
Douglas E Norris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612791/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IDENTIFICATION OF MAMMALIAN BLOOD MEALS IN MOSQUITOES BY A MULTIPLEXED POLYMERASE CHAIN REACTION TARGETING CYTOCHROME B. American Journal of Tropical Medicine and Hygiene, 2005, 73, 336-342.	1.4	243
2	Population Genetics of Ixodes scapularis (Acari: Ixodidae) Based on Mitochondrial 16S and 12S Genes. Journal of Medical Entomology, 1996, 33, 78-89.	1.8	231
3	Mosquito-borne Diseases as a Consequence of Land Use Change. EcoHealth, 2004, 1, 19-24.	2.0	167
4	Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. American Journal of Tropical Medicine and Hygiene, 2005, 73, 336-42.	1.4	137
5	Gene Flow Among Populations of the Malaria Vector, <i>Anopheles gambiae</i> , in Mali, West Africa. Genetics, 2001, 157, 743-750.	2.9	112
6	SEASONALITY, BLOOD FEEDING BEHAVIOR, AND TRANSMISSION OF PLASMODIUM FALCIPARUM BY ANOPHELES ARABIENSIS AFTER AN EXTENDED DROUGHT IN SOUTHERN ZAMBIA. American Journal of Tropical Medicine and Hygiene, 2007, 76, 267-274.	1.4	112
7	Analysis of Anopheles arabiensis Blood Feeding Behavior in Southern Zambia during the Two Years after Introduction of Insecticide-Treated Bed Nets. American Journal of Tropical Medicine and Hygiene, 2010, 83, 848-853.	1.4	103
8	Implicating Cryptic and Novel Anophelines as Malaria Vectors in Africa. Insects, 2017, 8, 1.	2.2	99
9	Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. American Journal of Tropical Medicine and Hygiene, 2007, 76, 267-74.	1.4	98
10	Comparison of the Mitochondrial 12S and 16S Ribosomal Dna Genes in Resolving Phylogenetic Relationships among Hard Ticks (Acari: Ixodidae). Annals of the Entomological Society of America, 1999, 92, 117-129.	2.5	93
11	Systematics and Biogeography of Hard Ticks, a Total Evidence Approach. Cladistics, 2000, 16, 79-102.	3.3	92
12	In Vitro Susceptibility Testing of Borrelia burgdorferi Sensu Lato Isolates Cultured from Patients with Erythema Migrans before and after Antimicrobial Chemotherapy. Antimicrobial Agents and Chemotherapy, 2005, 49, 1294-1301.	3.2	88
13	Microsatellite DNA Polymorphism and Heterozygosity Among Field and Laboratory Populations of <i>Anopheles gambiae</i> s.s. (Diptera: Culicidae). Journal of Medical Entomology, 2001, 38, 336-340.	1.8	85
14	GENETIC STRUCTURE OF AEDES AEGYPTI POPULATIONS IN THAILAND USING MITOCHONDRIAL DNA. American Journal of Tropical Medicine and Hygiene, 2005, 72, 434-442.	1.4	79
15	Spotted-Fever Group <i>Rickettsia</i> in <i>Dermacentor variabilis</i> , Maryland. Emerging Infectious Diseases, 2004, 10, 1478-1481.	4.3	65
16	Distinct variation in vector competence among nine field populations of Aedes aegypti from a Brazilian dengue-endemic risk city. Parasites and Vectors, 2014, 7, 320.	2.5	65
17	Malaria burden and control in Bangladesh and prospects for elimination: an epidemiological and economic assessment. The Lancet Global Health, 2014, 2, e98-e105.	6.3	64
18	The Taxonomic Status of Genetically Divergent Populations ofLutzomyia longipalpis(Diptera:) Tj ETQq0 0 0 rgBT	Overlock 1.8	10 Tf 50 67 1 61

Entomology, 2003, 40, 615-627.

#	Article	IF	CITATIONS
19	High Rates of <i>Rickettsia parkeri</i> Infection in Gulf Coast Ticks (<i>Amblyomma maculatum</i>) and Identification of " <i>Candidatus</i> Rickettsia Andeanae―from Fairfax County, Virginia. Vector-Borne and Zoonotic Diseases, 2011, 11, 1535-1539.	1.5	59
20	High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malaria Journal, 2014, 13, 153.	2.3	59
21	Taxonomic Status of Ixodes neotomae and I. spinipalpis (Acari: Ixodidae) Based on Mitochondrial DNA Evidence. Journal of Medical Entomology, 1997, 34, 696-703.	1.8	58
22	Unexpected Anthropophily in the Potential Secondary Malaria Vectors <i>Anopheles coustani</i> s.l. and <i>Anopheles squamosus</i> in Macha, Zambia. Vector-Borne and Zoonotic Diseases, 2011, 11, 1173-1179.	1.5	57
23	The impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRC. Nature Communications, 2020, 11, 2107.	12.8	57
24	Borrelia burgdorferi ospC Heterogeneity among Human and Murine Isolates from a Defined Region of Northern Maryland and Southern Pennsylvania: Lack of Correlation with Invasive and Noninvasive Genotypes. Journal of Clinical Microbiology, 2005, 43, 1879-1884.	3.9	53
25	Genetic Differences Between <i>Culex pipiens</i> f. molestus and <i>Culex pipiens pipiens</i> (Diptera:) Tj ETQq1	1 0.78431 1.8	4 rgBT /Over
26	Centers for Disease Control Light Traps for Monitoring Anopheles arabiensis Human Biting Rates in an Area with Low Vector Density and High Insecticide-Treated Bed Net Use. American Journal of Tropical Medicine and Hygiene, 2010, 83, 838-842.	1.4	50
27	<i>Ehrlichia</i> and Spotted Fever Group Rickettsiae Surveillance in <i>Amblyomma americanum</i> in Virginia Through Use of a Novel Six-Plex Real-Time PCR Assay. Vector-Borne and Zoonotic Diseases, 2014, 14, 307-316.	1.5	50
28	Insecticide resistance in Culex quinquefasciatus mosquitoes after the introduction of insecticide-treated bed nets in Macha, Zambia. Journal of Vector Ecology, 2011, 36, 411-420.	1.0	48
29	The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malaria Journal, 2013, 12, 437.	2.3	47
30	Asymptomatic Plasmodium falciparum Malaria in Pregnant Women in the Chittagong Hill Districts of Bangladesh. PLoS ONE, 2014, 9, e98442.	2.5	47
31	Distribution and molecular characterization of Wolbachia endosymbionts and filarial nematodes in Maryland populations of the lone star tick (Amblyomma americanum). FEMS Microbiology Ecology, 2011, 77, 50-56.	2.7	45
32	Malaria knowledge and bed net use in three transmission settings in southern Africa. Malaria Journal, 2018, 17, 41.	2.3	45
33	Laboratory diagnosis of Lyme borreliosis: Current state of the art and future perspectives. Critical Reviews in Clinical Laboratory Sciences, 2018, 55, 219-245.	6.1	44
34	Frequency of Multiple Blood Meals Taken in a Single Gonotrophic Cycle by Anopheles arabiensis Mosquitoes in Macha, Zambia. American Journal of Tropical Medicine and Hygiene, 2010, 83, 33-37.	1.4	43
35	Diversity of anopheline species and their Plasmodium infection status in rural Bandarban, Bangladesh. Parasites and Vectors, 2012, 5, 150.	2.5	43
36	Genetic Differences Between <i>Culex pipiens</i> f. molestus and <i>Culex pipiens pipiens</i> (Diptera:) Tj ETQq	0 0 0 rgB1 1.8	/gyerlock 1

3

#	Article	IF	CITATIONS
37	Malaria epidemiology and control in Southern Africa. Acta Tropica, 2012, 121, 202-206.	2.0	39
38	Increased Endophily by the Malaria Vector Anopheles arabiensis in Southern Zambia and Identification of Digested Blood Meals. American Journal of Tropical Medicine and Hygiene, 2008, 79, 876-880.	1.4	39
39	A Simple Chelex Protocol for DNA Extraction from Anopheles spp Journal of Visualized Experiments, 2013, , .	0.3	38
40	Insecticide Resistance in Areas Under Investigation by the International Centers of Excellence for Malaria Research: A Challenge for Malaria Control and Elimination. American Journal of Tropical Medicine and Hygiene, 2015, 93, 69-78.	1.4	38
41	Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS ONE, 2018, 13, e0190352.	2.5	38
42	Genetic markers for study of the anopheline vectors of human malaria. International Journal for Parasitology, 2002, 32, 1607-1615.	3.1	37
43	Spatio-temporal heterogeneity of malaria vectors in northern Zambia: implications for vector control. Parasites and Vectors, 2016, 9, 510.	2.5	37
44	RTS,S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally. Scientific Reports, 2018, 8, 6622.	3.3	37
45	An Operational Framework for Insecticide Resistance Management Planning. Emerging Infectious Diseases, 2016, 22, 773-779.	4.3	36
46	Efficacy of long-lasting insecticidal nets in use in Macha, Zambia, against the local Anopheles arabiensis population. Malaria Journal, 2011, 10, 254.	2.3	35
47	Genetic structure of Aedes aegypti populations in Thailand using mitochondrial DNA. American Journal of Tropical Medicine and Hygiene, 2005, 72, 434-42.	1.4	35
48	Molecular Differentiation of Metastriate Tick Immatures. Vector-Borne and Zoonotic Diseases, 2004, 4, 334-342.	1.5	34
49	Genetic Diversity of Borrelia burgdorferi Sensu Stricto in Peromyscus leucopus , the Primary Reservoir of Lyme Disease in a Region of Endemicity in Southern Maryland. Applied and Environmental Microbiology, 2006, 72, 5331-5341.	3.1	33
50	Habitat Partitioning of Malaria Vectors in Nchelenge District, Zambia. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1234-1244.	1.4	33
51	Detection of <i>Plasmodium falciparum</i> Infection in <i>Anopheles squamosus</i> (Diptera: Culicidae) in an Area Targeted for Malaria Elimination, Southern Zambia. Journal of Medical Entomology, 2016, 53, 1482-1487.	1.8	33
52	A Dengue Vector Surveillance by Human Population-Stratified Ovitrap Survey for <l>Aedes</l> (Diptera: Culicidae) Adult and Egg Collections in High Dengue-Risk Areas of Taiwan. Journal of Medical Entomology, 2013, 50, 261-269.	1.8	32
53	Increased endophily by the malaria vector Anopheles arabiensis in southern Zambia and identification of digested blood meals. American Journal of Tropical Medicine and Hygiene, 2008, 79, 876-80.	1.4	31
54	Molecular players of homologous recombination in protozoan parasites: implications for generating antigenic variation. Infection, Genetics and Evolution, 2004, 4, 91-98.	2.3	30

#	Article	IF	CITATIONS
55	Phylogeny of anopheline (Diptera: Culicidae) species in southern Africa, based on nuclear and mitochondrial genes. Journal of Vector Ecology, 2015, 40, 16-27.	1.0	30
56	Reservoir Competence of the Rice Rat (Rodentia: Cricetidae) for Borrelia burgdorferi. Journal of Medical Entomology, 1995, 32, 138-142.	1.8	29
57	Malaria Hotspots Drive Hypoendemic Transmission in the Chittagong Hill Districts of Bangladesh. PLoS ONE, 2013, 8, e69713.	2.5	29
58	Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance. Malaria Journal, 2011, 10, 124.	2.3	28
59	Entomological Monitoring and Evaluation: Diverse Transmission Settings of ICEMR Projects Will Require Local and Regional Malaria Elimination Strategies. American Journal of Tropical Medicine and Hygiene, 2015, 93, 28-41.	1.4	27
60	COMPARISON OF MOSQUITO TRAPPING METHOD EFFICACY FOR WEST NILE VIRUS SURVEILLANCE IN NEW MEXICO. Journal of the American Mosquito Control Association, 2006, 22, 246-253.	0.7	26
61	Challenges and prospects for malaria elimination in the Southern Africa region. Acta Tropica, 2012, 121, 207-211.	2.0	26
62	Factors Associated with Sustained Use of Long-Lasting Insecticide-Treated Nets Following a Reduction in Malaria Transmission in Southern Zambia. American Journal of Tropical Medicine and Hygiene, 2015, 93, 954-960.	1.4	26
63	Co-circulating microorganisms in questing Ixodes scapularis nymphs in Maryland. Journal of Vector Ecology, 2007, 32, 243.	1.0	25
64	The Impact of 3 Years of Targeted Indoor Residual Spraying With Pirimiphos-Methyl on Malaria Parasite Prevalence in a High-Transmission Area of Northern Zambia. American Journal of Epidemiology, 2019, 188, 2120-2130.	3.4	25
65	Identification and characterization of microsatellite markers in the Chagas disease vector Triatoma dimidiata. Infection, Genetics and Evolution, 2002, 1, 243-248.	2.3	24
66	Comparison of in vitro activities of tigecycline, doxycycline, and tetracycline against the spirochete Borrelia burgdorferi. Ticks and Tick-borne Diseases, 2010, 1, 30-34.	2.7	24
67	Beyond the entomological inoculation rate: characterizing multiple blood feeding behavior and Plasmodium falciparum multiplicity of infection in Anopheles mosquitoes in northern Zambia. Parasites and Vectors, 2017, 10, 45.	2.5	24
68	Spotted Fever Group Rickettsiae in Multiple Hard Tick Species from Fairfax County, Virginia. Vector-Borne and Zoonotic Diseases, 2014, 14, 482-485.	1.5	22
69	Emergence of West Nile Virus in Mosquito (Diptera: Culicidae) Communities of the New Mexico Rio Grande Valley. Journal of Medical Entomology, 2006, 43, 594-599.	1.8	21
70	Role of underappreciated vectors in malaria transmission in an endemic region of Bangladesh-India border. Parasites and Vectors, 2015, 8, 195.	2.5	21
71	Distinct parasite populations infect individuals identified through passive and active case detection in a region of declining malaria transmission in southern Zambia. Malaria Journal, 2017, 16, 154.	2.3	21
72	Distribution and infection frequency of â€~Candidatus Rickettsia amblyommii' in Maryland populations of the lone star tick (Amblyomma americanum) and culture in an Anopheles gambiae mosquito cell line. Ticks and Tick-borne Diseases, 2012, 3, 38-42.	2.7	20

#	Article	IF	CITATIONS
73	Genetic Evidence of Focal <i>Plasmodium falciparum</i> Transmission in a Pre-elimination Setting in Southern Province, Zambia. Journal of Infectious Diseases, 2019, 219, 1254-1263.	4.0	20
74	Emergence of West Nile Virus in Mosquito (Diptera: Culicidae) Communities of the New Mexico Rio Grande Valley. Journal of Medical Entomology, 2006, 43, 594-599.	1.8	20
75	Spatial and Temporal Genetic Structure of Anopheles arabiensis in Southern Zambia over Consecutive Wet and Drought Years. American Journal of Tropical Medicine and Hygiene, 2007, 77, 316-323.	1.4	20
76	Presence of Multiple Variants of <i>Borrelia burgdorferi</i> in the Natural Reservoir <i>Peromyscus leucopus</i> Throughout a Transmission Season. Vector-Borne and Zoonotic Diseases, 2008, 8, 397-406.	1.5	19
77	Detection of <i>Rickettsia massiliae</i> in <i>Rhipicephalus sanguineus</i> from the Eastern United States. Vector-Borne and Zoonotic Diseases, 2013, 13, 67-69.	1.5	19
78	Social status does not predict responses to Seoul virus infection or reproductive success among male Norway rats. Brain, Behavior, and Immunity, 2006, 20, 182-190.	4.1	18
79	High Prevalence of Multidrug-Resistant Bacteria in Libyan War Casualties Admitted to a Tertiary Care Hospital, Germany. Microbial Drug Resistance, 2018, 24, 578-584.	2.0	18
80	Complete Anopheles funestus mitogenomes reveal an ancient history of mitochondrial lineages and their distribution in southern and central Africa. Scientific Reports, 2018, 8, 9054.	3.3	18
81	High Plasmodium falciparum genetic diversity and temporal stability despite control efforts in high transmission settings along the international border between Zambia and the Democratic Republic of the Congo. Malaria Journal, 2019, 18, 400.	2.3	18
82	In Vitro Susceptibility of <i>Borrelia spielmanii</i> to Antimicrobial Agents Commonly Used for Treatment of Lyme Disease. Antimicrobial Agents and Chemotherapy, 2009, 53, 1281-1284.	3.2	17
83	Heterogeneity and Changes in Inequality of Malaria Risk after Introduction of Insecticide-Treated Bed Nets in Macha, Zambia. American Journal of Tropical Medicine and Hygiene, 2013, 88, 710-717.	1.4	16
84	The Practice of Jhum Cultivation and its Relationship to Plasmodium falciparum Infection in the Chittagong Hill Districts of Bangladesh. American Journal of Tropical Medicine and Hygiene, 2014, 91, 374-383.	1.4	16
85	Underestimation of foraging behaviour by standard field methods in malaria vector mosquitoes in southern Africa. Malaria Journal, 2015, 14, 12.	2.3	16
86	Aedes (Stegomyia) albopictus ' dynamics influenced by spatiotemporal characteristics in a Brazilian dengue-endemic risk city. Acta Tropica, 2016, 164, 431-437.	2.0	15
87	Controlled release spatial repellent devices (CRDs) as novel tools against malaria transmission: a semi-field study in Macha, Zambia. Malaria Journal, 2018, 17, 437.	2.3	15
88	Land use change and human health. Geophysical Monograph Series, 2004, , 159-167.	0.1	14
89	ANOSPEX: A Stochastic, Spatially Explicit Model for Studying Anopheles Metapopulation Dynamics. PLoS ONE, 2013, 8, e68040.	2.5	14
90	Risk Factors for Household Vector Abundance Using Indoor CDC Light Traps in a High Malaria Transmission Area of Northern Zambia. American Journal of Tropical Medicine and Hygiene, 2019, 101, 126-136.	1.4	14

6

#	Article	IF	CITATIONS
91	Transcontinental dispersal of Anopheles gambiae occurred from West African origin via serial founder events. Communications Biology, 2019, 2, 473.	4.4	13
92	Malaria Vectors and Vector Surveillance in Limpopo Province (South Africa): 1927 to 2018. International Journal of Environmental Research and Public Health, 2020, 17, 4125.	2.6	13
93	Evaluation of carbon dioxide- and 1-octen-3-ol-baited Centers for Disease Control Fay-Prince traps to collect Aedes albopictus. Journal of the American Mosquito Control Association, 2003, 19, 445-7.	0.7	13
94	Multiple Paternity in Urban Norway Rats: Extended Ranging for Mates. Vector-Borne and Zoonotic Diseases, 2016, 16, 342-348.	1.5	12
95	Genetic Diversity of <i>Anopheles coustani</i> (Diptera: Culicidae) in Malaria Transmission Foci in Southern and Central Africa. Journal of Medical Entomology, 2020, 57, 1782-1792.	1.8	12
96	Spatial and temporal genetic structure of Anopheles arabiensis in Southern Zambia over consecutive wet and drought years. American Journal of Tropical Medicine and Hygiene, 2007, 77, 316-23.	1.4	12
97	Current knowledge of vector-borne zoonotic pathogens in Zambia: A clarion call to scaling-up "One Health―research in the wake of emerging and re-emerging infectious diseases. PLoS Neglected Tropical Diseases, 2022, 16, e0010193.	3.0	12
98	Risk of culture-confirmed borrelial persistence in patients treated for erythema migrans and possible mechanisms of resistance. International Journal of Medical Microbiology, 2006, 296, 233-241.	3.6	11
99	Targeted Trapping of Mosquito Vectors in the Chesapeake Bay Area of Maryland. Journal of Medical Entomology, 2006, 43, 151-158.	1.8	11
100	Detection ofBorrelia burgdorferiDNA in Lizards from Southern Maryland. Vector-Borne and Zoonotic Diseases, 2007, 7, 42-49.	1.5	11
101	Improving the efficiency of reactive case detection for malaria elimination in southern Zambia: a cross-sectional study. Malaria Journal, 2020, 19, 175.	2.3	11
102	MOLECULAR DIFFERENTIATION OF COLONIZED HUMAN MALARIA VECTORS BY 28S RIBOSOMAL DNA POLYMORPHISMS. American Journal of Tropical Medicine and Hygiene, 2004, 71, 514-517.	1.4	11
103	Analysis of Mosquito Vector Species Abundances in Maryland using Geographic Information Systems. Annals of the New York Academy of Sciences, 2006, 951, 364-368.	3.8	10
104	Single-Nucleotide Polymorphisms for High-Throughput Genotyping of Anopheles arabiensis in East and Southern Africa. Journal of Medical Entomology, 2012, 49, 307-315.	1.8	10
105	Sustained Malaria Transmission despite Reactive Screen-and-Treat in a Low-Transmission Area of Southern Zambia. American Journal of Tropical Medicine and Hygiene, 2021, 104, 671-679.	1.4	10
106	Phylogenetic Complexity of Morphologically Identified Anopheles squamosus in Southern Zambia. Insects, 2021, 12, 146.	2.2	10
107	Discovery of filarial nematode DNA in Amblyomma americanum in Northern Virginia. Ticks and Tick-borne Diseases, 2016, 7, 315-318.	2.7	9
108	Genetic differentiation and population structure of Anopheles funestus from Uganda and the southern African countries of Malawi, Mozambique, Zambia and Zimbabwe. Parasites and Vectors, 2020, 13, 87.	2.5	9

#	Article	IF	CITATIONS
109	The Impact of Three Years of Targeted Indoor Residual Spraying with Pirimiphos-Methyl on Household Vector Abundance in a High Malaria Transmission Area of Northern Zambia. American Journal of Tropical Medicine and Hygiene, 2021, 104, 683-694.	1.4	9
110	EXPERIMENTAL INFECTION OF THE RACCOON (PROCYON LOTOR) WITH BORRELIA BURGDORFERI. Journal of Wildlife Diseases, 1996, 32, 300-314.	0.8	8
111	Mammal Diversity and Infection Prevalence in the Maintenance of EnzooticBorrelia burgdorferialong the Western Coastal Plains of Maryland. Vector-Borne and Zoonotic Diseases, 2006, 6, 411-422.	1.5	8
112	URBAN HABITAT EVALUATION FOR WEST NILE VIRUS SURVEILLANCE IN MOSQUITOES IN ALBUQUERQUE, NEW MEXICO. Journal of the American Mosquito Control Association, 2007, 23, 153-160.	0.7	8
113	Abundance and Dynamics of Anopheles (Diptera: Culicidae) Larvae in a Malaria Endemic Area of Bangladesh. Journal of Medical Entomology, 2018, 55, 382-391.	1.8	8
114	Targeted Trapping of Mosquito Vectors in the Chesapeake Bay Area of Maryland. Journal of Medical Entomology, 2006, 43, 151-158.	1.8	7
115	The Babesia observational antibody (BAOBAB) study: A cross-sectional evaluation of Babesia in two communities in Kilosa district, Tanzania. PLoS Neglected Tropical Diseases, 2019, 13, e0007632.	3.0	6
116	Molecular differentiation of colonized human malaria vectors by 28S ribosomal DNA polymorphisms. American Journal of Tropical Medicine and Hygiene, 2004, 71, 514-7.	1.4	5
117	Stability and detection of nucleic acid from viruses and hosts in controlled mosquito blood feeds. PLoS ONE, 2020, 15, e0231061.	2.5	4
118	Draft Genome Sequence of a Novel Rhabdovirus Isolated from Deinocerites Mosquitoes. Genome Announcements, 2018, 6, .	0.8	3
119	Host Selection of Field-Collected Anopheles jeyporiensis and Anopheles nivipes in Bangladesh. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1421-1423.	1.4	2
120	Multiple Novel Clades of Anopheline Mosquitoes Caught Outdoors in Northern Zambia. Frontiers in Tropical Diseases, 2021, 2, .	1.4	2
121	RECOGNITION OF A NOVEL MELANOTIC MUTANT IN A FIELD POPULATION OF CULEX PIPIENS QUINQUEFASCIATUS IN SOUTHERN ZAMBIA. Journal of the American Mosquito Control Association, 2007, 23, 71-75.	0.7	1
122	Expanded geographic distribution and host preference of Anopheles gibbinsi (Anopheles species 6) in northern Zambia. Malaria Journal, 2022, 21, .	2.3	1
123	A preâ€processing pipeline to quantify, visualize, and reduce technical variation in protein microarray studies. Proteomics, 2022, 22, e2100033.	2.2	0