Doug MacFarlane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461338/publications.pdf Version: 2024-02-01

		764	1489
799	65,517	119	219
papers	citations	h-index	g-index
871 all docs	871 docs citations	871 times ranked	41378 citing authors

#	Article	IF	CITATIONS
1	Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials, 2009, 8, 621-629.	13.3	4,067
2	Energy applications of ionic liquids. Energy and Environmental Science, 2014, 7, 232-250.	15.6	1,455
3	Use of Ionic Liquids for pi -Conjugated Polymer Electrochemical Devices. Science, 2002, 297, 983-987.	6.0	1,155
4	Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nature Catalysis, 2019, 2, 290-296.	16.1	1,056
5	Pyrrolidinium Imides:Â A New Family of Molten Salts and Conductive Plastic Crystal Phases. Journal of Physical Chemistry B, 1999, 103, 4164-4170.	1.2	1,021
6	Vitrification as an approach to cryopreservation. Cryobiology, 1984, 21, 407-426.	0.3	994
7	Introduction: Ionic Liquids. Chemical Reviews, 2017, 117, 6633-6635.	23.0	855
8	A Roadmap to the Ammonia Economy. Joule, 2020, 4, 1186-1205.	11.7	782
9	Ionic Liquids in Electrochemical Devices and Processes: Managing Interfacial Electrochemistry. Accounts of Chemical Research, 2007, 40, 1165-1173.	7.6	660
10	On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 4962.	1.3	645
11	Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries. Nature, 1999, 402, 792-794.	13.7	570
12	Ionic Liquids—An Overview. Australian Journal of Chemistry, 2004, 57, 113.	0.5	550
13	Hierarchical Mesoporous SnO ₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO ₂ Reduction with High Efficiency and Selectivity. Angewandte Chemie - International Edition, 2017, 56, 505-509.	7.2	526
14	Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nature Reviews Materials, 2016, 1, .	23.3	511
15	A Review of Ionic Liquid Lubricants. Lubricants, 2013, 1, 3-21.	1.2	510
16	Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids. Energy and Environmental Science, 2017, 10, 2516-2520.	15.6	497
17	Single-Boron Catalysts for Nitrogen Reduction Reaction. Journal of the American Chemical Society, 2019, 141, 2884-2888.	6.6	497
18	High Rates of Oxygen Reduction over a Vapor Phase–Polymerized PEDOT Electrode. Science, 2008, 321, 671-674.	6.0	493

2

#	Article	IF	CITATIONS
19	Room-Temperature Molten Salts Based on the Quaternary Ammonium Ion. Journal of Physical Chemistry B, 1998, 102, 8858-8864.	1.2	481
20	Low viscosity ionic liquids based on organic salts of the dicyanamide anion. Chemical Communications, 2001, , 1430-1431.	2.2	466
21	High Lithium Metal Cycling Efficiency in a Room-Temperature Ionic Liquid. Electrochemical and Solid-State Letters, 2004, 7, A97.	2.2	454
22	Ionic liquids for energy, materials, and medicine. Chemical Communications, 2014, 50, 9228-9250.	2.2	447
23	Ionic liquids based on imidazolium, ammonium and pyrrolidinium salts of the dicyanamide anion. Green Chemistry, 2002, 4, 444-448.	4.6	441
24	Phosphonium-Based Ionic Liquids: An Overview. Australian Journal of Chemistry, 2009, 62, 309.	0.5	441
25	Protein solubilising and stabilising ionic liquids. Chemical Communications, 2005, , 4804.	2.2	427
26	Porous nitrogen-doped hollow carbon spheres derived from polyaniline for high performance supercapacitors. Journal of Materials Chemistry A, 2014, 2, 5352-5357.	5.2	403
27	Lewis base ionic liquids. Chemical Communications, 2006, , 1905.	2.2	399
28	Promising prospects for 2D d ² –d ⁴ M ₃ C ₂ transition metal carbides (MXenes) in N ₂ capture and conversion into ammonia. Energy and Environmental Science, 2016, 9, 2545-2549.	15.6	395
29	Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chemistry, 2009, 11, 339.	4.6	390
30	Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors. Journal of Power Sources, 2007, 171, 1062-1068.	4.0	378
31	High conductivity molten salts based on the imide ion. Electrochimica Acta, 2000, 45, 1271-1278.	2.6	375
32	lonic Liquids—Progress on the Fundamental Issues. Australian Journal of Chemistry, 2007, 60, 3.	0.5	372
33	Understanding of Electrochemical Mechanisms for CO ₂ Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes). ACS Nano, 2017, 11, 10825-10833.	7.3	359
34	Plastic Crystal Electrolyte Materials: New Perspectives on Solid State Ionics. Advanced Materials, 2001, 13, 957-966.	11.1	340
35	Solubility and Stability of Cytochromecin Hydrated Ionic Liquids:Â Effect of Oxo Acid Residues and Kosmotropicity. Biomacromolecules, 2007, 8, 2080-2086.	2.6	338
36	Bioactives from fruit processing wastes: Green approaches to valuable chemicals. Food Chemistry, 2017, 225, 10-22.	4.2	338

#	Article	IF	CITATIONS
37	Characterization of the Lithium Surface in N-Methyl-N-alkylpyrrolidinium Bis(trifluoromethanesulfonyl)amide Room-Temperature Ionic Liquid Electrolytes. Journal of the Electrochemical Society, 2006, 153, A595.	1.3	325
38	Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper. Pharmaceutical Research, 2010, 27, 521-526.	1.7	307
39	Thermal Degradation of Ionic Liquids at Elevated Temperatures. Australian Journal of Chemistry, 2004, 57, 145.	0.5	301
40	Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nature Communications, 2016, 7, 11335.	5.8	294
41	Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science, 2021, 372, 1187-1191.	6.0	289
42	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	15.6	284
43	Cyto-toxicity and biocompatibility of a family of choline phosphate ionic liquids designed for pharmaceutical applications. Green Chemistry, 2010, 12, 507.	4.6	277
44	The zwitterion effect in high-conductivity polyelectrolyte materials. Nature Materials, 2004, 3, 29-32.	13.3	276
45	Use of Ionic Liquids as Electrolytes in Electromechanical Actuator Systems Based on Inherently Conducting Polymers. Chemistry of Materials, 2003, 15, 2392-2398.	3.2	274
46	Energy and environment policy case for a global project on artificial photosynthesis. Energy and Environmental Science, 2013, 6, 695.	15.6	264
47	Identification and elimination of false positives in electrochemical nitrogen reduction studies. Nature Communications, 2020, 11, 5546.	5.8	264
48	Towards a better Sn: Efficient electrocatalytic reduction of CO 2 to formate by Sn/SnS 2 derived from SnS 2 nanosheets. Nano Energy, 2017, 31, 270-277.	8.2	261
49	MoS ₂ Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. ACS Energy Letters, 2019, 4, 430-435.	8.8	261
50	Electrochemistry of Room Temperature Protic Ionic Liquids. Journal of Physical Chemistry B, 2008, 112, 6923-6936.	1.2	254
51	Conversion of dinitrogen to ammonia on Ru atoms supported on boron sheets: a DFT study. Journal of Materials Chemistry A, 2019, 7, 4771-4776.	5.2	251
52	Organic ionic plastic crystals: recent advances. Journal of Materials Chemistry, 2010, 20, 2056.	6.7	247
53	Liquids intermediate between "molecular―and "ionic―liquids: Liquid Ion Pairs?. Chemical Communications, 2007, , 3817.	2.2	231
54	lonicity and proton transfer in protic ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 10341.	1.3	229

#	Article	IF	CITATIONS
55	Investigation of ionic liquids as electrolytes for carbon nanotube electrodes. Electrochemistry Communications, 2004, 6, 22-27.	2.3	228
56	High Seebeck coefficient redox ionic liquid electrolytes for thermal energy harvesting. Energy and Environmental Science, 2013, 6, 2639.	15.6	228
57	Thermal degradation of cyano containing ionic liquids. Green Chemistry, 2006, 8, 691.	4.6	224
58	Thermo-electrochemical cells for waste heat harvesting – progress and perspectives. Chemical Communications, 2017, 53, 6288-6302.	2.2	218
59	Longâ€Term Structural and Chemical Stability of DNA in Hydrated Ionic Liquids. Angewandte Chemie - International Edition, 2010, 49, 1631-1633.	7.2	209
60	Novel Na ⁺ Ion Diffusion Mechanism in Mixed Organic–Inorganic Ionic Liquid Electrolyte Leading to High Na ⁺ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells Journal of Physical Chemistry C, 2016, 120, 4276-4286.	1.5	209
61	Fast Charge/Discharge of Li Metal Batteries Using an Ionic Liquid Electrolyte. Journal of the Electrochemical Society, 2013, 160, A1629-A1637.	1.3	208
62	High Capacity, Safety, and Enhanced Cyclability of Lithium Metal Battery Using a V ₂ O ₅ Nanomaterial Cathode and Room Temperature Ionic Liquid Electrolyte. Chemistry of Materials, 2008, 20, 7044-7051.	3.2	205
63	Rational Electrode–Electrolyte Design for Efficient Ammonia Electrosynthesis under Ambient Conditions. ACS Energy Letters, 2018, 3, 1219-1224.	8.8	204
64	Electrochemistry at Negative Potentials in Bis(trifluoromethanesulfonyl)amide Ionic Liquids. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1483-1498.	1.4	200
65	Direct electro-deposition of graphene from aqueous suspensions. Physical Chemistry Chemical Physics, 2011, 13, 9187.	1.3	197
66	Ambient Temperature Plastic Crystal Electrolyte for Efficient, All-Solid-State Dye-Sensitized Solar Cell. Journal of the American Chemical Society, 2004, 126, 13590-13591.	6.6	196
67	Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials, 2015, 27, 1090-1096.	11.1	193
68	Sugars Exert a Major Influence on the Vitrification Properties of Ethylene Glycol-Based Solutions and Have Low Toxicity to Embryos and Oocytes. Cryobiology, 1999, 38, 119-130.	0.3	192
69	Electrochemical synthesis of polypyrrole in ionic liquids. Polymer, 2004, 45, 1447-1453.	1.8	191
70	Ion diffusion in molten salt mixtures. Electrochimica Acta, 2000, 45, 1279-1284.	2.6	190
71	The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium-Metal Batteries. Advanced Materials, 2005, 17, 2497-2501.	11.1	189
72	Steric Modification of a Cobalt Phthalocyanine/Graphene Catalyst To Give Enhanced and Stable Electrochemical CO ₂ Reduction to CO. ACS Energy Letters, 2019, 4, 666-672.	8.8	183

#	Article	IF	CITATIONS
73	Rapid, clean, and mild O-acetylation of alcohols and carbohydrates in an ionic liquid. Chemical Communications, 2002, , 714-715.	2.2	181
74	Room temperature CO2 reduction to solid carbon species on liquid metals featuring atomically thin ceria interfaces. Nature Communications, 2019, 10, 865.	5.8	179
75	Feasibility of N ₂ Binding and Reduction to Ammonia on Feâ€Deposited MoS ₂ 2D Sheets: A DFT Study. Chemistry - A European Journal, 2017, 23, 8275-8279.	1.7	173
76	On the components of the dielectric constants of ionic liquids: ionic polarization?. Physical Chemistry Chemical Physics, 2009, 11, 2452.	1.3	171
77	Electrodeposited PEDOT-on-plastic cathodes for dye-sensitized solar cells. Chemical Communications, 2010, 46, 5367.	2.2	171
78	Electroreduction of Nitrates, Nitrites, and Gaseous Nitrogen Oxides: A Potential Source of Ammonia in Dinitrogen Reduction Studies. ACS Energy Letters, 2020, 5, 2095-2097.	8.8	170
79	Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnology and Bioengineering, 2006, 94, 1209-1213.	1.7	169
80	High Power Density Electrochemical Thermocells for Inexpensively Harvesting Lowâ€Grade Thermal Energy. Advanced Materials, 2017, 29, 1605652.	11.1	166
81	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie - International Edition, 2017, 56, 14718-14722.	7.2	164
82	Ion-Pair Binding Energies of Ionic Liquids: Can DFT Compete with Ab Initio-Based Methods?. Journal of Physical Chemistry A, 2009, 113, 7064-7072.	1.1	163
83	Carbon Quantum Dots/Cu ₂ O Heterostructures for Solarâ€Lightâ€Driven Conversion of CO ₂ to Methanol. Advanced Energy Materials, 2015, 5, 1401077.	10.2	163
84	Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energy and Environmental Science, 2015, 8, 2791-2796.	15.6	162
85	Seebeck coefficients in ionic liquids –prospects for thermo-electrochemical cells. Chemical Communications, 2011, 47, 6260.	2.2	160
86	Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 4656-4663.	1.3	159
87	Dissolution of feather keratin in ionic liquids. Green Chemistry, 2013, 15, 525.	4.6	158
88	N-methyl-N-alkylpyrrolidinium tetrafluoroborate salts: ionic solvents and solid electrolytes. Electrochimica Acta, 2001, 46, 1753-1757.	2.6	156
89	The effect of anion fluorination in ionic liquids—physical properties of a range of bis(methanesulfonyl)amide salts. New Journal of Chemistry, 2003, 27, 1504-1510.	1.4	156
90	Dissolution and regeneration of wool keratin in ionic liquids. Green Chemistry, 2014, 16, 2857-2864.	4.6	156

#	Article	IF	CITATIONS
91	Polyethylenimine promoted electrocatalytic reduction of CO ₂ to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy and Environmental Science, 2016, 9, 216-223.	15.6	156
92	lonic liquids and reactions at the electrochemical interface. Physical Chemistry Chemical Physics, 2010, 12, 1659.	1.3	155
93	Structure and Transport Properties of a Plastic Crystal Ion Conductor: Diethyl(methyl)(isobutyl)phosphonium Hexafluorophosphate. Journal of the American Chemical Society, 2012, 134, 9688-9697.	6.6	154
94	lonic Liquids as Antiwear Additives in Base Oils: Influence of Structure on Miscibility and Antiwear Performance for Steel on Aluminum. ACS Applied Materials & Interfaces, 2013, 5, 11544-11553.	4.0	154
95	Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst. Energy and Environmental Science, 2012, 5, 9496.	15.6	152
96	MnO ₂ /MnCo ₂ O ₄ /Ni heterostructure with quadruple hierarchy: a bifunctional electrode architecture for overall urea oxidation. Journal of Materials Chemistry A, 2017, 5, 7825-7832.	5.2	152
97	Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochimica Acta, 2003, 48, 2355-2359.	2.6	150
98	Transport properties in a family of dialkylimidazolium ionic liquids. Physical Chemistry Chemical Physics, 2004, 6, 1758-1765.	1.3	148
99	Novel halogen-free chelated orthoborate–phosphonium ionic liquids: synthesis and tribophysical properties. Physical Chemistry Chemical Physics, 2011, 13, 12865.	1.3	147
100	Co ₃ O ₄ nanoneedle arrays as a multifunctional "super-reservoir―electrode for long cycle life Li–S batteries. Journal of Materials Chemistry A, 2017, 5, 250-257.	5.2	147
101	Lithium electrochemistry and cycling behaviour of ionic liquids using cyano based anions. Energy and Environmental Science, 2013, 6, 979.	15.6	146
102	The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ionics, 2002, 147, 203-211.	1.3	140
103	Energyâ€Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem, 2018, 11, 3416-3422.	3.6	140
104	Lithium doped N-methyl-N-ethylpyrrolidinium bis(trifluoromethanesulfonyl)amide fast-ion conducting plastic crystals. Journal of Materials Chemistry, 2000, 10, 2259-2265.	6.7	139
105	Fast ion conduction in molecular plastic crystals. Solid State Ionics, 2003, 161, 105-112.	1.3	139
106	Recent advances in the nanoengineering of electrocatalysts for CO ₂ reduction. Nanoscale, 2018, 10, 6235-6260.	2.8	139
107	N-Methyl-N-alkylpyrrolidinium Hexafluorophosphate Salts:  Novel Molten Salts and Plastic Crystal Phases. Chemistry of Materials, 2001, 13, 558-564.	3.2	137
108	High current density, efficient cycling of Zn2+ in 1-ethyl-3-methylimidazolium dicyanamide ionic liquid: The effect of Zn2+ salt and water concentration. Electrochemistry Communications, 2012, 18, 119-122.	2.3	136

#	Article	IF	CITATIONS
109	Hierarchical Mesoporous SnO ₂ Nanosheets on Carbon Cloth: A Robust and Flexible Electrocatalyst for CO ₂ Reduction with High Efficiency and Selectivity. Angewandte Chemie, 2017, 129, 520-524.	1.6	136
110	A Biodegradable Thin-Film Magnesium Primary Battery Using Silk Fibroin–Ionic Liquid Polymer Electrolyte. ACS Energy Letters, 2017, 2, 831-836.	8.8	134
111	Nature of Hydrogen Bonding in Charged Hydrogen-Bonded Complexes and Imidazolium-Based Ionic Liquids. Journal of Physical Chemistry B, 2011, 115, 14659-14667.	1.2	132
112	Protic ionic liquids based on the dimeric and oligomeric anions: [(AcO)xHxâ^'1]â^'. Physical Chemistry Chemical Physics, 2008, 10, 2972.	1.3	129
113	Protic pharmaceuticalionic liquids and solids: Aspects of protonics. Faraday Discussions, 2012, 154, 335-352.	1.6	129
114	The influence of the monomer and the ionic liquid on the electrochemical preparation of polythiophene. Polymer, 2005, 46, 2047-2058.	1.8	128
115	Ionic liquid electrolytes as a platform for rechargeable metal–air batteries: a perspective. Physical Chemistry Chemical Physics, 2014, 16, 18658-18674.	1.3	128
116	A DFT study of planar vs. corrugated graphene-like carbon nitride (g-C ₃ N ₄) and its role in the catalytic performance of CO ₂ conversion. Physical Chemistry Chemical Physics, 2016, 18, 18507-18514.	1.3	125
117	Energy efficient electrochemical reduction of CO ₂ to CO using a three-dimensional porphyrin/graphene hydrogel. Energy and Environmental Science, 2019, 12, 747-755.	15.6	125
118	Physical trends and structural features in organic salts of the thiocyanate anion. Journal of Materials Chemistry, 2002, 12, 3475-3480.	6.7	124
119	Toward protic ionic liquid and organic ionic plastic crystal electrolytes for fuel cells. Electrochimica Acta, 2012, 84, 213-222.	2.6	123
120	Electrochemical and physicochemical properties of small phosphonium cation ionic liquid electrolytes with high lithium salt content. Physical Chemistry Chemical Physics, 2015, 17, 8706-8713.	1.3	123
121	Synergistic Corrosion Inhibition of Mild Steel in Aqueous Chloride Solutions by an Imidazolinium Carboxylate Salt. ACS Sustainable Chemistry and Engineering, 2016, 4, 1746-1755.	3.2	123
122	Lithium ion mobility in poly(vinyl alcohol) based polymer electrolytes as determined by 7Li NMR spectroscopy. Electrochimica Acta, 1998, 43, 1465-1469.	2.6	122
123	Electrodeposited MnO _x Films from Ionic Liquid for Electrocatalytic Water Oxidation. Advanced Energy Materials, 2012, 2, 1013-1021.	10.2	122
124	An organic ionic plastic crystal electrolyte for rate capability and stability of ambient temperature lithium batteries. Energy and Environmental Science, 2014, 7, 3352-3361.	15.6	122
125	Microscopic Interactions in Nanocomposite Electrolytes. Macromolecules, 2001, 34, 4549-4555.	2.2	121
126	Ionic Liquid Mixtures—Variations in Physical Properties and Their Origins in Molecular Structure. Journal of Physical Chemistry B, 2012, 116, 8251-8258.	1.2	121

#	Article	IF	CITATIONS
127	Structural studies of ambient temperature plastic crystal ion conductors. Journal of Physics Condensed Matter, 2001, 13, 8257-8267.	0.7	120
128	Acid–Organic base swollen polymer membranes. Electrochimica Acta, 2001, 46, 1703-1708.	2.6	120
129	Exploring an Anti-Crystal Engineering Approach to the Preparation of Pharmaceutically Active Ionic Liquids. Crystal Growth and Design, 2009, 9, 1137-1145.	1.4	120
130	Liquid forms of pharmaceutical co-crystals: exploring the boundaries of salt formation. Chemical Communications, 2011, 47, 2267-2269.	2.2	120
131	Structural analysis of low melting organic salts: perspectives on ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 9144.	1.3	119
132	Properties of sodium-based ionic liquid electrolytes for sodium secondary battery applications. Electrochimica Acta, 2013, 114, 766-771.	2.6	119
133	Ionic liquids and ultrasound in combination: synergies and challenges. Chemical Society Reviews, 2014, 43, 8132-8149.	18.7	118
134	Long lifetime photoluminescence in N, S co-doped carbon quantum dots from an ionic liquid and their applications in ultrasensitive detection of pesticides. Carbon, 2016, 104, 33-39.	5.4	117
135	Intrinsically stable in situ generated electrocatalyst for long-term oxidation of acidic water at up to 80 °C. Nature Catalysis, 2019, 2, 457-465.	16.1	117
136	Crystallization in fluoride glasses. Journal of Non-Crystalline Solids, 1984, 64, 351-362.	1.5	115
137	Vitrification Properties of Solutions of Ethylene Glycol in Saline Containing PVP, Ficoll, or Dextran. Cryobiology, 1997, 35, 219-229.	0.3	112
138	Building a tool to overcome barriers in research-implementation spaces: The Conservation Evidence database. Biological Conservation, 2019, 238, 108199.	1.9	112
139	Methanesulfonate and p-toluenesulfonate salts of the N-methyl-N-alkylpyrrolidinium and quaternary ammonium cations: novel low cost ionic liquids. Green Chemistry, 2002, 4, 223-229.	4.6	109
140	Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. Journal of Materials Chemistry A, 2017, 5, 23844-23852.	5.2	109
141	Ionic Liquids and Organic Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies. Advanced Energy Materials, 2018, 8, 1703491.	10.2	109
142	Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries. Joule, 2019, 3, 2687-2702.	11.7	108
143	Simultaneous membrane transport of two active pharmaceutical ingredients by charge assisted hydrogen bond complex formation. Chemical Science, 2014, 5, 3449.	3.7	106
144	Conducting Polymer Composite Materials for Hydrogen Generation. Advanced Materials, 2010, 22, 1727-1730.	11.1	105

#	Article	IF	CITATIONS
145	Conductivity in amorphous polyether nanocomposite materials. Solid State Ionics, 1999, 126, 269-276.	1.3	103
146	Extraction and recovery of azo dyes into an ionic liquid. Talanta, 2006, 69, 1059-1062.	2.9	103
147	Transport Properties in Ionic Liquids and Ionic Liquid Mixtures:  The Challenges of NMR Pulsed Field Gradient Diffusion Measurements. Journal of Physical Chemistry B, 2007, 111, 9018-9024.	1.2	102
148	Importance of dispersion forces for prediction of thermodynamic and transport properties of some common ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 7209-7221.	1.3	102
149	Mg Cathode Materials and Electrolytes for Rechargeable Mg Batteries: A Review. Batteries and Supercaps, 2019, 2, 115-127.	2.4	102
150	Organic Ionic Plastic Crystals as Solid-State Electrolytes. Trends in Chemistry, 2019, 1, 126-140.	4.4	102
151	Ionic Liquids in Biomass Processing. Topics in Current Chemistry, 2009, 290, 311-339.	4.0	101
152	Understanding the Effect of the C2 Proton in Promoting Low Viscosities and High Conductivities in Imidazolium-Based Ionic Liquids: Part I. Weakly Coordinating Anions. Journal of Physical Chemistry B, 2011, 115, 14688-14697.	1.2	101
153	Synthesis and properties of ambient temperature molten salts based on the quaternary ammonium ion. Ionics, 1997, 3, 356-362.	1.2	100
154	Engineering Surface Amine Modifiers of Ultrasmall Gold Nanoparticles Supported on Reduced Graphene Oxide for Improved Electrochemical CO ₂ Reduction. Advanced Energy Materials, 2018, 8, 1801400.	10.2	100
155	Organic ionic plastic crystal electrolytes; a new class of electrolyte for high efficiency solid state dye-sensitized solar cells. Energy and Environmental Science, 2011, 4, 2234.	15.6	99
156	Ionic liquids and organic ionic plastic crystals utilizing small phosphonium cations. Journal of Materials Chemistry, 2011, 21, 7640.	6.7	99
157	Biocompatible Ionic Liquid–Biopolymer Electrolyte-Enabled Thin and Compact Magnesium–Air Batteries. ACS Applied Materials & Interfaces, 2014, 6, 21110-21117.	4.0	99
158	Assessment of Kohn–Sham density functional theory and MÃ,ller–Plesset perturbation theory for ionic liquids. Physical Chemistry Chemical Physics, 2013, 15, 13664.	1.3	98
159	Choline-Based Ionic Liquids-Enhanced Biodegradation of Azo Dyes. Environmental Science & Technology, 2012, 46, 4902-4908.	4.6	96
160	Curcumin loaded poly(2-hydroxyethyl methacrylate) nanoparticles from gelled ionic liquid – In vitro cytotoxicity and anti-cancer activity in SKOV-3 cells. European Journal of Pharmaceutical Sciences, 2014, 51, 34-44.	1.9	96
161	New dimensions in salt–solvent mixtures: a 4th evolution of ionic liquids. Faraday Discussions, 2017, 206, 9-28.	1.6	96
162	Structure-property relationships in plasticized solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2131-2136.	2.6	95

#	Article	IF	CITATIONS
163	Enhancement of ion dynamics in PMMA-based gels with addition of TiO2 nano-particles. Electrochimica Acta, 2003, 48, 2099-2103.	2.6	95
164	Living cationic polymerisation of styrene in an ionic liquidElectronic supplementary information (ESI) available: GPC results for the two-step living polymerisation of styrene by HBOB in the IL. See http://www.rsc.org/suppdata/cc/b3/b315100j/. Chemical Communications, 2004, , 700.	2.2	95
165	Critical Assessment of the Electrocatalytic Activity of Vanadium and Niobium Nitrides toward Dinitrogen Reduction to Ammonia. ACS Sustainable Chemistry and Engineering, 2019, 7, 6839-6850.	3.2	95
166	Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid–solvent mixtures. Physical Chemistry Chemical Physics, 2016, 18, 1404-1410.	1.3	94
167	Transport properties of ionic liquid electrolytes with organic diluents. Physical Chemistry Chemical Physics, 2009, 11, 7202.	1.3	93
168	Refining Universal Procedures for Ammonium Quantification via Rapid ¹ H NMR Analysis for Dinitrogen Reduction Studies. ACS Energy Letters, 2020, 5, 736-741.	8.8	93
169	Ionic liquid electrolyte porphyrin dye sensitised solar cells. Chemical Communications, 2010, 46, 3146.	2.2	92
170	Ionic Liquid Electrolyte for Lithium Metal Batteries: Physical, Electrochemical, and Interfacial Studies of <i>N</i> -Methyl- <i>N</i> -butylmorpholinium Bis(fluorosulfonyl)imide. Journal of Physical Chemistry C, 2010, 114, 21775-21785.	1.5	92
171	Distillable ionic liquid extraction of tannins from plant materials. Green Chemistry, 2010, 12, 1023.	4.6	92
172	Weak intermolecular interactions in sulfonamide salts: structure of 1-ethyl-2-methyl-3-benzyl imidazolium bis[(trifluoromethyl)sulfonyl]amide. Chemical Communications, 1998, , 1593-1594.	2.2	91
173	Ionic Liquids Based on Imidazolium and Pyrrolidinium Salts of the Tricyanomethanide Anion. Australian Journal of Chemistry, 2004, 57, 121.	0.5	91
174	Enhanced membrane transport of pharmaceutically active protic ionic liquids. Chemical Communications, 2011, 47, 11429.	2.2	91
175	Redox-Active Quasi-Solid-State Electrolytes for Thermal Energy Harvesting. ACS Energy Letters, 2016, 1, 654-658.	8.8	91
176	Theoretical Evaluation of Possible 2D Boron Monolayer in N ₂ Electrochemical Conversion into Ammonia. Journal of Physical Chemistry C, 2018, 122, 25268-25273.	1.5	91
177	Structural Characterization of Novel Ionic Materials Incorporating the Bis(trifluoromethanesulfonyl)amide Anion. Chemistry of Materials, 2002, 14, 2103-2108.	3.2	90
178	Thermal, mechanical, and conductivity properties of cyanate ester composites. Composites Part A: Applied Science and Manufacturing, 2004, 35, 75-82.	3.8	90
179	New generation, metal-free electrocatalysts for fuel cells, solar cells and water splitting. Energy and Environmental Science, 2011, 4, 2790.	15.6	90
180	Inorganic-Organic Ionic Liquid Electrolytes Enabling High Energy-Density Metal Electrodes for Energy Storage. Electrochimica Acta, 2016, 220, 609-617.	2.6	90

#	Article	IF	CITATIONS
181	Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Advanced Energy Materials, 2018, 8, 1702702.	10.2	90
182	Devitrification in glass-forming aqueous solutions. Cryobiology, 1986, 23, 230-244.	0.3	89
183	Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2â^' and P(O)2(R)2â^' anions with potential application for corrosion mitigation of magnesium alloys. Electrochimica Acta, 2008, 54, 254-260.	2.6	89
184	A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Physical Chemistry Chemical Physics, 2012, 14, 8224.	1.3	89
185	Distillable Protic Ionic Liquids for Keratin Dissolution and Recovery. ACS Sustainable Chemistry and Engineering, 2014, 2, 1888-1894.	3.2	89
186	Glass transition for amorphous solid water. The Journal of Physical Chemistry, 1984, 88, 759-762.	2.9	88
187	A Porphyrin/Graphene Framework: A Highly Efficient and Robust Electrocatalyst for Carbon Dioxide Reduction. Advanced Energy Materials, 2018, 8, 1801280.	10.2	88
188	Eu-activated fluorochlorozirconate glass-ceramic scintillators. Journal of Applied Physics, 2006, 100, 034701.	1.1	87
189	Biocompatibility of choline salts as crosslinking agents for collagen based biomaterials. Chemical Communications, 2010, 46, 294-296.	2.2	87
190	Ionogels based on ionic liquids as potential highly conductive solid state electrolytes. Electrochimica Acta, 2013, 91, 219-226.	2.6	87
191	Physicochemical properties of N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide for sodium metal battery applications. Physical Chemistry Chemical Physics, 2014, 16, 12350-12355.	1.3	87
192	Role of Li Concentration and the SEI Layer in Enabling High Performance Li Metal Electrodes Using a Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid. Journal of Physical Chemistry C, 2017, 121, 21087-21095.	1.5	87
193	Physical aspects of vitrification in aqueous solutions. Cryobiology, 1987, 24, 181-195.	0.3	86
194	Biocompatible Ionic Liquids: A New Approach for Stabilizing Proteins in Liquid Formulation. Journal of Biomechanical Engineering, 2009, 131, 074514.	0.6	86
195	Structure and function of proteins in hydrated choline dihydrogen phosphate ionic liquid. Physical Chemistry Chemical Physics, 2012, 14, 790-801.	1.3	86
196	FT-IR Investigation of Ion Association in Plasticized Solid Polymer Electrolytes. The Journal of Physical Chemistry, 1996, 100, 2237-2243.	2.9	85
197	On the electrodeposition of titanium in ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 2189.	1.3	85
198	Polymer-in-ionic-liquid electrolytes. Macromolecular Chemistry and Physics, 2002, 203, 1906-1911.	1.1	83

#	Article	IF	CITATIONS
199	Voltammetric Studies on the Reduction of Polyoxometalate Anions in Ionic Liquids. Inorganic Chemistry, 2005, 44, 5123-5132.	1.9	83
200	An lonic Liquid Surface Treatment for Corrosion Protection of Magnesium Alloy AZ31. Electrochemical and Solid-State Letters, 2006, 9, B52.	2.2	83
201	A review of ionic liquid surface film formation on Mg and its alloys for improved corrosion performance. Electrochimica Acta, 2013, 110, 501-510.	2.6	82
202	Task-specific thioglycolate ionic liquids for heavy metal extraction: Synthesis, extraction efficacies and recycling properties. Journal of Hazardous Materials, 2017, 324, 241-249.	6.5	82
203	Process design and techno-economic analysis of an integrated mango processing waste biorefinery. Industrial Crops and Products, 2018, 116, 24-34.	2.5	82
204	High-energy density room temperature sodium-sulfur battery enabled by sodium polysulfide catholyte and carbon cloth current collector decorated with MnO2 nanoarrays. Energy Storage Materials, 2019, 20, 196-202.	9.5	82
205	New Insights into the Relationship between Ion-Pair Binding Energy and Thermodynamic and Transport Properties of Ionic Liquids. Journal of Physical Chemistry C, 2010, 114, 20472-20478.	1.5	81
206	Dithienothiophene (DTT)-Based Dyes for Dye-Sensitized Solar Cells: Synthesis of 2,6-Dibromo-DTT. Journal of Organic Chemistry, 2011, 76, 4088-4093.	1.7	81
207	Towards ionic liquid-based thermoelectrochemical cells for the harvesting of thermal energy. Electrochimica Acta, 2013, 113, 87-93.	2.6	81
208	Broadband dielectric response of the ionic liquid N-methyl-N-ethylpyrrolidinium dicyanamide. Chemical Communications, 2006, , 1748-1750.	2.2	80
209	New Insights into the Fundamental Chemical Nature of Ionic Liquid Film Formation on Magnesium Alloy Surfaces. ACS Applied Materials & amp; Interfaces, 2009, 1, 1045-1052.	4.0	80
210	The Kauzmann Paradox, Metastable Liquids, and Ideal Glasses: A Summary. Annals of the New York Academy of Sciences, 1986, 484, 241-247.	1.8	79
211	NMR and Raman studies of a novel fast-ion-conducting polymer-in-salt electrolyte based on LiCF3SO3 and PAN. Electrochimica Acta, 2000, 45, 1237-1242.	2.6	79
212	Towards a Better Understanding of 'Delocalized Charge' in Ionic Liquid Anions. Australian Journal of Chemistry, 2007, 60, 15.	0.5	79
213	Exploring corrosion protection of Mg via ionic liquid pretreatment. Surface and Coatings Technology, 2007, 201, 4496-4504.	2.2	79
214	lon transport in polymer electrolytes containing nanoparticulate TiO2: The influence of polymer morphology. Physical Chemistry Chemical Physics, 2003, 5, 720-725.	1.3	78
215	Transport Properties and Phase Behaviour in Binary and Ternary Ionic Liquid Electrolyte Systems of Interest in Lithium Batteries. ChemPhysChem, 2011, 12, 823-827.	1.0	78
216	Stoichiometric changes in lithium conducting materials based on Li1+xAlxTi2â^'x(PO4)3: impedance, X-ray and NMR studies. Solid State Ionics, 2000, 136-137, 339-344.	1.3	77

#	Article	IF	CITATIONS
217	Diamino protic ionic liquids for CO2 capture. Physical Chemistry Chemical Physics, 2013, 15, 19994.	1.3	77
218	Nanostructured Gold/Bismutite Hybrid Heterocatalysts for Plasmon-Enhanced Photosynthesis of Ammonia. ACS Sustainable Chemistry and Engineering, 2017, 5, 10858-10863.	3.2	77
219	Spectroscopic Characterization of the SEI Layer Formed on Lithium Metal Electrodes in Phosphonium Bis(fluorosulfonyl)imide Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2018, 10, 6719-6729.	4.0	77
220	Homogeneous nucleation and glass transition temperatures in solutions of lithium salts in water-d2 and water. Doubly unstable glass regions. The Journal of Physical Chemistry, 1981, 85, 1461-1464.	2.9	76
221	Chelating ionic liquids for reversible zinc electrochemistry. Physical Chemistry Chemical Physics, 2013, 15, 7191.	1.3	76
222	Porous nitrogen–doped carbon derived from biomass for electrocatalytic reduction of CO2 to CO. Electrochimica Acta, 2017, 245, 561-568.	2.6	76
223	Glass-forming microemulsions: vitrification of simple liquids and electron microscope probing of droplet-packing modes. The Journal of Physical Chemistry, 1984, 88, 6727-6732.	2.9	75
224	Synthesis, Purification and Characterization of Ionic Liquids. Topics in Current Chemistry, 2009, 290, 1-40.	4.0	75
225	Novel and versatile room temperature ionic liquids for energy storage. Energy and Environmental Science, 2019, 12, 566-571.	15.6	75
226	Class transition and free volume behaviour of poly(acrylonitrile)/LiCF3SO3 polymer-in-salt electrolytes compared to poly(ether urethane)/LiClO4 solid polymer electrolytes. Electrochimica Acta, 2000, 45, 1243-1247.	2.6	74
227	Conductivity, NMR and crystallographic study of N,N,N,N-tetramethylammonium dicyanamide plastic crystal phases: an archetypal ambient temperature plastic electrolyte material. Physical Chemistry Chemical Physics, 2003, 5, 2692.	1.3	74
228	Ionic Liquid-Based Rechargeable Lithium Metal-Polymer Cells Assembled with Polyaniline/Carbon Nanotube Composite Cathode. Journal of the Electrochemical Society, 2007, 154, A834.	1.3	74
229	Compositional dependence of free volume in PAN/LiCF3SO3 polymer-in-salt electrolytes and the effect on ionic conductivity. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 341-350.	2.4	73
230	Clean, efficient syntheses of cyclotriveratrylene (CTV) and tris-(O-allyl)CTV in an ionic liquid. Green Chemistry, 2000, 2, 123-126.	4.6	73
231	A sealed optical cell for the study of lithium-electrode electrolyte interfaces. Journal of Power Sources, 2003, 114, 277-284.	4.0	72
232	Novel high salt content polymer electrolytes based on high Tg polymers. Electrochimica Acta, 2000, 45, 1249-1254.	2.6	71
233	Nickel sulfide cathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries. Solid State Ionics, 2008, 179, 2379-2382.	1.3	71
234	Improvement of Catalytic Water Oxidation on MnO _{<i>x</i>} Films by Heat Treatment. ChemSusChem, 2013, 6, 643-651.	3.6	71

#	Article	IF	CITATIONS
235	Selective separation of H2S and CO2 from CH4 by supported ionic liquid membranes. Journal of Membrane Science, 2017, 543, 282-287.	4.1	71
236	Investigation of the electropolymerisation of EDOT in ionic liquids. Synthetic Metals, 2005, 153, 257-260.	2.1	69
237	Liâ€Metal Symmetrical Cell Studies Using Ionic Organic Plastic Crystal Electrolyte. Advanced Engineering Materials, 2009, 11, 1044-1048.	1.6	69
238	Aluminium Speciation in 1â€Butylâ€1â€Methylpyrrolidinium Bis(trifluoromethylsulfonyl)amide/AlCl ₃ Mixtures. Chemistry - A European Journal, 2009, 15, 3435-3447.	1.7	69
239	Lithium doped N,N-dimethyl pyrrolidinium tetrafluoroborate organic ionic plastic crystal electrolytes for solid state lithium batteries. Journal of Materials Chemistry, 2011, 21, 10171.	6.7	69
240	Electrochemical, Transport, and Spectroscopic Properties of 1-Ethyl-3-methylimidazolium Ionic Liquid Electrolytes Containing Zinc Dicyanamide. Journal of Physical Chemistry C, 2013, 117, 2662-2669.	1.5	69
241	Sulfated Carbon Quantum Dots as Efficient Visibleâ€Light Switchable Acid Catalysts for Roomâ€Temperature Ringâ€Opening Reactions. Angewandte Chemie - International Edition, 2015, 54, 8420-8424.	7.2	68
242	The Dissolution Mechanism of Iron in Chloride Solutions. Journal of the Electrochemical Society, 1986, 133, 2240-2244.	1.3	67
243	Ionic conductivity of polymer gels deriving from alkali metal ionic liquids and negatively charged polyelectrolytes. Electrochimica Acta, 2004, 49, 1797-1801.	2.6	67
244	Defect-assisted conductivity in organic ionic plastic crystals. Journal of Chemical Physics, 2005, 122, 064704.	1.2	67
245	Order–disorder transitions in poly(3,4-ethylenedioxythiophene). Polymer, 2008, 49, 481-487.	1.8	67
246	Voltammetric Determination of the Reversible Redox Potential for the Oxidation of the Highly Surface Active Polypyridyl Ruthenium Photovoltaic Sensitizer cis â€â€‰Ru (  II  )â€% Electrochemical Society, 1999, 146, 648-656.	₀â £‰ (â€9	‰ dc bpyâ€%
247	Microstructural and molecular level characterisation of plastic crystal phases of pyrrolidinium trifluoromethanesulfonyl salts. Solid State Ionics, 2002, 154-155, 119-124.	1.3	66
248	The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries. Electrochimica Acta, 2011, 58, 583-588.	2.6	66
249	Connectivity, ionic interactions, and migration in a fast-ion-conducting polymer-in-salt electrolyte based on poly(acrylonitrile) and LiCF3SO3. Journal of Applied Physics, 1999, 86, 2346-2348.	1.1	65
250	Experimental and Theoretical Investigations of the Effect of Deprotonation on Electronic Spectra and Reversible Potentials of Photovoltaic Sensitizers:Â Deprotonation ofcis-L2RuX2(L =) Tj ETQq0 0 0 rgBT /Overlock	10 Tf 50 1	42 Td (2,2ât
251	Oneâ€Step Synthesis of Conducting Polymer–Noble Metal Nanoparticle Composites using an Ionic Liquid. Advanced Functional Materials, 2008, 18, 2031-2040.	7.8	64
252	The Madelung Constant of Organic Salts. Crystal Growth and Design, 2009, 9, 4834-4839.	1.4	64

#	Article	IF	CITATIONS
253	Green, Aqueous Two-Phase Systems Based on Cholinium Aminoate Ionic Liquids with Tunable Hydrophobicity and Charge Density. ACS Sustainable Chemistry and Engineering, 2015, 3, 3291-3298.	3.2	64
254	Electrochemical cycling of Mg in Mg[TFSI] 2 /tetraglyme electrolytes. Electrochemistry Communications, 2017, 78, 29-32.	2.3	64
255	Lithium polyelectrolyte–ionic liquid systems. Solid State Ionics, 2002, 147, 333-339.	1.3	63
256	High-Efficiency, Solid-State, Dye-Sensitized Solar Cells Using Hierarchically Structured TiO2 Nanofibers. ACS Applied Materials & Interfaces, 2011, 3, 1521-1527.	4.0	63
257	Polyoxometalate-Promoted Electrocatalytic CO ₂ Reduction at Nanostructured Silver in Dimethylformamide. ACS Applied Materials & Interfaces, 2018, 10, 12690-12697.	4.0	63
258	Poly(ionic liquid)s/Electrospun Nanofiber Composite Polymer Electrolytes for High Energy Density and Safe Li Metal Batteries. ACS Applied Energy Materials, 2019, 2, 6237-6245.	2.5	63
259	Conduction in ionic organic plastic crystals: The role of defects. Solid State Ionics, 2006, 177, 2569-2573.	1.3	62
260	The electrochemistry of lithium in ionic liquid/organic diluent mixtures. Electrochimica Acta, 2010, 55, 8947-8952.	2.6	62
261	Influence of Zn ²⁺ and Water on the Transport Properties of a Pyrrolidinium Dicyanamide Ionic Liquid. Journal of Physical Chemistry B, 2014, 118, 4895-4905.	1.2	62
262	Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy and Environmental Science, 2022, 15, 1907-1919.	15.6	62
263	A kinetic model for the dissolution mechanism of copper in acidic sulfate solutions. Electrochimica Acta, 1993, 38, 2121-2127.	2.6	61
264	Free volume and conductivity of plasticized polyether-urethane solid polymer electrolytes. Journal of Physics Condensed Matter, 1995, 7, 7601-7617.	0.7	61
265	A new family of ionic liquids based on the 1-alkyl-2-methyl pyrrolinium cation. Electrochimica Acta, 2003, 48, 1707-1711.	2.6	61
266	Nanoelectrodes: energy conversion and storage. Materials Today, 2009, 12, 20-27.	8.3	61
267	Ionic liquid electrolytes for reversible magnesium electrochemistry. Chemical Communications, 2016, 52, 4033-4036.	2.2	61
268	An association between chromosomal abnormalities in rapidly frozen 2-cell mouse embryos and the ice-forming properties of the cryoprotective solution. Reproduction, 1991, 91, 9-18.	1.1	60
269	Enhanced electrochemical stability of polyaniline in ionic liquids. Current Applied Physics, 2004, 4, 389-393.	1.1	60
270	A new class of proton-conducting ionic plastic crystals based on organic cations and dihydrogen phosphate. Electrochemistry Communications, 2007, 9, 1202-1205.	2.3	60

#	Article	IF	CITATIONS
271	Highly Efficient Plastic Crystal Ionic Conductors for Solid-state Dye-sensitized Solar Cells. Scientific Reports, 2013, 3, 3520.	1.6	60
272	Electrochemical reduction of CO 2 on core-shell Cu/Au nanostructure arrays for syngas production. Electrochimica Acta, 2017, 239, 84-89.	2.6	60
273	Synthesis and Physicochemical Properties of Fluorinated Ionic Liquids with High Nitrogen Gas Solubility. Journal of Physical Chemistry C, 2018, 122, 24550-24558.	1.5	60
274	Rapid I?/I3? Diffusion in a Molecular-Plastic-Crystal Electrolyte for Potential Application in Solid-State Photoelectrochemical Cells. Angewandte Chemie - International Edition, 2005, 44, 313-316.	7.2	59
275	A critical assessment of electrochemistry in a distillable room temperature ionic liquid, DIMCARB. Green Chemistry, 2006, 8, 161-171.	4.6	59
276	Novel Lewis-base ionic liquids replacing typical anions. Tetrahedron Letters, 2006, 47, 2755-2758.	0.7	59
277	Physical and Electrochemical Properties of Thioether-Functionalized Ionic Liquids. Journal of Physical Chemistry B, 2009, 113, 11222-11231.	1.2	59
278	Optimising organic ionic plastic crystal electrolyte for all solid-state and higher than ambient temperature lithium batteries. Journal of Solid State Electrochemistry, 2012, 16, 1841-1848.	1.2	59
279	NMR studies of modified nasicon-like, lithium conducting solid electrolytes. Solid State Ionics, 1999, 124, 213-219.	1.3	58
280	Unlocking the Electrocatalytic Activity of Antimony for CO ₂ Reduction by Twoâ€Dimensional Engineering of the Bulk Material. Angewandte Chemie, 2017, 129, 14910-14914.	1.6	58
281	Towards elucidating microscopic structural changes in Li-ion conductors Li1+yTi2â^'yAly[PO4]3 and Li1+yTi2â^'yAly[PO4]3â^'x [MO4]x(M=V and Nb): X-ray and27Al and31P NMR studies. Journal of Materials Chemistry, 1998, 8, 2199-2203.	6.7	56
282	The enhancement of lithium ion dissociation in polyelectrolyte gels on the addition of ceramic nano-fillers. Journal of Materials Chemistry, 2004, 14, 127.	6.7	56
283	Conducting Polymers with Fibrillar Morphology Synthesized in a Biphasic Ionic Liquid/Water System. Macromolecules, 2007, 40, 2702-2711.	2.2	56
284	Ionic liquid "buffersâ€â€"pH control in ionic liquid systems. Chemical Communications, 2010, 46, 7703.	2.2	56
285	The effect of potential bias on the formation of ionic liquid generated surface films on Mg alloys. Electrochimica Acta, 2010, 55, 2377-2383.	2.6	56
286	Ab Initio Prediction of Proton NMR Chemical Shifts in Imidazolium Ionic Liquids. Journal of Physical Chemistry B, 2013, 117, 3186-3197.	1.2	56
287	Investigation of the kinetic and mass transport limitations in thermoelectrochemical cells with different electrode materials. Physical Chemistry Chemical Physics, 2014, 16, 2527-2532.	1.3	56
288	A hydrocolloid based biorefinery approach to the valorisation of mango peel waste. Food Hydrocolloids, 2018, 77, 142-151.	5.6	56

#	Article	IF	CITATIONS
289	Supported Ionic Liquid Gel Membrane Electrolytes for a Safe and Flexible Sodium Metal Battery. ACS Sustainable Chemistry and Engineering, 2019, 7, 3722-3726.	3.2	56
290	A new Lewis-base ionic liquid comprising a mono-charged diamine structure: A highly stable electrolyte for lithium electrochemistry. Electrochemistry Communications, 2006, 8, 445-449.	2.3	55
291	Organoborate Acids as Initiators for Cationic Polymerization of Styrene in an Ionic Liquid Medium. Macromolecules, 2007, 40, 6515-6520.	2.2	55
292	Proton transport in choline dihydrogen phosphate/H3PO4 mixtures. Physical Chemistry Chemical Physics, 2010, 12, 11291.	1.3	55
293	Protic ionic liquids based on phosphonium cations: comparison with ammonium analogues. Chemical Communications, 2011, 47, 11612.	2.2	55
294	Graphene/zinc nano-composites by electrochemical co-deposition. Physical Chemistry Chemical Physics, 2012, 14, 14034.	1.3	55
295	Lemon Juice Based Extraction of Pectin from Mango Peels: Waste to Wealth by Sustainable Approaches. ACS Sustainable Chemistry and Engineering, 2016, 4, 5915-5920.	3.2	55
296	Three-Dimensionally Reinforced Freestanding Cathode for High-Energy Room-Temperature Sodium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 14101-14109.	4.0	55
297	Prospects for a widely applicable reference potential scale in ionic liquids based on ideal reversible reduction of the cobaltocenium cation. Electrochemistry Communications, 2008, 10, 250-254.	2.3	54
298	Extreme properties of double networked ionogel electrolytes for flexible and durable energy storage devices. Energy Storage Materials, 2019, 19, 197-205.	9.5	54
299	1-Alkyl-3-methylbenzotriazolium salts: ionic solvents and electrolytesElectronic supplementary information (ESI) available: complete experimental procedures and spectroscopic data for all compounds prepared. See http://www.rsc.org/suppdata/jm/b3/b307931g/. Journal of Materials Chemistry, 2003, 13, 2451.	6.7	53
300	Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochimica Acta, 2004, 50, 335-338.	2.6	53
301	Charge Transfer Polymerization in Ionic Liquids. Australian Journal of Chemistry, 2004, 57, 129.	0.5	53
302	CdS thin-film electrodeposition from a phosphonium ionic liquid. Physical Chemistry Chemical Physics, 2009, 11, 8532.	1.3	53
303	Crystallization of Ice in Aqueous Solutions of Glycerol and Dimethyl Sulfoxide. 1. A Comparison of Mechanisms. Cryobiology, 1996, 33, 205-216.	0.3	52
304	Room temperature fast-ion conduction in imidazolium halide salts. Journal of Materials Chemistry, 2001, 11, 3031-3036.	6.7	52
305	Enhancement of ion dissociation in polyelectrolyte gels. Electrochimica Acta, 2003, 48, 2129-2136.	2.6	52
306	Quasiâ€solidâ€State Electrolytes for Lowâ€Grade Thermal Energy Harvesting using a Cobalt Redox Couple. ChemSusChem, 2018, 11, 2788-2796.	3.6	52

#	Article	IF	CITATIONS
307	Ionic Liquids – Further Progress on the Fundamental Issues. Australian Journal of Chemistry, 2019, 72, 3.	0.5	52
308	Dye-sensitized nanocrystalline solar cells incorporating ethylmethylimidazolium-based ionic liquid electrolytes. Comptes Rendus Chimie, 2006, 9, 617-621.	0.2	51
309	On the use of organic ionic plastic crystals in all solid-state lithium metal batteries. Solid State Ionics, 2011, 204-205, 73-79.	1.3	51
310	Proton transport behaviour and molecular dynamics in the guanidinium triflate solid and its mixtures with triflic acid. Journal of Materials Chemistry A, 2014, 2, 681-691.	5.2	51
311	Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerisation. Synthetic Metals, 2006, 156, 979-983.	2.1	50
312	Physical Absorption Of CO ₂ in Protic and Aprotic Ionic Liquids: An Interaction Perspective. Journal of Physical Chemistry B, 2015, 119, 11748-11759.	1.2	50
313	Homogeneous nucleation and growth of ice from solutions. TTT curves, the nucleation rate, and the stable glass criterion. Journal of Chemical Physics, 1983, 79, 3921-3927.	1.2	49
314	Polyelectrolyte-in-Ionic-Liquid Electrolytes. Macromolecular Chemistry and Physics, 2003, 204, 2147-2154.	1.1	49
315	Nanoparticle Enhanced Conductivity in Organic Ionic Plastic Crystals:  Space Charge versus Strain Induced Defect Mechanism. Journal of Physical Chemistry C, 2007, 111, 11463-11468.	1.5	49
316	Modified Thermodynamics in Ionic Liquids for Controlled Electrocrystallization of Nanocubes, Nanowires, and Crystalline Thin Films of Silverâ^'Tetracyanoquinodimethane. Journal of the American Chemical Society, 2009, 131, 16195-16205.	6.6	49
317	Transition in Wear Performance for Ionic Liquid Lubricants under Increasing Load. Tribology Letters, 2010, 40, 279-284.	1.2	49
318	Zn Electrochemistry in 1â€Ethylâ€3â€Methylimidazolium and <i>N</i> â€Butylâ€ <i>N</i> â€Methylpyrrolidinium Dicyanamides: Promising New Rechargeable Zn Battery Electrolytes. ChemElectroChem, 2014, 1, 1688-1697.	1.7	49
319	The Electrochemical Transformation of the Zeolitic Imidazolate Framework ZIF-67 in Aqueous Electrolytes. Electrochimica Acta, 2015, 153, 433-438.	2.6	49
320	Liquefied Sunshine: Transforming Renewables into Fertilizers and Energy Carriers with Electromaterials. Advanced Materials, 2020, 32, e1904804.	11.1	49
321	Recent insights on the role of cryoprotective agents in vitrification. Cryobiology, 1990, 27, 345-358.	0.3	48
322	Stable zinc cycling in novel alkoxy-ammonium based ionic liquid electrolytes. Electrochimica Acta, 2016, 188, 461-471.	2.6	48
323	High CO ₂ absorption by diamino protic ionic liquids using azolide anions. Chemical Communications, 2018, 54, 2106-2109.	2.2	48
324	Crystallization of Ice in Aqueous Solutions of Glycerol and Dimethyl Sulfoxide 2: Ice Crystal Growth Kinetics. Cryobiology, 1998, 37, 119-130.	0.3	47

#	Article	IF	CITATIONS
325	Rheological and mechanical properties of percolated cyanate ester nanocomposites. Polymer, 2005, 46, 8011-8017.	1.8	47
326	Purification or contamination? The effect of sorbents on ionic liquids. Chemical Communications, 2008, , 2689.	2.2	47
327	In situ Photopolymerization of a Gel Ionic Liquid Electrolyte in the Presence of Iodine and Its Use in Dye Sensitized Solar Cells. Macromolecular Rapid Communications, 2010, 31, 479-483.	2.0	47
328	Triaminocyclopropenium salts as ionic liquids. Chemical Communications, 2011, 47, 10248.	2.2	47
329	Photo- and solvatochromic properties of nitrobenzospiropyran in ionic liquids containing the [NTf2]â^' anion. Physical Chemistry Chemical Physics, 2008, 10, 5919.	1.3	46
330	The effect of coordinating and non-coordinating additives on the transport properties in ionic liquid electrolytes for lithium batteries. Physical Chemistry Chemical Physics, 2011, 13, 4632.	1.3	46
331	The effect of direct amine substituted push–pull oligothiophene chromophores on dye-sensitized and bulk heterojunction solar cells performance. Tetrahedron, 2013, 69, 3584-3592.	1.0	46
332	Mixed Phase Solidâ€State Plastic Crystal Electrolytes Based on a Phosphonium Cation for Sodium Devices. Advanced Energy Materials, 2017, 7, 1601272.	10.2	46
333	Electrochemical and Spectroscopic Studies on the Oxidation of thecis-(Et2-dcbpy)2RuX2Series of Photovoltaic Sensitizer Precursor Complexes (Et2-dcbpy = 2,2â€ ⁻ -Bipyridine-4,4â€ ⁻ -diethoxydicarboxylic) Tj ETQq1	. 1.0.7 843	31465rgBT /0
334	Effect of zwitterion on the lithium solid electrolyte interphase in ionic liquid electrolytes. Journal of Power Sources, 2008, 184, 288-296.	4.0	45
335	Effect of mixed anions on the physicochemical properties of a sodium containing alkoxyammonium ionic liquid electrolyte. Physical Chemistry Chemical Physics, 2017, 19, 17461-17468.	1.3	45
336	Free-Radical Catalysis and Enhancement of the Redox Kinetics for Room-Temperature Sodium–Sulfur Batteries. ACS Energy Letters, 2020, 5, 2112-2121.	8.8	45
337	Ceramic-polymer interface in composite electrolytes of lithium aluminium titanium phosphate and polyetherurethane polymer electrolyte. Solid State Ionics, 1999, 121, 115-119.	1.3	44
338	Conducting Polymer Electrochemistry in Ionic Liquids Synthetic Metals, 2003, 135-136, 31-32.	2.1	44
339	Ionic conduction in doped succinonitrile. Solid State Ionics, 2004, 175, 733-738.	1.3	44
340	An Investigation of a Phosphinate-Based Ionic Liquid for Corrosion Protection of Magnesium Alloy AZ31. Australian Journal of Chemistry, 2007, 60, 43.	0.5	44
341	Interactions in bisamide ionic liquids—insights from a Hirshfeld surface analysis of their crystalline states. New Journal of Chemistry, 2008, 32, 2121.	1.4	44
342	On the role of cyclic unsaturated additives on the behaviour of lithium metal electrodes in ionic liquid electrolytes. Electrochimica Acta, 2010, 55, 2210-2215.	2.6	44

#	Article	IF	CITATIONS
343	Discharge behaviour and interfacial properties of a magnesium battery incorporating trihexyl(tetradecyl)phosphonium based ionic liquid electrolytes. Electrochimica Acta, 2013, 87, 701-708.	2.6	44
344	Ionic Liquid Electrolytes for Thermal Energy Harvesting Using a Cobalt Redox Couple. Journal of the Electrochemical Society, 2014, 161, D3061-D3065.	1.3	44
345	Gelled ionic liquid sodium ion conductors for sodium batteries. Electrochimica Acta, 2015, 169, 376-381.	2.6	44
346	Ftir study of ion-pairing effects in plasticized polymer electrolytes. Electrochimica Acta, 1995, 40, 2333-2337.	2.6	43
347	Characterisation and impedance spectroscopy of substituted Li1.3Al0.3Ti1.7(PO4)3â^'x(ZO4)x (Z=V, Nb) ceramics. Solid State Ionics, 1999, 126, 191-196.	1.3	43
348	Large-scale ab initio calculations of archetypical ionic liquids. Chemical Communications, 2012, 48, 1493-1495.	2.2	43
349	Redox Chemistry of the Superoxide Ion in a Phosphonium-Based Ionic Liquid in the Presence of Water. Journal of Physical Chemistry Letters, 2013, 4, 1834-1837.	2.1	43
350	Ion Dynamics in a Mixed ation Alkoxyâ€Ammonium Ionic Liquid Electrolyte for Sodium Device Applications. ChemPhysChem, 2016, 17, 3187-3195.	1.0	43
351	Photostimulated luminescence in a rare earth-doped fluorobromozirconate glass ceramic. Applied Physics Letters, 1999, 75, 2386-2388.	1.5	42
352	A Sub-Critical Barrier Thickness Normally-Off AlGaN/GaN MOS-HEMT. IEEE Electron Device Letters, 2014, 35, 906-908.	2.2	42
353	Electrochemical studies of N-Methyl N-Propyl Pyrrolidinium bis(trifluoromethanesulfonyl) imide ionic liquid mixtures with conventional electrolytes in LiFePO4/Li cells. Electrochimica Acta, 2015, 180, 737-745.	2.6	42
354	Mechanisms of low temperature capture and regeneration of CO ₂ using diamino protic ionic liquids. Physical Chemistry Chemical Physics, 2016, 18, 1140-1149.	1.3	42
355	Electrocatalytic CO ₂ Reduction to Formate at Low Overpotentials on Electrodeposited Pd Films: Stabilized Performance by Suppression of CO Formation. ChemSusChem, 2017, 10, 1509-1516.	3.6	42
356	Silicon as a ubiquitous contaminant in graphene derivatives with significant impact on device performance. Nature Communications, 2018, 9, 5070.	5.8	42
357	Polymer-ceramic ion-conducting composites. Solid State Ionics, 1996, 86-88, 589-593.	1.3	41
358	Composition effects in polyetherurethane-based solid polymer electrolytes. Polymer, 1998, 39, 6261-6268.	1.8	41
359	Lil-DopedN,N-Dimethyl-pyrrolidinium Iodide, an Archetypal Rotator-Phase Ionic Conductor. Journal of Physical Chemistry B, 2005, 109, 20087-20092.	1.2	41
360	Control of magnesium interfacial reactions in aqueous electrolytes towards a biocompatible battery. Electrochimica Acta, 2008, 53, 5881-5884.	2.6	41

#	Article	IF	CITATIONS
361	Polyterthiophene/CNT composite as a cathode material for lithium batteries employing an ionic liquid electrolyte. Electrochimica Acta, 2009, 54, 6844-6849.	2.6	41
362	Vapour-Phase Polymerization of Pyrrole and 3,4-Ethylenedioxythiophene Using Iron(III) 2,4,6-Trimethylbenzenesulfonate. Australian Journal of Chemistry, 2009, 62, 133.	0.5	41
363	Aggregation, ageing and transport properties of surface modified fumed silica dispersions. Soft Matter, 2010, 6, 2293.	1.2	41
364	Dual active ionic liquids and organic salts for inhibition of microbially influenced corrosion. Chemical Communications, 2012, 48, 5983.	2.2	41
365	Enhanced performance of phosphonium based ionic liquids towards 4 electrons oxygen reduction reaction upon addition of a weak proton source. Electrochemistry Communications, 2014, 38, 24-27.	2.3	41
366	Rechargeable Zn/PEDOT Battery with an Imidazoliumâ€Based Ionic Liquid as the Electrolyte. ChemElectroChem, 2015, 2, 2071-2078.	1.7	41
367	Advanced Composite 2D Energy Materials by Simultaneous Anodic and Cathodic Exfoliation. Advanced Energy Materials, 2018, 8, 1702794.	10.2	41
368	Solid state lithium ion conduction in pyrrolidinium imide–lithium imide salt mixtures. Solid State Ionics, 2000, 136-137, 447-452.	1.3	40
369	Gel electrolytes based on lithium modified silica nano-particles. Electrochimica Acta, 2007, 52, 7083-7090.	2.6	40
370	Small quaternary alkyl phosphonium bis(fluorosulfonyl)imide ionic liquid electrolytes for sodium-ion batteries with P2- and O3-Na2/3[Fe2/3Mn1/3]O2 cathode material. Journal of Power Sources, 2017, 349, 45-51.	4.0	40
371	Phosphonium plastic crystal salt alloyed with a sodium salt as a solid-state electrolyte for sodium devices: phase behaviour and electrochemical performance. Journal of Materials Chemistry A, 2017, 5, 5770-5780.	5.2	40
372	Amino acid based poly(ionic liquid) materials for CO2 capture: Effect of anion. Journal of Molecular Liquids, 2019, 276, 644-652.	2.3	40
373	Lewis Acid–Base Interactions between Polysulfides and Boehmite Enables Stable Roomâ€Temperature Sodium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2005669.	7.8	40
374	Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications. Journal of Materials Chemistry A, 2020, 8, 18826-18839.	5.2	40
375	Self polymerising ionic liquid gel. Chemical Communications, 2009, , 3041.	2.2	39
376	Porous Nitrogenâ€Doped Carbon Microspheres Derived from Microporous Polymeric Organic Frameworks for High Performance Electric Doubleâ€Layer Capacitors. Chemistry - A European Journal, 2015, 21, 2310-2314.	1.7	39
377	Continuous cooling (CT) diagrams and critical cooling rates: A direct method of calculation using the concept of additivity. Journal of Non-Crystalline Solids, 1982, 53, 61-72.	1.5	38
378	A 13C NMR study of the role of plasticizers in the conduction mechanism of solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2339-2342.	2.6	38

#	Article	IF	CITATIONS
379	N-methyl-N-alkylpyrrolidinium nonafluoro-1-butanesulfonate salts: Ionic liquid properties and plastic crystal behaviour. Green Chemistry, 2006, 8, 256.	4.6	38
380	Coral larvae conservation: Physiology and reproduction. Cryobiology, 2006, 52, 33-47.	0.3	38
381	Lithium-polymer battery based on an ionic liquid–polymer electrolyte composite for room temperature applications. Electrochimica Acta, 2008, 53, 6460-6463.	2.6	38
382	Exothermic and thermal runaway behaviour of some ionic liquids at elevated temperatures. Chemical Communications, 2009, , 6297.	2.2	38
383	Ionic-liquid materials for the electrochemical challenges of the future. , 2010, , 129-137.		38
384	Potentiostatic Control of Ionic Liquid Surface Film Formation on ZE41 Magnesium Alloy. ACS Applied Materials & Interfaces, 2010, 2, 1317-1323.	4.0	38
385	Unusual phase behaviour of the organic ionic plastic crystal N,N-dimethylpyrrolidinium tetrafluoroborate. Physical Chemistry Chemical Physics, 2010, 12, 7234.	1.3	38
386	Plastic crystal phases with high proton conductivity. Journal of Materials Chemistry, 2012, 22, 2965-2974.	6.7	38
387	Halogen-free chelated orthoborate ionic liquids and organic ionic plastic crystals. Journal of Materials Chemistry, 2012, 22, 6928.	6.7	38
388	Conducting polymer alloys for photo-enhanced electro-catalytic oxygen reduction. Journal of Materials Chemistry, 2012, 22, 10821.	6.7	38
389	Molecular features contributing to the lower viscosity of phosphonium ionic liquids compared to their ammonium analogues. Physical Chemistry Chemical Physics, 2015, 17, 20205-20216.	1.3	38
390	Conformational Dynamics in an Organic Ionic Plastic Crystal. Journal of Physical Chemistry B, 2017, 121, 5439-5446.	1.2	38
391	Phosphomolybdic Acidâ€Assisted Growth of Ultrathin Bismuth Nanosheets for Enhanced Electrocatalytic Reduction of CO ₂ to Formate. ChemSusChem, 2019, 12, 1091-1100.	3.6	38
392	Cyanate ester polymerization catalysis by layered-silicates. Polymer, 2004, 45, 7845-7852.	1.8	37
393	Anionic polymerization of styrene in ionic liquids. European Polymer Journal, 2008, 44, 1758-1762.	2.6	37
394	LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte. Electrochimica Acta, 2013, 101, 151-157.	2.6	37
395	Biological stability and activity of siRNA in ionic liquids. Chemical Communications, 2014, 50, 13457-13460.	2.2	37
396	In-Situ-Activated N-Doped Mesoporous Carbon from a Protic Salt and Its Performance in Supercapacitors. ACS Applied Materials & amp; Interfaces, 2016, 8, 35243-35252.	4.0	37

#	Article	IF	CITATIONS
397	Stability enhancing ionic liquid hybrid electrolyte for NVP@C cathode based sodium batteries. Sustainable Energy and Fuels, 2018, 2, 566-576.	2.5	37
398	Passivation behaviour of aluminium current collector in ionic liquid alkyl carbonate (hybrid) electrolytes. Npj Materials Degradation, 2018, 2, .	2.6	37
399	The electrochemistry and performance of cobalt-based redox couples for thermoelectrochemical cells. Electrochimica Acta, 2018, 269, 714-723.	2.6	37
400	Thin-ring ultra-microelectrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 185, 197-202.	0.3	36
401	Solutionâ^'Surface Electropolymerization:  A Route to Morphologically Novel Poly(pyrrole) Using an Ionic Liquid. Macromolecules, 2006, 39, 7193-7195.	2.2	36
402	Ionic conductivity studies of gel polyelectrolyte based on ionic liquid. Journal of Power Sources, 2008, 178, 779-782.	4.0	36
403	Physicochemical characterization of a new family of small alkyl phosphonium imide ionic liquids. Electrochimica Acta, 2016, 202, 100-109.	2.6	36
404	Tuning Sodium Interfacial Chemistry with Mixed-Anion Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 43093-43106.	4.0	36
405	Electro-oxidation of ammonia on electrochemically roughened platinum electrodes. Electrochimica Acta, 2019, 297, 778-783.	2.6	36
406	An organic ionic plastic crystal electrolyte based on the triflate anion exhibiting high proton transport. Chemical Communications, 2011, 47, 6401.	2.2	35
407	Temperature dependence of the electrode potential of a cobalt-based redox couple in ionic liquid electrolytes for thermal energy harvesting. Faraday Discussions, 2016, 190, 205-218.	1.6	35
408	Sustainable, Dendrite Free Lithiumâ€Metal Electrode Cycling Achieved with Polymer Composite Electrolytes Based on a Poly(Ionic Liquid) Host. Batteries and Supercaps, 2019, 2, 229-239.	2.4	35
409	Enhancing thermoelectric properties of single-walled carbon nanotubes using halide compounds at room temperature and above. Scientific Reports, 2021, 11, 8649.	1.6	35
410	The "filler-effect―in organic ionic plastic crystals: Enhanced conductivity by the addition of nano-sized TiO2. Solid State Ionics, 2006, 177, 827-831.	1.3	34
411	Effect of organic additives on the cycling performances of lithium metal polymer cells. Journal of Power Sources, 2008, 178, 832-836.	4.0	34
412	Highly Ordered Hierarchical Mesoporous MnCo ₂ O ₄ with Cubic <i>1</i> 1±3 <i>d</i> Symmetry for Electrochemical Energy Storage. Journal of Physical Chemistry C, 2016, 120, 23976-23983.	1.5	34
413	Lithium Borate Ester Salts for Electrolyte Application in Nextâ€Generation High Voltage Lithium Batteries. Advanced Energy Materials, 2021, 11, 2101422.	10.2	34
414	Ionic liquids for renewable thermal energy storage – a perspective. Green Chemistry, 2022, 24, 102-117.	4.6	34

#	Article	IF	CITATIONS
415	Rotational and translational mobility of a highly plastic salt: Dimethylpyrrolidinium thiocyanate. Solid State Ionics, 2008, 178, 1798-1803.	1.3	33
416	Surprising effect of nanoparticle inclusion on ion conductivity in a lithium doped organic ionic plastic crystal. Journal of Materials Chemistry, 2009, 19, 1635.	6.7	33
417	Proton Transport Properties in Zwitterion Blends with BrÃ,nsted Acids. Journal of Physical Chemistry B, 2010, 114, 16373-16380.	1.2	33
418	AlN/GaN MOS-HEMTs With Thermally Grown \$hbox{Al}_{2} hbox{O}_{3}\$ Passivation. IEEE Transactions on Electron Devices, 2011, 58, 1418-1424.	1.6	33
419	First frozen repository for the Great Barrier Reef coral created. Cryobiology, 2012, 65, 157-158.	0.3	33
420	Ionic liquid modulation of swelling and LCST behavior of N-isopropylacrylamide polymer gels. Physical Chemistry Chemical Physics, 2014, 16, 3610.	1.3	33
421	Novel imidazolinium ionic liquids and organic salts. Electrochimica Acta, 2015, 159, 219-226.	2.6	33
422	High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane. Scientific Reports, 2016, 6, 29328.	1.6	33
423	Protic plastic crystal/PVDF composite membranes for Proton Exchange Membrane Fuel Cells under non-humidified conditions. Electrochimica Acta, 2017, 247, 970-976.	2.6	33
424	Progress Towards Direct Hydrogen Peroxide Fuel Cells (DHPFCs) as an Energy Storage Concept. Australian Journal of Chemistry, 2018, 71, 781.	0.5	33
425	Improved Li-Ion Transport by DME Chelation in a Novel Ionic Liquid-Based Hybrid Electrolyte for Li–S Battery Application. Journal of Physical Chemistry C, 2018, 122, 14373-14382.	1.5	33
426	Ionic liquid/tetraglyme hybrid Mg[TFSI]2 electrolytes for rechargeable MgÂbatteries. Green Energy and Environment, 2019, 4, 146-153.	4.7	33
427	13C NMR spin–lattice relaxation times as a probe of local polymer dynamics in plasticized polyethers. Journal of Materials Chemistry, 1997, 7, 193-201.	6.7	32
428	Title is missing!. Journal of Materials Science, 2003, 38, 3293-3301.	1.7	32
429	Application of polypyrrole to flexible substrates. Journal of Applied Polymer Science, 2007, 104, 3938-3947.	1.3	32
430	Designed electrodeposition of nanoparticles inside conducting polymers. Journal of Materials Chemistry, 2012, 22, 19767.	6.7	32
431	Investigating non-fluorinated anions for sodium battery electrolytes based on ionic liquids. Electrochemistry Communications, 2016, 71, 48-51.	2.3	32
432	Ionic Liquids as Moderators in Exothermic Polymerization Reactions. Angewandte Chemie - International Edition, 2004, 43, 5363-5366.	7.2	31

#	Article	IF	CITATIONS
433	Characterization of the Magnesium Alloy AZ31 Surface in the Ionic Liquid Trihexyl(tetradecyl)phosphonium Bis(trifluoromethanesulfonyl)amide. Journal of the Electrochemical Society, 2010, 157, C392.	1.3	31
434	Computer-Aided Molecular Design of Ionic Liquids: An Overview. Australian Journal of Chemistry, 2012, 65, 1478.	0.5	31
435	Enhanced CO ₂ uptake by intramolecular proton transfer reactions in amino-functionalized pyridine-based ILs. Chemical Communications, 2017, 53, 5950-5953.	2.2	31
436	The effect of cation chemistry on physicochemical behaviour of superconcentrated NaFSI based ionic liquid electrolytes and the implications for Na battery performance. Electrochimica Acta, 2018, 268, 94-100.	2.6	31
437	Ionic liquid electrolytes supporting high energy density in sodium-ion batteries based on sodium vanadium phosphate composites. Chemical Communications, 2018, 54, 3500-3503.	2.2	31
438	Plastic crystal behaviour in tetraethylammonium dicyanamide. Solid State Ionics, 2007, 178, 1065-1071.	1.3	30
439	The influence of different nanoparticles on a range of organic ionic plastic crystals. Electrochimica Acta, 2010, 55, 8847-8854.	2.6	30
440	On the Stability of Water Oxidation Catalysts: Challenges and Prospects. Australian Journal of Chemistry, 2012, 65, 638.	0.5	30
441	Electrochemistry of the tris(2,2â€~-bipyridine) complex of iron(II) in ionic liquids and aprotic molecular solvents. Electrochimica Acta, 2016, 220, 347-353.	2.6	30
442	Ultrasensitive surface-enhanced Raman scattering detection of urea by highly ordered Au/Cu hybrid nanostructure arrays. Chemical Communications, 2017, 53, 7949-7952.	2.2	30
443	Base-rich diamino protic ionic liquid mixtures for enhanced CO2 capture. Separation and Purification Technology, 2018, 196, 27-31.	3.9	30
444	Application of a water-soluble cobalt redox couple in free-standing cellulose films for thermal energy harvesting. Electrochimica Acta, 2019, 297, 669-675.	2.6	30
445	An emulsion technique for the study of marginal glass formation in molecular liquids. The Journal of Physical Chemistry, 1982, 86, 1927-1930.	2.9	29
446	Cooling rate dependence of the ice I nucleation temperature in aqueous lithium chloride solutions. The Journal of Physical Chemistry, 1983, 87, 235-238.	2.9	29
447	Direct observation of time-temperature-transformation curves for crystallization of ice from solutions by a homogeneous mechanism. The Journal of Physical Chemistry, 1983, 87, 1094-1095.	2.9	29
448	An nmr investigation of ionic structure and mobility in plasticized solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2343-2347.	2.6	29
449	In situ generation of Eu2+ in glass-forming melts. Journal of Non-Crystalline Solids, 1999, 256-257, 53-58.	1.5	29
450	Boroxine ring compounds as dissociation enhancers in gel polyelectrolytes. Electrochimica Acta, 2003, 48, 1749-1758.	2.6	29

#	Article	IF	CITATIONS
451	The additive effect of zwitterion and nano-particles on ion dissociation in polyelectrolytes. Electrochimica Acta, 2005, 50, 2733-2738.	2.6	29
452	Group transfer polymerisation in hydrophobic ionic liquids. Chemical Communications, 2005, , 1149.	2.2	29
453	Fast ion conduction in an acid doped pentaglycerine plastic crystal. Solid State Ionics, 2006, 177, 647-652.	1.3	29
454	Formation of a Nanoparticulate Birnessiteâ€Like Phase in Purported Molecular Water Oxidation Catalyst Systems. ChemCatChem, 2014, 6, 2028-2038.	1.8	29
455	Probing the specific ion effects of biocompatible hydrated choline ionic liquids on lactate oxidase biofunctionality in sensor applications. Physical Chemistry Chemical Physics, 2014, 16, 1841-1849.	1.3	29
456	Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid–sodium cation mixtures. Journal of Materials Chemistry A, 2014, 2, 365-374.	5.2	29
457	Decoupled ion conduction in poly(2-acrylamido-2-methyl-1-propane-sulfonic acid) homopolymers. Journal of Materials Chemistry A, 2014, 2, 17934-17943.	5.2	29
458	Ion effects in water oxidation to hydrogen peroxide. RSC Advances, 2014, 4, 30551.	1.7	29
459	Bioinspired Electrocatalytic CO ₂ Reduction by Bovine Serum Albuminâ€Capped Silver Nanoclusters Mediated by [<i>α</i> â€SiW ₁₂ O ₄₀] ^{4â°'} . ChemSusChem, 2016, 9, 80-87.	3.6	29
460	Pyrazolium Phaseâ€Change Materials for Solarâ€Thermal Energy Storage. ChemSusChem, 2020, 13, 159-164.	3.6	29
461	Class-forming microemulsions. The Journal of Physical Chemistry, 1984, 88, 4593-4596.	2.9	28
462	Novel alkaline polymer electrolytes based on tetramethyl ammonium hydroxide. Electrochimica Acta, 2003, 48, 1971-1976.	2.6	28
463	Zwitterion effect in polyelectrolyte gels based on lithium methacrylate-N,N-dimethyl acrylamide copolymer. Electrochimica Acta, 2006, 51, 4033-4038.	2.6	28
464	High Frequency Dielectric Response of the Ionic Liquid N-Methyl-N-ethylpyrrolidinium Dicyanamide. Australian Journal of Chemistry, 2007, 60, 6.	0.5	28
465	Cycling performance of lithium metal polymer cells assembled with ionic liquid and poly(3-methyl) Tj ETQq1 1 0.7	′84314 rg 4.0	BT_/Overlock
466	Vapour phase polymerisation of pyrrole induced by iron(III) alkylbenzenesulfonate salt oxidising agents. Synthetic Metals, 2008, 158, 704-711.	2.1	28
467	Undoing Lithium Ion Association in Ionic Liquids through the Complexation by Oligoethers. Journal of Physical Chemistry C, 2010, 114, 20569-20576.	1.5	28
468	Novel ionic liquids and plastic crystals utilizing the cyanate anion. Journal of Materials Chemistry, 2011, 21, 19219.	6.7	28

#	Article	IF	CITATIONS
469	Enhancement of monobasal solid-state dye-sensitized solar cells with polymer electrolyte assembling imidazolium iodide-functionalized silica nanoparticles. Journal of Power Sources, 2014, 248, 283-288.	4.0	28
470	Stable cycling of NaFePO4 cathodes in high salt concentration ionic liquid electrolytes. Journal of Power Sources, 2018, 406, 70-80.	4.0	28
471	A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2001, 70, 85-101.	3.0	27
472	Solid state NMR analysis of polypyrrole grown in a phosphonium ionic liquid. Synthetic Metals, 2005, 155, 684-689.	2.1	27
473	Ternary mixtures of phosphonium ionic liquids + organic solvents + water. Pure and Applied Chemistry, 2008, 80, 1325-1335.	0.9	27
474	Protic Ionic Solids and Liquids Based on the Guanidinium Cation as Phaseâ€Change Energyâ€Storage Materials. Energy Technology, 2013, 1, 609-612.	1.8	27
475	Insights into the reversible oxygen reduction reaction in a series of phosphonium-based ionic liquids. Physical Chemistry Chemical Physics, 2014, 16, 25062-25070.	1.3	27
476	Exploring zinc coordination in novel zinc battery electrolytes. Physical Chemistry Chemical Physics, 2014, 16, 10816.	1.3	27
477	Synthesis of Sodium Poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]-co-ethylacrylate] Solid Polymer Electrolytes. Electrochimica Acta, 2015, 175, 232-239.	2.6	27
478	Investigating discharge performance and Mg interphase properties of an Ionic Liquid electrolyte based Mg-air battery. Electrochimica Acta, 2017, 235, 270-279.	2.6	27
479	The anion effect in ternary electrolyte systems using poly(diallyldimethylammonium) and phosphonium-based ionic liquid with high lithium salt concentration. Solid State Ionics, 2018, 327, 83-92.	1.3	27
480	Solid state ion transport and phase behaviour in composites of N,N-methyl propylpyrrolidinium tetrafluoroborate and amorphous polyethylene oxide. Physical Chemistry Chemical Physics, 2003, 5, 5558.	1.3	26
481	The Effect of Particle Matrix Adhesion on the Mechanical Properties of Silica Filled Cyanate Ester Composites. Macromolecular Materials and Engineering, 2004, 289, 872-879.	1.7	26
482	Role of Defects in the High Ionic Conductivity of Choline Triflate Plastic Crystal and Its Acid-Containing Compositions. Journal of Physical Chemistry C, 2013, 117, 5532-5543.	1.5	26
483	CO ₂ -Based Alkyl Carbamate Ionic Liquids as Distillable Extraction Solvents. ACS Sustainable Chemistry and Engineering, 2014, 2, 1724-1728.	3.2	26
484	Properties of High Na-Ion Content N-Propyl-N-Methylpyrrolidinium Bis(Fluorosulfonyl)Imide -Ethylene Carbonate Electrolytes. Electrochimica Acta, 2017, 247, 983-993.	2.6	26
485	Choline ionic liquid enhances the stability of Herceptin® (trastuzumab). Chemical Communications, 2018, 54, 10622-10625.	2.2	26
486	Understanding the Factors Determining the Faradaic Efficiency and Rate of the Lithium Redox-Mediated N ₂ Reduction to Ammonia. Journal of Physical Chemistry C, 2021, 125, 11402-11410.	1.5	26

#	Article	IF	CITATIONS
487	Conductive plastic crystal phases of the 1-alkyl-2-methyl pyrrolinium TFSA salts. Solid State Ionics, 2002, 148, 145-151.	1.3	25
488	Fluorozirconate-based nanophase glass ceramics for high-resolution medical X-ray imaging. Journal of Non-Crystalline Solids, 2006, 352, 610-614.	1.5	25
489	An Azo-Spiro Mixed Ionic Liquid Electrolyte for Lithium Metal–LiFePO[sub 4] Batteries. Journal of the Electrochemical Society, 2010, 157, A876.	1.3	25
490	Crystallisation kinetics of some archetypal ionic liquids: isothermal and non-isothermal defense of the Avrami exponent. Physical Chemistry Chemical Physics, 2011, 13, 12033.	1.3	25
491	Synthesis and physical properties of tris(dialkylamino)cyclopropenium bistriflamide ionic liquids. RSC Advances, 2015, 5, 39565-39579.	1.7	25
492	Extensive Sodium Metal Plating and Stripping in a Highly Concentrated Inorganicâ^'Organic Ionic Liquid Electrolyte through Surface Pretreatment. ChemElectroChem, 2017, 4, 986-991.	1.7	25
493	Elucidating the Impact of Sodium Salt Concentration on the Cathode–Electrolyte Interface of Na–Air Batteries. Journal of Physical Chemistry C, 2018, 122, 15276-15286.	1.5	25
494	Flexible and non-volatile redox active quasi-solid state ionic liquid based electrolytes for thermal energy harvesting. Sustainable Energy and Fuels, 2018, 2, 1806-1812.	2.5	25
495	Towards high rate Li metal anodes: enhanced performance at high current density in a superconcentrated ionic liquid. Journal of Materials Chemistry A, 2020, 8, 3574-3579.	5.2	25
496	Pressure coefficients of conductance and of glass transition temperatures in concentrated aqueous lithium chloride, lithium iodide, and aluminum chloride solutions. The Journal of Physical Chemistry, 1986, 90, 2168-2173.	2.9	24
497	Structure and dynamics of the plastic crystal tetramethylammonium dicyanamide—a molecular dynamics studyâ~†. Solid State Ionics, 2006, 177, 2845-2850.	1.3	24
498	Methimazole-Based Ionic Liquids. Journal of Organic Chemistry, 2008, 73, 4676-4679.	1.7	24
499	Lithium-functionalised silicananoparticles for enhanced ionic conductivity in an organic ionic plastic crystal. Journal of Materials Chemistry, 2010, 20, 338-344.	6.7	24
500	Photostimulated electrocatalysis of water oxidation by conjugated polymers. Electrochemistry Communications, 2011, 13, 307-309.	2.3	24
501	Flagellar filament bio-templated inorganic oxide materials – towards an efficient lithium battery anode. Scientific Reports, 2015, 5, 7736.	1.6	24
502	Electrochemistry of tris(2,2′-bipyridyl) cobalt(II) in ionic liquids and aprotic molecular solvents on glassy carbon and platinum electrodes. Electrochimica Acta, 2015, 180, 419-426.	2.6	24
503	Highly reversible oxygen to superoxide redox reaction in a sodium-containing ionic liquid. Electrochemistry Communications, 2017, 74, 14-18.	2.3	24
504	Role of Hydrogen Bonding in Phase Change Materials. Crystal Growth and Design, 2020, 20, 1285-1291.	1.4	24

#	Article	IF	CITATIONS
505	Advances in the development of rare earth metal and carboxylate compounds as corrosion inhibitors for steel. Corrosion Engineering Science and Technology, 2020, 55, 311-321.	0.7	24
506	A novel proton conducting ionogel electrolyte based on poly(ionic liquids) and protic ionic liquid. Electrochimica Acta, 2020, 346, 136224.	2.6	24
507	Thermal and physical properties of an archetypal organic ionic plastic crystal electrolyte. Physical Chemistry Chemical Physics, 2004, 6, 3721.	1.3	23
508	Thermal analysis, nuclear magnetic resonance spectroscopy, and impedance spectroscopy of N,N-dimethyl-pyrrolidinium iodide: An ionic solid exhibiting rotator phases. Journal of Applied Physics, 2005, 97, 093904.	1.1	23
509	High mobility Iâ^'/I3â^' redox couple in a molecular plastic crystal: A potential new generation of electrolyte for solid-state photoelectrochemical cells. Solid State Ionics, 2006, 177, 395-401.	1.3	23
510	Photochromic imidazolium based ionic liquids based on spiropyran. Physical Chemistry Chemical Physics, 2010, 12, 7009.	1.3	23
511	Electrochemical properties of crystallized dilithium squarate: insight from dispersion-corrected density functional theory. Physical Chemistry Chemical Physics, 2012, 14, 11398.	1.3	23
512	Towards hydrogen production using a breathable electrode structure to directly separate gases in the water splitting reaction. International Journal of Hydrogen Energy, 2012, 37, 8185-8189.	3.8	23
513	Aqueous ionic liquid solutions as alternatives for sulphide-free leather processing. Green Chemistry, 2015, 17, 1001-1007.	4.6	23
514	An intensified π-hole in beryllium-doped boron nitride meshes: its determinant role in CO2 conversion into hydrocarbon fuels. Chemical Communications, 2016, 52, 3548-3551.	2.2	23
515	High Nitrogen Gas Solubility and Physicochemical Properties of [C ₄ mpyr][eFAP]–Fluorinated Solvent Mixtures. Journal of Physical Chemistry C, 2019, 123, 21376-21385.	1.5	23
516	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie - International Edition, 2021, 60, 15821-15826.	7.2	23
517	Solid state NMR characterization of lithium conducting ceramics. Solid State Ionics, 1996, 86-88, 1397-1402.	1.3	22
518	Photoluminescence and crystallization in europium-doped fluorobromozirconate glass-ceramics. Journal of Non-Crystalline Solids, 2001, 284, 237-242.	1.5	22
519	Structure and transport properties in an N,N-substituted pyrrolidinium tetrafluoroborate plastic crystal system. Solid State Ionics, 2002, 154-155, 279-284.	1.3	22
520	Acids and Bases in Ionic Liquids. ACS Symposium Series, 2003, , 264-276.	0.5	22
521	A new fluorozirconate glass-ceramic X-ray storage phosphor. Journal of Non-Crystalline Solids, 2003, 326-327, 489-493.	1.5	22
522	Cation dynamics in dimethyl-pyrrolidinium-based solid-state ion conductors. Electrochimica Acta, 2005, 50, 3853-3858.	2.6	22

#	Article	IF	CITATIONS
523	High current density and drift velocity in templated conducting polymers. Organic Electronics, 2007, 8, 796-800.	1.4	22
524	Photochromism of nitrobenzospiropyran in phosphonium based ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 7286.	1.3	22
525	Ion effects in REDOX cycling of conducting polymer based electrochromic materials. Electrochemistry Communications, 2010, 12, 1505-1508.	2.3	22
526	Towards Hydrogen Energy: Progress on Catalysts for Water Splitting. Australian Journal of Chemistry, 2012, 65, 577.	0.5	22
527	Interaction of choline salts with artificial biological membranes: DSC studies elucidating cellular interactions. Biochimica Et Biophysica Acta - Biomembranes, 2013, 1828, 1856-1862.	1.4	22
528	Highly Ordered Ag/Cu Hybrid Nanostructure Arrays for Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials Interfaces, 2016, 3, 1600115.	1.9	22
529	Poly methacrylate-plasticiser-salt blends as solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2301-2304.	2.6	21
530	Conductivity and NMR properties of plasticized polyethers complexed with lithium salts. Solid State lonics, 1996, 86-88, 1365-1370.	1.3	21
531	Population dynamics inEr3+-doped fluoride glasses. Physical Review B, 2001, 63, .	1.1	21
532	7Li NMR measurements of polymer gel electrolytes. Solid State Ionics, 2002, 147, 303-307.	1.3	21
533	Ab initio calculations, Raman and NMR investigation of the plastic crystal di-methyl pyrrolidinium iodide. Electrochimica Acta, 2003, 48, 2283-2289.	2.6	21
534	N-Methyl-N-Alkylpyrrolidinium Bis(perfluoroethylsulfonyl)amide ([NPf2]–) and Tris(trifluoromethanesulfonyl)methide ([CTf3]–) Salts: Synthesis and Characterization. Australian Journal of Chemistry, 2007, 60, 57.	0.5	21
535	Structural Characterization of Novel Ionic Salts Incorporating Trihalide Anions. Australian Journal of Chemistry, 2009, 62, 334.	0.5	21
536	Application of the Kwei equation to model the Tg behavior of binary blends of sugars and salts. Cryobiology, 2014, 68, 155-158.	0.3	21
537	Quantum Dots: Carbon Quantum Dots/Cu ₂ O Heterostructures for Solarâ€Lightâ€Driven Conversion of CO ₂ to Methanol (Adv. Energy Mater. 5/2015). Advanced Energy Materials, 2015, 5, .	10.2	21
538	Sodium ion dynamics in a sulfonate based ionomer system studied by 23Na solid-state nuclear magnetic resonance and impedance spectroscopy. Electrochimica Acta, 2015, 175, 62-67.	2.6	21
539	Electrosynthesis of Highly Transparent Cobalt Oxide Water Oxidation Catalyst Films from Cobalt Aminopolycarboxylate Complexes. ChemSusChem, 2015, 8, 1394-1403.	3.6	21
540	Evaluation of the protic ionic liquid, N,N-dimethyl-aminoethylammonium formate for CO 2 capture. International Journal of Greenhouse Gas Control, 2015, 32, 129-134.	2.3	21

#	Article	IF	CITATIONS
541	Enhancement of â€~dry' proton conductivity by self-assembled nanochannels in all-solid polyelectrolytes. Journal of Materials Chemistry A, 2016, 4, 7615-7623.	5.2	21
542	Composition effects on ion transport in a polyelectrolyte gel with the addition of ion dissociators. Electrochimica Acta, 2005, 50, 3917-3921.	2.6	20
543	Conducting Polymer Enzyme Alloys: Electromaterials Exhibiting Direct Electron Transfer. Macromolecular Rapid Communications, 2010, 31, 1293-1297.	2.0	20
544	Porphyrin dye-sensitised solar cells utilising a solid-state electrolyte. Chemical Communications, 2011, 47, 9327.	2.2	20
545	In Vitro Assessment of Choline Dihydrogen Phosphate (CDHP) as a Vehicle for Recombinant Human Interleukin-2 (rhIL-2). Cellular and Molecular Bioengineering, 2012, 5, 390-401.	1.0	20
546	Cetrimonium Nalidixate as a Multifunctional Inhibitor to Combat Biofilm Formation and Microbiologically Influenced Corrosion. Australian Journal of Chemistry, 2013, 66, 921.	0.5	20
547	High solubility of Victorian brown coal in â€~distillable' ionic liquid DIMCARB. Fuel, 2015, 158, 23-34.	3.4	20
548	Characterisation of ion transport in sulfonate based ionomer systems containing lithium and quaternary ammonium cations. Electrochimica Acta, 2015, 175, 80-86.	2.6	20
549	On the Origin of the Improvement of Electrodeposited MnOxFilms in Water Oxidation Catalysis Induced by Heat Treatment. ChemSusChem, 2015, 8, 1980-1985.	3.6	20
550	Unraveling the Role of Ligands in the Hydrogen Evolution Mechanism Catalyzed by [NiFe] Hydrogenases. ACS Catalysis, 2016, 6, 5541-5548.	5.5	20
551	An ionic liquid based sodium metal-hybrid supercapacitor-battery. Sustainable Energy and Fuels, 2018, 2, 763-771.	2.5	20
552	Structure and Ion Dynamics in Imidazolium-Based Protic Organic Ionic Plastic Crystals. Journal of Physical Chemistry Letters, 2018, 9, 3904-3909.	2.1	20
553	Surface crystallization of ZBLAN glasses. Journal of Non-Crystalline Solids, 1992, 140, 159-165.	1.5	19
554	Reversible self-polymerizing high Tg lyoprotectants. Cryobiology, 2002, 45, 188-192.	0.3	19
555	Photoelectrochemical Solar Cells based on Polyterthiophenes Containing Porphyrins using Ionic Liquid Electrolyte. Electrochemical and Solid-State Letters, 2005, 8, A528.	2.2	19
556	Enhanced properties in chemically polymerized poly(terthiophene) using vapour phase techniques. Reactive and Functional Polymers, 2008, 68, 1119-1126.	2.0	19
557	Nitrile Functionalized Methimazole-Based Ionic Liquids. Journal of Organic Chemistry, 2010, 75, 8376-8382.	1.7	19
558	Bi-Functional Water/Oxygen Electrocatalyst Based on PdO-RuO ₂ Composites. Journal of the Electrochemical Society, 2013, 160, H74-H79.	1.3	19

#	Article	IF	CITATIONS
559	The electrochemical cycling and electrodeposition of lead from 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. Electrochimica Acta, 2015, 174, 712-720.	2.6	19
560	Increased ion conduction in dual cation [sodium][tetraalkylammonium] poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide-co-ethylacrylate] ionomers. Journal of Materials Chemistry A, 2015, 3, 19989-19995.	5.2	19
561	Effect of salt-based adjuvant on partition behaviour of protein in aqueous two-phase systems composed of polypropylene glycol and cholinium glycinate. Separation and Purification Technology, 2018, 196, 281-286.	3.9	19
562	Environmentally Benign and Recyclable Aqueous Two-Phase System Composed of Distillable CO ₂ -Based Alkyl Carbamate Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 10344-10354.	3.2	19
563	Mixed metal–antimony oxide nanocomposites: low pH water oxidation electrocatalysts with outstanding durability at ambient and elevated temperatures. Journal of Materials Chemistry A, 2021, 9, 27468-27484.	5.2	19
564	Positron annihilation lifetime spectroscopy as a probe of free volume in plasticized solid polymer electrolytes. Electrochimica Acta, 1995, 40, 2349-2351.	2.6	18
565	N,N-Dimethylpyrrolidinium hydroxide: a highly conductive solid material at ambient temperature. Journal of Materials Chemistry, 2001, 11, 2940-2942.	6.7	18
566	Polymeric Toughening of Particle Filled Cyanate Ester Composites. Macromolecular Materials and Engineering, 2005, 290, 961-969.	1.7	18
567	Electrochemical Study of Dialcarb "Distillable―Roomâ€Temperature Ionic Liquids. ChemPhysChem, 2009, 10, 455-461.	1.0	18
568	Electrochemical reactivity of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate ionic liquid on glassy carbon and AZ31 magnesium alloy. Electrochimica Acta, 2011, 56, 5328-5334.	2.6	18
569	Passive film formation in dilute ionic liquid solutions on magnesium Alloy AZ31. Electrochemistry Communications, 2012, 19, 90-92.	2.3	18
570	Probing Ion Exchange in the Triflic Acid–Guanidinium Triflate System: A Solid-State Nuclear Magnetic Resonance Study. Journal of Physical Chemistry C, 2014, 118, 28520-28526.	1.5	18
571	Inhibited fragmentation of mAbs in buffered ionic liquids. Chemical Communications, 2015, 51, 8089-8092.	2.2	18
572	Towards Phosphorus Free Ionic Liquid Anti-Wear Lubricant Additives. Lubricants, 2016, 4, 22.	1.2	18
573	Hydrogels Containing the Ferri/Ferrocyanide Redox Couple and Ionic Liquids for Thermocells. Australian Journal of Chemistry, 2019, 72, 112.	0.5	18
574	Degradation mechanisms in electrochromic devices based on sol-gel deposited thin films. Solar Energy Materials and Solar Cells, 1995, 39, 133-143.	3.0	17
575	Harmonic impedance spectroscopy. Theory and experimental results for reversible and quasi-reversible redox systems. The Journal of Physical Chemistry, 1995, 99, 2134-2142.	2.9	17
576	Characterization of a proton conductor based on silicotungstic acid. Electrochimica Acta, 2001, 46, 1673-1678.	2.6	17

#	Article	IF	CITATIONS
577	Transport and phase dynamics of poly(vinyl pyrrolidone) doped plastically crystalline N-methyl-N-propylpyrrolidinium tetrafluoroborate. Solid State Ionics, 2006, 177, 95-104.	1.3	17
578	An Electrochemical Impedance Study of Ionic Liquid Film Formation and Aqueous Corrosion of Magnesium Alloy ZE41. Israel Journal of Chemistry, 2008, 48, 313-318.	1.0	17
579	Efficient Synthesis of 2,3-Dihydro-1H-Perimidine Derivatives Using HBOB as a Novel Solid Acid Catalyst. Australian Journal of Chemistry, 2012, 65, 86.	0.5	17
580	Phosphorylated manganese oxide electrodeposited from ionic liquid as a stable, high efficiency water oxidation catalyst. Catalysis Today, 2013, 200, 36-40.	2.2	17
581	A Solid-State pH Sensor for Nonaqueous Media Including Ionic Liquids. Analytical Chemistry, 2013, 85, 3521-3525.	3.2	17
582	Temperature and pH triggered release characteristics of water/fluorescein from 1-ethyl-3-methylimidazolium ethylsulfate based ionogels. Chemical Communications, 2013, 49, 4613.	2.2	17
583	Roles of Additives in the Trihexyl(tetradecyl) Phosphonium Chloride Ionic Liquid Electrolyte for Primary Mg-Air Cells. Journal of the Electrochemical Society, 2014, 161, A974-A980.	1.3	17
584	Organic Photovoltaic Structures as Photo-active Electrodes. Electrochimica Acta, 2014, 140, 309-313.	2.6	17
585	Spin-crossover, mesomorphic and thermoelectrical properties of cobalt(<scp>ii</scp>) complexes with alkylated N ₃ -Schiff bases. Journal of Materials Chemistry C, 2015, 3, 2491-2499.	2.7	17
586	Protic organic ionic plastic crystals based on a difunctional cation and the triflate anion: a new solid-state proton conductor. Chemical Communications, 2016, 52, 14097-14100.	2.2	17
587	Towards Higher Energy Density Redoxâ€Flow Batteries: Imidazolium Ionic Liquid for Zn Electrochemistry in Flow Environment. ChemElectroChem, 2017, 4, 1051-1058.	1.7	17
588	Surfactantâ€Free Synthesis of Grapheneâ€Supported PdCu Nanocrystals with High Alloying Degree as Highly Active Catalyst for Formic Acid Electrooxidation. Advanced Materials Interfaces, 2017, 4, 1700227.	1.9	17
589	Understanding of the Electrogenerated Bulk Electrolyte Species in Sodium-Containing Ionic Liquid Electrolytes During the Oxygen Reduction Reaction. Journal of Physical Chemistry C, 2017, 121, 23307-23316.	1.5	17
590	The Effect of Solvent on the Seebeck Coefficient and Thermocell Performance of Cobalt Bipyridyl and Iron Ferri/Ferrocyanide Redox Couples. Australian Journal of Chemistry, 2019, 72, 709.	0.5	17
591	An investigation of commercial carbon air cathode structure in ionic liquid based sodium oxygen batteries. Scientific Reports, 2020, 10, 7123.	1.6	17
592	Thin films of poly(vinylidene fluoride- <i>co</i> -hexafluoropropylene)-ionic liquid mixtures as amperometric gas sensing materials for oxygen and ammonia. Analyst, The, 2020, 145, 1915-1924.	1.7	17
593	Electrochemically Induced Generation of Extraneous Nitrite and Ammonia in Organic Electrolyte Solutions During Nitrogen Reduction Experiments. ChemElectroChem, 2021, 8, 1596-1604.	1.7	17
594	A study of hydrogen bonding in concentrated diol/water solutions by proton NMR correlations with glass formation. The Journal of Physical Chemistry, 1990, 94, 6889-6893.	2.9	16

#	Article	IF	CITATIONS
595	Molecular dynamics and 19F NMR investigation of mixed alkali fluoride glasses. Journal of Non-Crystalline Solids, 1990, 123, 42-47.	1.5	16
596	High erbium content heavy metal fluoride glasses. Journal of Non-Crystalline Solids, 1995, 184, 249-253.	1.5	16
597	Anodising AZ31 in a Phosphonium Ionic Liquid: Corrosion Protection through Composite Film Deposition. Journal of the Electrochemical Society, 2012, 159, C539-C545.	1.3	16
598	Physical Properties and Structural Characterization of Ionic Liquids and Solid Electrolytes Utilizing the Carbamoylcyano(nitroso)methanide Anion. ChemPlusChem, 2013, 78, 486-497.	1.3	16
599	Mechano-chemical synthesis of nanostructured FePO ₄ /MWCNTs composites as cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 19536-19541.	5.2	16
600	Enhanced photo-electrochemical water oxidation on MnO _x in buffered organic/inorganic electrolytes. Journal of Materials Chemistry A, 2015, 3, 16642-16652.	5.2	16
601	Unexpected effect of tetraglyme plasticizer on lithium ion dynamics in PAMPS based ionomers. Physical Chemistry Chemical Physics, 2016, 18, 19011-19019.	1.3	16
602	Ambient temperature solubilisation of brown coal in ammonium carbamate ionic liquids. Fuel, 2016, 166, 106-115.	3.4	16
603	Primary and secondary aqueous two-phase systems composed of thermo switchable polymers and bio-derived ionic liquids. Journal of Chemical Thermodynamics, 2017, 115, 191-201.	1.0	16
604	Interphase engineering of reactive metal surfaces using ionic liquids and deep eutectic solvents—from corrosion control to next-generation batteries. Npj Materials Degradation, 2017, 1, .	2.6	16
605	High Zn Concentration Pyrrolidinium-Dicyanamide-Based Ionic Liquid Electrolytes for Zn ²⁺ /Zn ⁰ Electrochemistry in a Flow Environment. ACS Applied Energy Materials, 2018, 1, 4580-4590.	2.5	16
606	A Hybrid Anion for Ionic Liquid and Battery Electrolyte Applications: Half Triflamide, Half Carbonate. Angewandte Chemie - International Edition, 2019, 58, 4390-4394.	7.2	16
607	Structure Effects on the Ionicity of Protic Ionic Liquids. ChemPhysChem, 2020, 21, 1444-1454.	1.0	16
608	Is Molybdenum Disulfide Modified with Molybdenum Metal Catalytically Active for the Nitrogen Reduction Reaction?. Journal of the Electrochemical Society, 2020, 167, 146507.	1.3	16
609	Devitrification and Recrystallization of Glass Forming Aqueous Solutions. , 1987, , 237-263.		15
610	19F NMR evidence for multiple fluoride ion sites in heavy metal fluoride glasses. Journal of Non-Crystalline Solids, 1989, 108, 289-293.	1.5	15
611	23Na NMR in urethane cross-linked polyether solid polymer electrolytes. Journal of Polymer Science, Part B: Polymer Physics, 1994, 32, 2077-2084.	2.4	15
612	Materials chemistry communications. 13C Nuclear magnetic resonance spectroscopic study of plasticization in solid polymer electrolytes. Journal of Materials Chemistry, 1994, 4, 1149.	6.7	15

#	Article	IF	CITATIONS
613	In Situ Synthesis of Core–Shell-Ni ₃ Fe(OH) ₉ /Ni ₃ Fe Hybrid Nanostructures as Highly Active and Stable Bifunctional Catalysts for Water Electrolysis. ACS Applied Energy Materials, 2018, 1, 986-992.	2.5	15
614	Hydrogen bonding effect between active site and protein environment on catalysis performance in H ₂ -producing [NiFe] hydrogenases. Physical Chemistry Chemical Physics, 2018, 20, 6735-6743.	1.3	15
615	In the lab: New ethical and supply chain protocols for battery and solar alternative energy laboratory research policy and practice. Journal of Cleaner Production, 2018, 187, 485-495.	4.6	15
616	Electrohydrogenation of Carbon Dioxide using a Ternary Pd/Cu ₂ O–Cu Catalyst. ChemSusChem, 2019, 12, 4471-4479.	3.6	15
617	A safe Li–Se battery in an ionic liquid-based electrolyte operating at 25–70 °C by using a N,S,O tri-doped mesoporous carbon host material. Sustainable Energy and Fuels, 2020, 4, 2322-2332.	2.5	15
618	Hierarchical architectures of mesoporous Pd on highly ordered TiO ₂ nanotube arrays for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 8041-8048.	5.2	15
619	High-capacity and high-rate Ni-Fe batteries based on mesostructured quaternary carbon/Fe/FeO/Fe3O4 hybrid material. IScience, 2021, 24, 102547.	1.9	15
620	Phosphonium ionic liquids as lubricants for aluminium-steel. WIT Transactions on Engineering Sciences, 2010, , .	0.0	15
621	Molecular dynamics simulation of heavy metal fluoride glasses: comparison of Buckingham and BHM potentials. Journal of Non-Crystalline Solids, 1995, 184, 356-362.	1.5	14
622	Plasticized single conductung polyelectrolytes based on poly (AMPS). Ionics, 1996, 2, 53-62.	1.2	14
623	Polymer electrolytes for electrochromic window applications. Solid State Ionics, 1996, 86-88, 959-964.	1.3	14
624	A combined differential scanning calorimeter-optical video microscope for crystallization studies. Journal of Theoretical Biology, 1997, 49, 991-998.	0.8	14
625	Ionic conductance of PDMAEMA/PEO polymeric electrolyte containing lithium salt mixed with plasticizer. Journal of Power Sources, 2006, 163, 269-273.	4.0	14
626	The Development of Ionic Liquids for Biomedical Applications — Prospects and Challenges. ACS Symposium Series, 2010, , 95-105.	0.5	14
627	Organic Ionic Plastic Crystals and Low Viscosity Ionic Liquids Based on the Dicyano(nitroso)methanide Anion. ChemPlusChem, 2012, 77, 1039-1045.	1.3	14
628	Controlled morphogenesis and self-assembly of bismutite nanocrystals into three-dimensional nanostructures and their applications. Journal of Materials Chemistry A, 2014, 2, 2275-2282.	5.2	14
629	Evaluation of Electrochemical Methods for Determination of the Seebeck Coefficient of Redox Electrolytes. Electrochimica Acta, 2015, 184, 186-192.	2.6	14
630	Direct ionic liquid extractant injection for volatile chemical analysis – a gas chromatography sampling technique. Green Chemistry, 2015, 17, 573-581.	4.6	14

#	Article	IF	CITATIONS
631	Enhancing Solid-State Conductivity through Acid or Base Doping of Protic Imidazolium and Imidazolinium Triflate Salts. Journal of Physical Chemistry C, 2017, 121, 27849-27859.	1.5	14
632	Guanidinium Organic Salts as Phaseâ€Change Materials for Renewable Energy Storage. ChemSusChem, 2021, 14, 2757-2762.	3.6	14
633	Sub-zero and room-temperature sodium–sulfur battery cell operations: A rational current collector, catalyst and sulphur-host design and study. Energy Storage Materials, 2021, 42, 608-617.	9.5	14
634	Reassessment of the catalytic activity of bismuth for aqueous nitrogen electroreduction. Nature Catalysis, 2022, 5, 382-384.	16.1	14
635	Ion conductive poly(ethylene oxide-dimethyl siloxane) copolymers. Journal of Polymer Science Part A, 1996, 34, 3465-3470.	2.5	13
636	New inorganic glasses for optical waveguides. Ceramics International, 1996, 22, 535-541.	2.3	13
637	Ion association and molar conductivity in polyether electrolytes. Electrochimica Acta, 1998, 43, 1453-1457.	2.6	13
638	Induction of titanium reduction using pyrrole and polypyrrole in the ionic liquid ethyl-methyl-imidazolium bis(trifluoromethanesulphonyl)amide. Electrochemistry Communications, 2008, 10, 217-221.	2.3	13
639	PEDOT-Coated Counter Electrodes for Dye-Sensitized Solar Cells. Australian Journal of Chemistry, 2009, 62, 348.	0.5	13
640	The effect of alkyl chain length in a series of novel N-alkyl-3-benzylimidazolium iodide salts. CrystEngComm, 2009, 11, 2456.	1.3	13
641	Novel acid initiators for the rapid cationic polymerization of styrene in room temperature ionic liquids. Science China Chemistry, 2012, 55, 1671-1676.	4.2	13
642	An investigation of the properties of conducting polymer alloys for water oxidation. Electrochimica Acta, 2014, 122, 166-172.	2.6	13
643	Electrochemistry: general discussion. Faraday Discussions, 2018, 206, 405-426.	1.6	13
644	Role of Nâ€Propylâ€Nâ€Methyl Pyrrolidinium bis(trifluoromethanesulfonyl)imide as an Electrolyte Additive in Sodium Battery Electrochemistry. Energy Technology, 2018, 6, 2232-2237.	1.8	13
645	Dual-MnCo2O4/Ni electrode with three-level hierarchy for high-performance electrochemical energy storage. Electrochimica Acta, 2018, 280, 55-61.	2.6	13
646	Preparation of chiral graphene oxides by covalent attachment of chiral cysteines for voltammetric recognition of tartrates. Mikrochimica Acta, 2019, 186, 298.	2.5	13
647	Copper atalyzed Electrosynthesis of Nitrite and Nitrate from Ammonia: Tuning the Selectivity via an Interplay Between Homogeneous and Heterogeneous Catalysis. ChemSusChem, 2021, 14, 4793-4801.	3.6	13
648	Probing the secrets of hydrogen bonding in organic salt phase change materials: the origins of a high enthalpy of fusion. Materials Advances, 2021, 2, 7650-7661.	2.6	13

#	Article	IF	CITATIONS
649	Nanoscale TiO ₂ Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 33130-33140.	4.0	13
650	Temperature dependence of Faraday rotation and magnetic susceptibility for Ce3+ and Pr3+ ions in fluorozirconate glass. Journal of Non-Crystalline Solids, 1998, 231, 257-267.	1.5	12
651	Electrooxidation of [(η5-C5H5)Fe(CO)2]2 As a Probe of the Nucleophilic Properties of Ionic Liquid Anions. Inorganic Chemistry, 2010, 49, 2502-2511.	1.9	12
652	Preparation and Characterization of Catalysts for Clean Energy: A Challenge for X-rays and Electrons. Australian Journal of Chemistry, 2012, 65, 608.	0.5	12
653	Why is a proton transformed into a hydride by [NiFe] hydrogenases? An intrinsic reactivity analysis based on conceptual DFT. Physical Chemistry Chemical Physics, 2016, 18, 15369-15374.	1.3	12
654	Mixtures of the 1-ethyl-3-methylimidazolium acetate ionic liquid with different inorganic salts: insights into their interactions. Physical Chemistry Chemical Physics, 2016, 18, 2756-2766.	1.3	12
655	Metal-Free Black Silicon for Solar-powered Hydrogen Generation. Electrochimica Acta, 2017, 235, 453-462.	2.6	12
656	Understanding the Behavior of LiCoO ₂ Cathodes at Extended Potentials in Ionic Liquid–Alkyl Carbonate Hybrid Electrolytes. Journal of Physical Chemistry C, 2017, 121, 15630-15638.	1.5	12
657	Controlling the Threeâ€Phase Boundary in Na–Oxygen Batteries: The Synergy of Carbon Nanofibers and Ionic Liquid. ChemSusChem, 2019, 12, 4054-4063.	3.6	12
658	Electrocatalytic Oxidation of Hydrogen as an Anode Reaction for the Li-Mediated N ₂ Reduction to Ammonia. ACS Catalysis, 2022, 12, 5231-5246.	5.5	12
659	Recent progress toward vitrification of kidneys. Cryobiology, 1982, 19, 668-669.	0.3	11
660	Systematic study of refractive index variations with composition in heavy metal fluoride glasses. Journal of Non-Crystalline Solids, 1993, 161, 182-187.	1.5	11
661	Field-swept pulsed electron paramagnetic resonance of Cr3+-doped ZBLAN fluoride glass. Journal Physics D: Applied Physics, 2001, 34, 2987-2994.	1.3	11
662	Synthesis, reactivity ratios and characterization of hydroquinone promoted CT co-polymerization of styrene and methyl methacrylate in a room temperature ionic liquid. European Polymer Journal, 2006, 42, 2736-2742.	2.6	11
663	Choline dihydrogen phosphate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o709-o709.	0.2	11
664	UV/ozone-assisted low temperature preparation of mesoporous TiO ₂ with tunable phase composition and enhanced solar light photocatalytic activity. Journal of Materials Chemistry A, 2014, 2, 18791-18795.	5.2	11
665	A novel class of gas separation membrane based on organic ionic plastic crystals. Chemical Communications, 2016, 52, 12940-12943.	2.2	11
666	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO ₂ to Alcohol. ACS Energy Letters, 2018, 3, 2649-2655.	8.8	11

#	Article	IF	CITATIONS
667	High Coulombic Efficiency Na–O ₂ Batteries Enabled by a Bilayer Ionogel/Ionic Liquid. Journal of Physical Chemistry Letters, 2019, 10, 7050-7055.	2.1	11
668	Structural stability of insulin aspart in aqueous cholinium aminoate ionic liquids based on molecular dynamics simulation studies. Journal of Molecular Liquids, 2021, 322, 114501.	2.3	11
669	Approach to Increase the Utilization of Active Material in a High Sulfur-Loaded Cathode for High Areal Capacity Room-Temperature Sodium–Sulfur Batteries. ACS Applied Energy Materials, 2021, 4, 384-393.	2.5	11
670	Emulsion techniques for the study of glass formation. 2. Low melting point salt hydrates. The Journal of Physical Chemistry, 1984, 88, 4779-4781.	2.9	10
671	Direct observation of droplet structure in a vitrified microemulsion. The Journal of Physical Chemistry, 1986, 90, 2784-2786.	2.9	10
672	Electron paramagnetic resonance study of the Mn2+ ion in a zirconium fluoride glass. Journal of Non-Crystalline Solids, 1992, 140, 314-318.	1.5	10
673	Lithium coordination and mobility in gel electrolytes based on an acrylate polymer with ethylene oxide side chains. Journal of Materials Chemistry, 2003, 13, 814-817.	6.7	10
674	Ionic Liquids Symposium. Australian Journal of Chemistry, 2004, 57, 111.	0.5	10
675	Sodium pyridine-3-carboxylate. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, m169-m170.	0.4	10
676	The Influence of Water and Metal Ions on the Transport Properties of Trihexyl(tetradecyl)phosphonium Chloride. Australian Journal of Chemistry, 2012, 65, 1542.	0.5	10
677	Enhanced enzymatic degradation resistance of plasmid DNA in ionic liquids. RSC Advances, 2015, 5, 43839-43844.	1.7	10
678	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. Scientific Reports, 2015, 4, 7420.	1.6	10
679	Fluoride Ionic Liquids in Salts of Ethylmethylimidazolium and Substituted Cyclopropenium Cation Families. Frontiers in Chemistry, 2018, 6, 603.	1.8	10
680	Influence of Electrospun Poly(vinylidene difluoride) Nanofiber Matrix on the Ion Dynamics of a Protic Organic Ionic Plastic Crystal. Journal of Physical Chemistry C, 2018, 122, 14546-14553.	1.5	10
681	Protic Ionic Liquids Based on Oligomeric Anions [(HSO4)(H2SO4)x]â^' (x = 0, 1, or 2) for a Clean ϵ-Caprolactam Synthesis. Australian Journal of Chemistry, 2019, 72, 130.	0.5	10
682	A Selfâ€Assembled CO ₂ Reduction Electrocatalyst: Posyâ€Bouquetâ€6haped Goldâ€Polyaniline Coreâ€6hell Nanocomposite. ChemSusChem, 2020, 13, 5023-5030.	3.6	10
683	Ultrathin Lithium Aluminate Nanoflake-Inlaid Sulfur as a Cathode Material for Lithium–Sulfur Batteries with High Areal Capacity. ACS Applied Energy Materials, 2020, 3, 5637-5645.	2.5	10
684	On the problem of homogeneous nucleation in fluoride glasses. Materials Research Bulletin, 1983, 18, 293-299.	2.7	9

#	Article	IF	CITATIONS
685	A water-soluble siloxane: Poly(ethylene glycol) comb polymer. Journal of Polymer Science, Polymer Letters Edition, 1985, 23, 465-467.	0.4	9
686	Electrochemical purification of fluoride melts. Journal of Non-Crystalline Solids, 1992, 140, 297-300.	1.5	9
687	Analysis of Fe, Cu, Ni and Co in fluoride glasses and their precursors. Journal of Non-Crystalline Solids, 1995, 184, 324-328.	1.5	9
688	Potential Application of Solid Electrolyte P11 OH in Ni/MH Batteries. Synthetic Metals, 2005, 152, 57-60.	2.1	9
689	ZBLAN-based x-ray storage phosphors and scintillators for digital x-ray imaging. , 2005, , .		9
690	Localized Relaxational Dynamics of Succinonitrile. Journal of Physical Chemistry C, 2009, 113, 15007-15013.	1.5	9
691	Proton-Exchange-Induced Configuration Rearrangement in a Poly(ionic liquid) Solution: A NMR Study. Journal of Physical Chemistry Letters, 2017, 8, 5355-5359.	2.1	9
692	Solid (cyanomethyl)trimethylammonium salts for electrochemically stable electrolytes for lithium metal batteries. Journal of Materials Chemistry A, 2020, 8, 14721-14735.	5.2	9
693	Durable Electrooxidation of Acidic Water Catalysed by a Cobaltâ€Bismuthâ€based Oxide Composite: An Unexpected Role of the Fâ€doped SnO ₂ Substrate. ChemCatChem, 2022, 14, .	1.8	9
694	Molecular Dynamics Glass Simulation and Equilibration Techniques. Molecular Simulation, 1997, 19, 139-160.	0.9	8
695	<title>Heavy metal oxide glasses as active materials</title> . , 1999, , .		8
696	Electrochemical and spectroscopic studies on the reduction of the cis-(Et2-dcbpy)2RuX2 series of photovoltaic sensitizer precursor complexes (Et2-dcbpyâ€=â€diethyl 2,2′-bipyridine-4,4′-dicarboxylate,) Tji ETQq() 0 ø rgBT /Ov
697	Energy exchange processes in Er3+-doped fluorozirconate glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 288-293.	1.5	8
698	Methods of Purification of Zirconium Tetrafluoride for Fluorozirconate Glass. Journal of the American Ceramic Society, 2002, 85, 1610-1612.	1.9	8
699	Transparent BaCl 2 :Eu2+glass-ceramic scintillator. , 2006, 6142, 994.		8
700	Preparation of CdSe Quantum Dots in Ionic Liquids. Zeitschrift Fur Physikalische Chemie, 2006, 220, 1473-1481.	1.4	8
701	Electrochemical co-deposition of Tin+ phases with gold in ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 5863.	1.3	8
702	Physical Properties of Ionic Liquids for Electrochemical Applications. , 0, , 47-82.		8

#	Article	IF	CITATIONS
703	Efficient Synthesis of Ellagic Acid Salts Using Distillable Ionic Liquids. Australian Journal of Chemistry, 2011, 64, 1624.	0.5	8
704	Reduction of oxygen in a trialkoxy ammonium-based ionic liquid and the role of water. Electrochimica Acta, 2016, 196, 727-734.	2.6	8
705	Structure and dynamics of ionic liquids: general discussion. Faraday Discussions, 2018, 206, 291-337.	1.6	8
706	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	1.6	8
707	Unravelling the Role of Speciation in Glyme:Ionic Liquid Hybrid Electrolytes for Naâ^O ₂ Batteries. Batteries and Supercaps, 2021, 4, 513-521.	2.4	8
708	Simple route to lithium dendrite prevention for long cycle-life lithium metal batteries. Applied Materials Today, 2021, 23, 101062.	2.3	8
709	Competition between metal-catalysed electroreduction of dinitrogen, protons, and nitrogen oxides: a DFT perspective. Catalysis Science and Technology, 2022, 12, 2856-2864.	2.1	8
710	Doping Engineering of Single-Walled Carbon Nanotubes by Nitrogen Compounds Using Basicity and Alignment. ACS Applied Materials & Interfaces, 2022, 14, 25861-25877.	4.0	8
711	Bubbles in heavy metal fluoride glasses. Journal of Non-Crystalline Solids, 1987, 95-96, 625-632.	1.5	7
712	Synthesis of zirconium tetrafluoride using ammonium bifluoride melts. Journal of Non-Crystalline Solids, 1992, 140, 335-339.	1.5	7
713	Electrochemistry at a rotating disc electrode in heavy metal fluoride melts. Journal of Non-Crystalline Solids, 1993, 161, 27-31.	1.5	7
714	Electroanalytical methods for transition metal analysis in heavy metal fluoride melts. Journal of Non-Crystalline Solids, 1993, 161, 36-40.	1.5	7
715	Composite cell components for elevated temperature all-solid-state Li-ion batteries. Solid State Ionics, 2001, 143, 57-66.	1.3	7
716	Effect of hydrophobic and hydrophilic organic salts on charge transfer polymerisation of styrene. European Polymer Journal, 2006, 42, 1830-1835.	2.6	7
717	Proton transport in acid containing choline dihydrogen phosphate membranes for fuel cell. Electrochimica Acta, 2013, 111, 41-48.	2.6	7
718	Protic ionic liquid-based thermoelectrochemical cells for the harvesting of waste heat Materials Research Society Symposia Proceedings, 2013, 1575, 1.	0.1	7
719	Novel high performance AlGaN/GaN based enhancementâ€mode metalâ€oxide semiconductor high electron mobility transistor. Physica Status Solidi C: Current Topics in Solid State Physics, 2014, 11, 844-847.	0.8	7
720	Measure and control: molecular management is a key to the Sustainocene!. Green Chemistry, 2016, 18, 5689-5692.	4.6	7

#	Article	IF	CITATIONS
721	The influence of anion chemistry on the ionic conductivity and molecular dynamics in protic organic ionic plastic crystals. Physical Chemistry Chemical Physics, 2018, 20, 4579-4586.	1.3	7
722	Photoelectrochemical Characterisation on Surfaceâ€Inverted Black Silicon Photocathodes by Using Platinum/Palladium Coâ€catalysts for Solarâ€ŧoâ€Hydrogen Conversion. ChemPlusChem, 2018, 83, 651-657.	1.3	7
723	The oxygen reduction reaction on [NiFe] hydrogenases. Physical Chemistry Chemical Physics, 2018, 20, 23528-23534.	1.3	7
724	Anion amphiprotic ionic liquids as protic electrolyte matrices allowing sodium metal plating. Chemical Communications, 2019, 55, 12523-12526.	2.2	7
725	Molecular dynamics study of glass formation in the system ZrF4 - BaF2 - BaCl2 - MCl2 (M = Mg, Ca, Sr). Journal of Non-Crystalline Solids, 1987, 95-96, 585-592.	1.5	6
726	An EPR microwave saturation study of Co2+ in a zirconium fluoride-based glass. Journal of Non-Crystalline Solids, 1992, 140, 319-323.	1.5	6
727	Heavy metal fluoride glasses studied by positron annihilation lifetime spectroscopy. I. Comparison of		

#	Article	IF	CITATIONS
739	Preparation and properties of glasses based on the ZrF4/SnF2 binary. Journal of Non-Crystalline Solids, 1997, 213-214, 116-120.	1.5	5
740	Electrochemical studies of rare earths in fluoride melts. Journal of Non-Crystalline Solids, 1999, 256-257, 36-41.	1.5	5
741	DC and RF Performance of AlN/GaN MOS-HEMTs. IEICE Transactions on Electronics, 2011, E94-C, 835-841.	0.3	5
742	Enhanced Energy Storage Performance of 3D Hybrid Metal Sulfides via Synergistic Engineering of Architecture and Composition. ACS Sustainable Chemistry and Engineering, 2020, 8, 11491-11500.	3.2	5
743	Future Directions and Challenges. , 0, , 369-377.		5
744	1-Methyl-1-propylpyrrolidinium chloride. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, o637-o637.	0.2	5
745	Tetramethylammonium dihydrogen phosphate hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o797-o797.	0.2	5
746	Conductivity and dielectric relaxation in calcium nitrate tetrahydrate and sodium thiosulfate pentahydrate near Tg. The Journal of Physical Chemistry, 1985, 89, 5849-5855.	2.9	4
747	Factors Controlling Ionic Conductivity of Plasticized and Non-Plasticized Crosslinked Polyether Electrolytes. Materials Research Society Symposia Proceedings, 1990, 210, 197.	0.1	4
748	Ionic Conductivity in Glassy PVOH—Lithium Salt Systems. ACS Symposium Series, 1999, , 367-382.	0.5	4
749	Electrochemical, spectroelectrochemical and theoretical studies on the reduction and deprotonation of the photovoltaic sensitizer [(H3-tctpy)Rull(NCS)3]â [^] (H3-tctpy=2,2â€ ² :6â€ ² ,2â€ ² â€ ² -terpyridine-4,4â€ ² ,4â€ ² â€ ² -tricarboxylic acid). Journal of Electroanalytical Chemi 490, 7-16.	stry, 2000	,4
750	Dependence of the Voltammetric Oxidation of the Photovoltaic Sensitizer : [(H[sub 3]-tctpy)Ru[sup II](NCS)[sub 3]][sup â^'] on the Electrode Material, Solvent, and Isomeric Purity. Journal of the Electrochemical Society, 2001, 148, E97.	1.3	4
751	The zwitterion 1-butylimidazolium-3-(n-butanesulfonate). Acta Crystallographica Section E: Structure Reports Online, 2003, 59, o1759-o1761.	0.2	4
752	lonic Liquids — An Overview. ChemInform, 2004, 35, no.	0.1	4
753	Materials Science in Australia. Advanced Materials, 2020, 32, e2001629.	11.1	4
754	Stabilisation of the superoxide anion in bis(fluorosulfonyl)imide (FSI) ionic liquid by small chain length phosphonium cations: Voltammetric, DFT modelling and spectroscopic perspectives. Electrochemistry Communications, 2021, 127, 107029.	2.3	4
755	Insights from two decades of the Student Conference on Conservation Science. Biological Conservation, 2020, 243, 108478.	1.9	4
756	High numerical aperture heavy metal fluoride glass combinations for single-mode optical fibres. Journal of Non-Crystalline Solids, 1995, 184, 336-340.	1.5	3

#	Article	IF	CITATIONS
757	Enhanced fluorescence from nano-crystallized erbium-doped fluoroaluminate glasses. Journal of Non-Crystalline Solids, 1999, 256-257, 366-371.	1.5	3
758	High Br â^' content nano-crystallized transparent fluorozirconate glasses. Journal of Non-Crystalline Solids, 2003, 326-327, 177-183.	1.5	3
759	Supercritical CO2 modified organic ionic plastic crystals. Journal of Materials Chemistry, 2004, 14, 2603.	6.7	3
760	Role of Advanced Analytical Techniques in the Design and Characterization of Improved Catalysts for Water Oxidation. , 2013, , 305-339.		3
761	Bioenergetics for the growth of Staphylococcus lentus in biocompatible choline salts. Applied Microbiology and Biotechnology, 2013, 97, 1767-1774.	1.7	3
762	Exploring the electrochemical properties of mixed ligand Fe(II) complexes as redox couples. Electrochimica Acta, 2020, 362, 137109.	2.6	3
763	Stable Acidic Water Oxidation with a Cobalt–Iron–Lead Oxide Catalyst Operating via a Cobaltâ€Selective Selfâ€Healing Mechanism. Angewandte Chemie, 2021, 133, 15955-15960.	1.6	3
764	Technical Aspects. , 0, , 287-351.		3
765	The synthesis of novel aliphatic bis(acenaphthelene) reactive monomers. Journal of Polymer Science Part A, 2005, 43, 5072-5082.	2.5	2
766	Gel electrolytes based on lithium macro-anion salt. Solid State Ionics, 2007, 178, 785-791.	1.3	2
767	Novel polymerisation of conducting thienothiophenes via vapour phase polymerisation: a comparative study. RSC Advances, 2014, 4, 57754-57758.	1.7	2
768	Extensive Sodium Metal Plating and Stripping in a Highly Concentrated Inorganicâ^'Organic Ionic Liquid Electrolyte through Surface Pretreatment. ChemElectroChem, 2017, 4, 976-976.	1.7	2
769	Transformation of cellulosic saccharides into alkyl glucosides catalyzed by bifunctional ionic liquids. Chemical Communications, 2018, 54, 11969-11972.	2.2	2
770	Influence of ion structure on thermal runaway behaviour of aprotic and protic ionic liquids. Chemical Communications, 2020, 56, 11819-11822.	2.2	2
771	A solution scan of societal options to reduce transmission and spread of respiratory viruses: SARS-CoV-2 as a case study. Journal of Biosafety and Biosecurity, 2021, 3, 84-90.	1.4	2
772	Study of Proton Transport in Diethylmethylammonium Poly[4-styrenesulfonyl(trifluoromethylsulfonyl)imide]-Based Composite Membranes with Triflic Acid and Diethylmethylamine-Rich Compositions. Journal of Physical Chemistry B, 2021, 125, 11005-11016.	1.2	2
773	Enhanced structural stability of insulin aspart in cholinium aminoate ionic liquids. International Journal of Biological Macromolecules, 2022, 208, 544-552.	3.6	2

Heavy metal oxide glasses for application in remote sensing. , 1998, 3416, 166.

#	Article	IF	CITATIONS
775	The voltammetric reduction, deprotonation and surface activity of ruthenium photovoltaic sensitizers in acetone. Electrochemistry Communications, 2001, 3, 400-405.	2.3	1
776	Differential pulse voltammetry studies of heavy metal fluoride melts. Journal of Applied Electrochemistry, 2004, 34, 197-204.	1.5	1
777	Conducting Polymers. , 0, , 167-211.		1
778	Bi-functional oxygen electrocatalysts based on Palladium oxide-Ruthenium oxide composites. Materials Research Society Symposia Proceedings, 2012, 1491, 13.	0.1	1
779	Plating Protocols. , 0, , 353-367.		1
780	Electrodeposition on the Nanometer Scale:In Situ Scanning Tunneling Microscopy. , 0, , 239-257.		1
781	Physical aspects of vitrification in aqueous solutions. Cryobiology, 1986, 23, 559-560.	0.3	0
782	Characterization of Plasticized Polyether-Urethane Solid Polymer Electrolytes. Materials Research Society Symposia Proceedings, 1994, 369, 517.	0.1	0
783	The role of GaF3 in high numerical aperture heavy metal fluoride fibres. Journal of Non-Crystalline Solids, 1995, 184, 244-248.	1.5	0
784	<title>Factors influencing performance of electrochemical actuators based on inherently conducting polymers (ICPs)</title> . , 2002, , .		0
785	Superhyperfine interactions in inhomogeneously broadened paramagnetic centers observed via a hole-burned free induction decay. Journal of Chemical Physics, 2003, 118, 3148-3153.	1.2	0
786	Ion Conduction in Plastic Crystals. , 2005, , 287-305.		0
787	The Zwitterion Effect in Ionic Liquids: Towards Practical Rechargeable Lithium-Metal Batteries ChemInform, 2005, 36, no.	0.1	0
788	Confirmation of temperature independence in the fluorescence lifetime of the 3P0→3F2 transition in praseodymium-doped fluoride glass. Optics Communications, 2006, 261, 149-151.	1.0	0
789	Methyl 9H-xanthene-9-carboxylate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, 0854-0854.	0.2	0
790	Biocompatible Ionic Liquids: A New Approach for Stabilizing Proteins in Liquid Formulation. , 2008, , .		0
791	Physical Properties and Structural Characterization of Ionic Liquids and Solid Electrolytes Utilizing the Carbamoylcyano(nitroso)methanide Anion. ChemPlusChem, 2013, 78, 468-468.	1.3	0
792	Electrochemical Reaction of Organic Compounds in Ionic Liquids. , 2015, , 435-463.		0

#	Article	IF	CITATIONS
793	Studies to optimize the process of biofuel production from castor stalk. Pure and Applied Chemistry, 2018, 90, 271-284.	0.9	0
794	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	1.6	0
795	Energy-Efficient Nitrogen Reduction to Ammonia at Low Overpotential in Aqueous Electrolyte under Ambient Conditions. ChemSusChem, 2018, 11, 3356-3356.	3.6	0
796	Ein Hybridâ€Anion für ionische Flüssigkeiten und Batterieelektrolytanwendungen: Halb Triflamid, halb Carbonat. Angewandte Chemie, 2019, 131, 4435-4439.	1.6	0
797	Kenneth R. Seddon – A Rock Star of Ionic Liquids. Australian Journal of Chemistry, 2019, 72, 1.	0.5	0
798	HYDROXIDE-DOPED PLASTICAL CRYSTAL ELECTROLYTES BASED ON PYRROLIDINIUM IMIDE SALTS. , 2000, , .		0
799	PLASTIC CRYSTAL FAST ION CONDUCTORS. , 2002, , .		0