Phenanthroline. Analytical Sciences, 1997, 13, 825-827.	1.6	10
88	A new flow-injection determination of glucose based on the redox reaction of hydroquinone with iron(III) in the presence of 1,10-phenanthroline. Talanta, 2000, 51, 1197-1204.	5.5	10
89	Preconcentration of trace lead by adsorption onto a tantalum wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Microchemical Journal, 2007, 86, 89-93.	4.5	10
90	Facile Synthesis of WO3 Nanorod Thin Films on W Substrate with Enhanced Photocatalytic Performance. Catalysis Letters, 2014, 144, 837-842.	2.6	10

#	Article	IF	CITATIONS
91	Degradation, Kinetics, and Mineralization in Solar Photocatalytic Treatment of Aqueous Amitrole Solution with Titanium Dioxide. Environmental Engineering Science, 2018, 35, 401-407.	1.6	10
92	Electrochemical Carbon Dioxide Reduction in Methanol at Cu and Cu2O-Deposited Carbon Black Electrodes. ChemEngineering, 2019, 3, 15.	2.4	10
93	Removal of Methylene Blue, Rhodamine B and Ammonium Ion from Aqueous Solution by Adsorption onto Sintering Porous Materials Prepared from Coconut Husk Waste. Open Journal of Inorganic Non-metallic Materials, 2015, 05, 21-30.	2.7	10
94	Removal of Humic Substances and Their Metal Complexes by Adsorption. Environmental Engineering Science, 2004, 21, 341-348.	1.6	9
95	Solar photocatalytic decomposition of Probenazole in water with TiO ₂ in the presence of H ₂ O ₂ . Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2018, 40, 2432-2441.	2.3	9
96	Improvement of Photocatalytic H2-Generation under Visible Light Irradiation by Controlling the Band Gap of ZnIn2S4 with Cu and In. Catalysts, 2019, 9, 681.	3.5	9
97	Alkyl and polynuclear aromatic thiophenes in Neogene sediments of the Shinjo basin, Japan Geochemical Journal, 2001, 35, 37-48.	1.0	8
98	Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Mikrochimica Acta, 2008, 162, 73-79.	5.0	8
99	The Effect of Cu and Ga Doped ZnIn2S4 under Visible Light on the High Generation of H2 Production. ChemEngineering, 2019, 3, 79.	2.4	8
100	Photocatalytic Degradation of a Systemic Herbicide: Picloram from Aqueous Solution Using Titanium Oxide (TiO2) under Sunlight. ChemEngineering, 2020, 4, 58.	2.4	8
101	Highly photocatalytic hydrogen generation over P-doped g-C3N4 with aromatic ring structure. Materials Letters, 2021, 299, 130068.	2.6	7
102	Enhanced Removal of Arsenite from Ground Water by Adsorption onto Heat-Treated Rice Husk. Open Journal of Inorganic Non-metallic Materials, 2016, 06, 18-23.	2.7	7
103	Slurry Sampling Techniques for the Determination of Lead in Bangladeshi Fish Samples by Electrothermal Atomic Absorption Spectrometry with a Metal Tube Atomizer. Annali Di Chimica, 2005, 95, 325-333.	0.6	6
104	Water purification with sintered porous materials fabricated at 400°C from sea bottom sediments. Journal of Environmental Sciences, 2008, 20, 172-176.	6.1	6
105	Photocatalytic degradation of a typical agricultural chemical: metalaxyl in water using TiO2 under solar irradiation. SN Applied Sciences, 2020, 2, 1.	2.9	6
106	Enhanced Photocatalytic Degradation of Bisphenol A in Aqueous Solution by Ag-Doping ZnO. Open Journal of Inorganic Non-metallic Materials, 2016, 06, 13-17.	2.7	6
107	Photocatalytic Hydrogen Production from Formic Acid Solution with Titanium Dioxide with the Aid of Simultaneous Rh Deposition. ChemEngineering, 2022, 6, 43.	2.4	6
108	Electrochemical Reduction of CO2 on Cu Electrode in Methanol at Low Temperature. ACS Symposium Series, 2003, , 169-182.	0.5	5

#	Article	IF	CITATIONS
109	Simultaneous removal of trihalomethanes by bimetallic Ag/Zn: kinetics study. Frontiers of Chemical Engineering in China, 2010, 4, 322-327.	0.6	5
110	Preconcentration of trace indium in aqueous samples using sodium dodecyl sulphate/activated carbon prior to electrothermal furnace absorption spectrometry. International Journal of Environmental Analytical Chemistry, 2021, 101, 719-733.	3.3	5
111	Electrochemical Reduction of CO2 at Alloy Electrode in Methanol. Studies in Surface Science and Catalysis, 2004, , 277-282.	1.5	4
112	Photocatalytic hydrogen production from aqueous methanol solution using titanium dioxide with the aid of simultaneous metal deposition. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 110-116.	2.3	4
113	Enhanced Photocatalytic Activity of Phosphorus-Chlorine Codoped Graphitic Carbon Nitride under Visible Light Irradiation. ECS Transactions, 2017, 75, 47-56.	0.5	4
114	Highly Efficient Visible-Light-Driven Photocatalytic H2Production Using Carbon Particle/g-C3N4Photocatalysts with an Electron Donor. ECS Transactions, 2017, 75, 75-84.	0.5	4
115	Preconcentration of Pb with Aminosilanized Fe3O4 Nanopowders in Environmental Water Followed by Electrothermal Atomic Absorption Spectrometric Determination. ChemEngineering, 2019, 3, 74.	2.4	4
116	Electrochemical decolorization of methylene blue in solution with metal doped Ti/α,β-PbOâ,, mesh electrode. Separation Science and Technology, 0, , 1-13.	2.5	4
117	Synthesis of an iso-type graphitic carbon nitride heterojunction derived from oxamide and urea in molten salt for high-performance visible-light driven photocatalysis. New Journal of Chemistry, 2022, 46, 8999-9009.	2.8	4
118	Ag-modified g-C ₃ N ₄ with enhanced activity for the photocatalytic reduction of hexavalent chromium in the presence of EDTA under ultraviolet irradiation. Environmental Technology (United Kingdom), 2022, , 1-39.	2.2	4
119	Thiophenes in the Cretaceous/Tertiary boundary sediments at Kawaruppu, Hokkaido, Japan Geochemical Journal, 2001, 35, 67-76.	1.0	3
120	Reduction of carbon dioxide using metal powders. Studies in Surface Science and Catalysis, 2004, , 55-60.	1.5	3
121	Atomic Absorption Spectrometry Using Tungsten and Molybdenum Tubes as Metal Atomizer. Bunseki Kagaku, 2007, 56, 535-546.	0.2	3
122	Solid-Phase Extraction for Environmental Analysis. Analytical Sciences, 2019, 35, 1289-1290.	1.6	3
123	Performance of EDTA modified magnetic ZnFe ₂ O ₄ during photocatalytic reduction of Cr(VI) in aqueous solution under UV irradiation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2021, 56, 44-51.	1.7	3
124	Photocatalytic removal of famotidine with TiO2 from water in the presence of dye under visible light irradiation. , 0, 87, 338-347.		3
125	Ultra-thin graphene/g-C ₃ N ₄ nanosheets with in-plane heterojunction for enhanced visible-light photocatalytic hydrogen evolution performance. Materials Technology, 2022, 37, 2194-2203.	3.0	3
126	Effect of Metal Nitrates on the Formation of PCDD/Fs During Newspaper Combustion. Bulletin of Environmental Contamination and Toxicology, 2004, 73, 479-86.	2.7	2

#	Article	IF	CITATIONS
127	Microbial Metabolism of Di-n-butyl Phthalate by BacteriumBacillus Natto. Chemistry Letters, 2004, 33, 682-683.	1.3	2
128	Optimized Conditions for the Solar Photocatalytic Degradation of Bisphenol a in Water Using Zinc Oxide. Annali Di Chimica, 2005, 95, 715-719.	0.6	2
129	Solar Photocatalytic Degradation of Dicamba in Aqueous Solution and Its Mechanism. Bunseki Kagaku, 2011, 60, 345-351.	0.2	2
130	Determination of aniline derivatives in water samples after preconcentration with oxidized multiwalled carbon nanotubes as solid-phase extraction disk. Frontiers of Chemical Science and Engineering, 2012, 6, 270-275.	4.4	2
131	Photocatalytic Hydrogen Production from Aqueous Alcohol Solution with Titanium Dioxide Nanocomposites. ACS Symposium Series, 2012, , 25-36.	0.5	2
132	Electrothermal atomic absorption spectrometric determination of cadmium in environmental samples with niobium wire preconcentration method. International Journal of Environmental Analytical Chemistry, 2013, 93, 1381-1388.	3.3	2
133	Degradation of carbofuran by V(IV)/H2O2 system in aqueous solution. Bangladesh Journal of Scientific and Industrial Research, 2015, 50, 211-218.	0.3	2
134	Determination of Cadmium in Environmental Samples by Flame Atomic Absorption Spectrometry with Preconcentration Using Sodium Dodecyl Sulfate/Activated Carbon. Bunseki Kagaku, 2016, 65, 419-424.	0.2	2
135	Application of solidified sea bottom sediments into environmental bioremediation materials. Arabian Journal of Chemistry, 2017, 10, S2592-S2600.	4.9	2
136	Application of Sodium Dodecyl Sulfate/Activated Carbon onto the Preconcentration of Cadmium Ions in Solid-Phase Extraction Flow System. ChemEngineering, 2019, 3, 67.	2.4	2
137	Nanocomposite Magnetite-Kaolin for Rh Preconcentration and Determination by Electrothermal Atomic Absorption Spectrometry. Analytical Sciences, 2020, 36, 87-90.	1.6	2
138	Optimization of Operating Conditions for Electrochemical Decolorization of Methylene Blue with Ti/α-PbO2/β-PbO2 Composite Electrode. Journal of Composites Science, 2021, 5, 117.	3.0	2
139	Highly efficient visible light-induced photocatalytic oxidation of arsenite with nanosized WO ₃ particles in the presence of Cu ²⁺ and CuO. Environmental Technology (United Kingdom), 2023, 44, 3096-3107.	2.2	2
140	Characterization of Soft Blocks in Non-Yellow Thermoplastic Polyurethane Based on Chemical Degradation by 4-Dimethylaminopyridine. Mikrochimica Acta, 2002, 140, 183-187.	5.0	1
141	Source Estimation of PCDD/Fs and Dioxin-Like PCBs in Sediments at Nagoya City. Bunseki Kagaku, 2009, 58, 81-86.	0.2	1
142	Determination of Silver in Environmental Samples by Electrothermal Atomic Absorption Spectrometry after Preconcentration with Protein. Bunseki Kagaku, 2010, 59, 1113-1117.	0.2	1
143	Long Physico-Chemical and Biological Monitoring for Treated Artificial Tidal Flats with Recycled Paper Sludge in Ago Bay, Japan. Advanced Materials Research, 2013, 795, 308-312.	0.3	1
144	Development and Evaluation of Responsive Glass for pH Electrodes Capable of Taking Measurments from Samples as Small as 50 î¼L. Bunseki Kagaku, 2019, 68, 103-108.	0.2	1

#	Article	IF	CITATIONS
145	DEVELOPMENT OF CARBON NANOTUBE AS HIGHLY ACTIVE PHOTOCATATLYTIC ADSORBENT FOR TREATMENT OF ACID RED 88 DYE. Water Conservation and Management, 2020, 5, 26-29.	0.5	1
146	Development of Ag/Ag ₂ O/ZnO photocatalyst and their photocatalytic activity towards dibutyl phthalate decomposition in water. Journal of the Air and Waste Management Association, 2022, 72, 1137-1152.	1.9	1
147	Mixed Hemimicelles Solid phase Extraction of Atrazine and Simazine from Environmental Water Samples Using Alumina-Coated Magnetite Composite Material. Journal of Analytical Chemistry, 2022, 77, 581-587.	0.9	1
148	SAMPLING TECHNIQUE FOR ANALYSIS OF IMPURITY SUBSTANCES IN THERMOPLASTIC POLYURETHANE BY MICROSCOPY-FTIR. Analytical Letters, 2002, 35, 2331-2335.	1.8	0
149	Separation of zinc compounds by sequential metal vapor elution analysis with atomic absorption detection. Talanta, 2004, 64, 989-992.	5.5	0
150	Long-Term Sampling Method for PCDD/Fs in Atmosphere by Adsorption onto Economical Materials. Chemistry Letters, 2004, 33, 1618-1619.	1.3	0
151	Sequential molecular vapor elution analysis for the separation and determination of LiCl and NaCl in river waters. Analytica Chimica Acta, 2006, 560, 159-163.	5.4	0
152	Effect of lignophenol on allergen mitigation. Chemistry of Natural Compounds, 2010, 46, 79-82.	0.8	0
153	Preconcentration of trace elements by adsorption onto a niobium wire for electrothermal atomization atomic absorption spectrometry with a tungsten tube atomizer. Frontiers of Chemical Science and Engineering, 2012, 6, 432-435.	4.4	0
154	Development of pH Responsive Glass by Addition of Y ₂ O ₃ and Sc ₂ O ₃ . Bunseki Kagaku, 2015, 64, 519-526.	0.2	0
155	Evaluation of Responsibility for pH-responsive Glass by Surface Elemental Analysis. Bunseki Kagaku, 2016, 65, 267-273.	0.2	0
156	Thermal H2Production by Decomposition of HCOOH with Pd/ZnO Catalyst. ECS Transactions, 2017, 75, 39-45.	0.5	0
157	"New Horizons in Analytical Sciences of Functional Materials― Analytical Sciences, 2019, 35, 357-357.	1.6	0
158	Efficient photocatalytic hydrogen production by Zn(1â^'2x)CuxIn2S(4â^'1.5x) co-doped with Cu and excess in under visible light irradiation. SN Applied Sciences, 2020, 2, 1.	2.9	0
159	Development of Heavy Metal-Free Photocatalytic RhB Decomposition System Using a Biodegradable Plastic Substrate. ChemEngineering, 2021, 5, 11.	2.4	0
160	Growth of Young Short-Necked Clam in the Artificial Tidal Flat Created by Using Solidification^ ^frasl;Stabilization Techniques with Paper Sludge Ash-based Coagulants. Kami Pa Gikyoshi/Japan Tappi Journal, 2011, 65, 1189-1196.	0.1	0
161	Optimization of Conditions for the Photocatalytic Degradation of EDTA in Aqueous Solution with Fe-Doped Titanium Dioxide. Open Journal of Inorganic Non-metallic Materials, 2014, 04, 28-34.	2.7	Ο
162	Enhanced Photocatalytic Activity of Phosphorus-Doped Graphitic Carbon Nitride Under Visible Light Irradiation. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
163	H2 Production Using Thermal Decomposition of Hcooh with Pd/ZnO Catalyst. ECS Meeting Abstracts, 2016, , .	0.0	0
164	Highly Efficient Visible-Light Driven Carbon Particles/g-C3N4 Photocatalysts with Enhanced Photocatalytic H2 Production. ECS Meeting Abstracts, 2016, , .	0.0	0
165	Conversion of CO2 in Methanol into HCOOCH3 and CO By Photoelectrochemical Reduction with TiO2 Photoanode. ECS Meeting Abstracts, 2016, , .	0.0	0
166	Photocatalytic Hydrogen Production with Zn-Based Photocatalyst. ECS Meeting Abstracts, 2016, , .	0.0	0
167	"New Horizons in Analytical Sciences of Functional Materials― Analytical Sciences, 2019, 35, 233-233.	1.6	0
168	Enhanced Photocatalytic Hydrogen Production with Treated Cus/Znos from S2-/so3 2- Solution. ECS Meeting Abstracts, 2020, MA2020-02, 3657-3657.	0.0	0
169	Synthesis of g-C ₃ N ₄ Derived from Oxamide and Urea in Molten Salt and Its Visible Light Photocatalytic Activity. ECS Meeting Abstracts, 2020, MA2020-02, 3673-3673.	0.0	0
170	Electrochemical Decolorizaton of Dye in Solution with Modified Ti/α-PbO2/β-PbO2 Mesh Electrode. ECS Meeting Abstracts, 2020, MA2020-02, 3680-3680.	0.0	0
171	Visible Light Hydrogen Production By CdZnS Photocatalysts Prepared in Ethylenediamine Aqueous Solution. ECS Meeting Abstracts, 2020, MA2020-02, 3123-3123.	0.0	0
172	PHOTOCATALYTIC DEGRADATION OF BISPHENOL E WITH NANO-SCLAED TIO2 IN AQUEOUS SOLUTION UNDER SOLAR RADIATION. INWASCON Technology Magazine, 0, 3, 34-40.	0.4	0
173	Oxygen-Modified G-C3n4 with In-Plane Pyridine Ring for Enhanced Visible-Light-Driven Photocatalytic Hydrogen Generation. SSRN Electronic Journal, 0, , .	0.4	0
174	Enhanced Photocatalytic H ₂ Evolution over P-Doped g-C ₃ N ₄ with Aromatic Rings Composites. ECS Meeting Abstracts, 2020, MA2020-02, 3663-3663.	0.0	0