Andrea C Premoli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4613215/publications.pdf

Version: 2024-02-01

430874 454955 32 915 18 30 citations h-index g-index papers 32 32 32 1025 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Out in the cold: genetic variation of Nothofagus pumilio (Nothofagaceae) provides evidence for latitudinally distinct evolutionary histories in austral South America. Molecular Ecology, 2010, 19, 371-385.	3.9	80
2	Phylogeographically concordant chloroplast DNA divergence in sympatric <i>Nothofagus s.s.</i> How deep can it be?. New Phytologist, 2012, 193, 261-275.	7.3	75
3	Environmental v. genetically driven variation in ecophysiological traits of Nothofagus pumilio from contrasting elevations. Australian Journal of Botany, 2007, 55, 585.	0.6	72
4	Regeneration mode affects spatial genetic structure of Nothofagus dombeyi forests. Molecular Ecology, 2005, 14, 2319-2329.	3.9	62
5	Southern-most Nothofagus trees enduring ice ages: Genetic evidence and ecological niche retrodiction reveal high latitude (54°S) glacial refugia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 298, 247-256.	2.3	59
6	Morphological and phenological differences in Nothofagus pumilio from contrasting elevations: Evidence from a common garden. Austral Ecology, 2007, 32, 515-523.	1.5	58
7	Genetic variation in a geographically restricted and two widespread species of South American Nothofagus. Journal of Biogeography, 2003, 24, 883-892.	3.0	52
8	Genetic Structure and Early Effects of Inbreeding in Fragmented Temperate Forests of a Self-Incompatible Tree, Embothrium Coccineum. Conservation Biology, 2007, 21, 232-240.	4.7	50
9	Genetic patterns in Podocarpus parlatorei reveal the long-term persistence of cold-tolerant elements in the southern Yungas. Journal of Biogeography, 2007, 34, 447-455.	3.0	49
10	Genetics of sprouting: effects of longâ€ŧerm persistence in fireâ€prone ecosystems. Molecular Ecology, 2008, 17, 3827-3835.	3.9	38
11	Allozyme polymorphisms, outerossing rates, and hybridization of South AmericanNothofagus. Genetica, 1996, 97, 55-64.	1.1	33
12	Adaptive and neutral variation of the resprouter Nothofagus antarctica growing in distinct habitats in north-western Patagonia. Silva Fennica, 2008, 42, .	1.3	30
13	Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion. Oecologia, 2016, 181, 607-619.	2.0	29
14	Fine-scale genetic structure of Nothofagus pumilio (lenga) at contrasting elevations of the altitudinal gradient. Genetica, 2013, 141, 95-105.	1.1	28
15	Genetic variation in the widespread Embothrium coccineum (Proteaceae) endemic to Patagonia: effects of phylogeny and historical events. Australian Journal of Botany, 2007, 55, 809.	0.6	24
16	Multiple Pleistocene refugia in the widespread Patagonian tree Embothrium coccineum (Proteaceae). Australian Journal of Botany, 2011, 59, 299.	0.6	23
17	Identifying Genetic Hotspots by Mapping Molecular Diversity of Widespread Trees: When Commonness Matters. Journal of Heredity, 2015, 106, 537-545.	2.4	21
18	Lowland valleys shelter the ancient conifer <i>Fitzroya cupressoides</i> in the Central Depression of southern Chile. Journal of the Royal Society of New Zealand, 2003, 33, 623-631.	1.9	20

#	Article	IF	CITATIONS
19	Shrinking Forests under Warming: Evidence of Podocarpus parlatorei (pino del cerro) from the Subtropical Andes. Journal of Heredity, 2012, 103, 682-691.	2.4	20
20	Stories from common gardens: Water shortage differentially affects Nothofagus pumilio from contrasting precipitation regimes. Forest Ecology and Management, 2020, 458, 117796.	3.2	17
21	Genetic Diversity and Structure in <i>Austrocedrus chilensis</i> Populations: Implications for Dryland Forest Restoration. Restoration Ecology, 2012, 20, 568-575.	2.9	11
22	Regional climate oscillations and local topography shape genetic polymorphisms and distribution of the giant columnar cactus <i>Echinopsis terscheckii</i> in drylands of the tropical Andes. Journal of Biogeography, 2018, 45, 116-126.	3.0	11
23	Subtle precipitation differences yield adaptive adjustments in the mesic Nothofagus dombeyi. Forest Ecology and Management, 2020, 461, 117931.	3.2	11
24	Population Genetic Structure of the Giant Cactus Echinopsis terscheckii in Northwestern Argentina Is Shaped by Patterns of Vegetation Cover. Journal of Heredity, 2017, 108, 469-478.	2.4	8
25	Niche dynamics in amphitropical desert disjunct plants: Seeking for ecological and speciesâ€specific influences. Global Ecology and Biogeography, 2021, 30, 370-383.	5.8	7
26	Niche squeeze induced by climate change of the cold-tolerant subtropical montane Podocarpus parlatorei. Royal Society Open Science, 2018, 5, 180513.	2.4	6
27	Biogeographically significant units in conservation: a new integrative concept for conserving ecological and evolutionary processes. Environmental Conservation, 2019, 46, 293-301.	1.3	6
28	Predominant regeneration strategy results in species-specific genetic patterns in sympatric Nothofagus s.s. congeners (Nothofagaceae). Australian Journal of Botany, 2012, 60, 319.	0.6	5
29	Climate-driven adaptive responses to drought of dominant tree species from Patagonia. New Forests, 2022, 53, 57-80.	1.7	4
30	Comparative phylogeography, morphological boundaries and climate envelopes of two sympatric widespread Bromeliaceae from the southern Andes. Botanical Journal of the Linnean Society, 2020, 192, 726-743.	1.6	3
31	Allochrony of neighbour ecological species: Can isolation by time maintain divergence? The natural experiment of sympatric Nothofagus. Forest Ecology and Management, 2021, 497, 119466.	3.2	3
32	Biogeographically marginal: Source of evolutionary novelties and future potential. Forest Ecology and Management, 2021, 499, 119596.	3.2	O