Marina A Lynch

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4612685/publications.pdf
Version: 2024-02-01

Lipopolysaccharide Inhibits Long Term Potentiation in the Rat Dentate Gyrus by Activating Caspase-1.
Activation of p38 Plays a Pivotal Role in the Inhibitory Effect of Lipopolysaccharide and Interleukin-1 $\hat{1}^{2}$
15 on Long Term Potentiation in Rat Dentate Gyrus. Journal of Biological Chemistry, 2003, 278,
19453-19462.3.4150
Downregulation of IL－4－induced signalling in hippocampus contributes to deficits in LTP in the aged
rat．Neurobiology of Aging，2005，26，717－728．
22 Eicosapentaenoic acid confers neuroprotection in the amyloid－${ }^{2}$ 2 challenged aged hippocampus．
Neurobiology of Aging，2007，28，845－855．
Long Term Potentiation Is Impaired in Membrane Glycoprotein CD200－deficient Mice．Journal of
Biological Chemistry，2011，286，34722－34732．
Lipopolysaccharideâ€induced increase in signalling in hippocampus is abrogated by ILâ€ 0 â $€^{\text {s‘ }}$ a role for ILâ€ 1 Î？． 3.9
124

26 Lung CD4 Tissue－Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice with 〈i〉Bordetella pertussis＜｜i〉．Journal of Immunology，2017，199，233－243．
The Anti－inflammatory Cytokine，Interleukin（IL）－10，Blocks the Inhibitory Effect of IL－1 ${ }^{2}$ ºn Long Term
Potentiation．Journal of Biological Chemistry，2001，276，45564－45572．
Amyloid－1̂2－Induced Astrocytic Phagocytosis is Mediated by CD36，CD47 and RAGE．Journal of
Neurolmmune Pharmacology，2013，8，301－311．
29 BDNF－induced LTP in dentate gyrus is impaired with age：analysis of changes in cell signaling events． $3.1 \quad 116$ Neurobiology of Aging，2004，25，1323－1331． 16
30 IL－4 attenuates the neuroinflammation induced by amyloid－Î2̂Âin vivoÂandÂin vitro．Journal of 3.9 115 Neurochemistry，2007，101，771－781．
Age－associated dysregulation of microglial activation is coupled with enhanced blood－brain
permeability and pathology in APP／PS1 mice．Neurobiology of Aging，2014，35，1442－1452．

$3.1 \quad 113$ 113Respiratory infection promotes T cell infiltration and amyloid－î2 deposition in APP／PS1 mice．

Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and
compromised function in APP/PS1 mice. Brain Pathology, 2019, 29, 606-621.

The ageâ€related increase in ILâ€d type I receptor in rat hippocampus is coupled with an increase in caspaseâ€ activation. European Journal of Neuroscience, 2002, 15, 1779-1788.
2.6

98

Possible association of alcohol tolerance with increased synaptic Ca2+ sensitivity. Nature, 1983, 303, 175-176.

CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain, Behavior, and Immunity, 2012, 26, 789-796.

Modulation of amyloid-1̂2-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. Journal of Neurochemistry, 2007, 103, 914-926.

Interleukin-4 mediates the neuroprotective effects of rosiglitazone in the aged brain. Neurobiology of Aging, 2009, 30, 920-931.

Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain, Behavior, and Immunity, 2013, 34, 86-97.
4.1

Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain, Behavior, and Immunity, 2009, 23, 1020-1027.

The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1 $\hat{1}^{2}$-dependent manner in
macrophages. Scientific Reports, 2019, 9, 4034.

Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Experimental Neurology, 2003, 184, 794-804.
Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB
47 and extracellular signal-regulated kinase (ERK) in the dentate gyrus: Evidence for a role for brain-derived neurotrophic factor.. Behavioral Neuroscience, 2002, 116, 455-463.

Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimerâ $€^{\text {TM }}$ S disease. Brain, Behavior, and Immunity, 2016, 58, 191-200.

Dietary antioxidant supplementation reverses age-related neuronal changes. Neurobiology of Aging, 1998, 19, 461-467.

Age-related changes in LTP and antioxidant defenses are reversed by an $\hat{I} \pm$-lipoic acid-enriched diet.
Neurobiology of Aging, 1999, 20, 655-664.

A Pivotal Role for Interleukin-4 in Atorvastatin-associated Neuroprotection in Rat Brain. Journal of
Biological Chemistry, 2008, 283, 1808-1817.

Neuroinflammatory changes negatively impact on LTP: A focus on IL-1 ${ }^{2}$. Brain Research, 2015, 1621, 197-204.

Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharideâ€induced dysfunction in rat hippocampus. Journal of Neurochemistry, 2004, 91, 20-29.

Interaction between interferon ? and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. Journal of Neurochemistry, 2006, 96, 1560-1571.
57 A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiology of Aging,
$118-128$.
61 Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of$7.2 \quad 68$
Increased IL-1 1 ² in cortex of aged rats is accompanied by downregulation of ERK and PI-3 kinase. Neurobiology of Aging, 2004, 25, 795-806.

77	Whole-Cell but Not Acellular Pertussis Vaccines Induce Convulsive Activity in Mice: Evidence of a Role for Toxin-Induced Interleukin-1 $\hat{1}^{2}$ in a New Murine Model for Analysis of Neuronal Side Effects of Vaccination. Infection and Immunity, 2001, 69, 4217-4223.	2.2	53
78	Can the emerging field of immunometabolism provide insights into neuroinflammation?. Progress in Neurobiology, 2020, 184, 101719.	5.7	53
79	Evidence that interleukin-1 $\hat{1}^{2}$ and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. European Journal of Neuroscience, 2001, 14, 1809-1819.	2.6	52
80	Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiology of Aging, 2012, 33, 162-175.	3.1	51
81	Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Experimental Cell Research, 2015, 335, 258-268.	2.6	50

Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a
reduction in senescent cells. Brain, Behavior, and Immunity, 2020, 87, 413-428.

83	Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Frontiers in Aging Neuroscience, 2022, 14, 868448.	3.4	47
84	Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. Journal of Neuroimmunology, 2003, 137, 117-124.	2.3	46
85	Activation of c-Jun-N-terminal kinase is critical in mediating lipopolysaccharide-induced changes in the rat hippocampus. Journal of Neurochemistry, 2005, 93, 221-231.	3.9	46
86	Age-related changes in the hippocampus (loss of synaptophysin and glialâ€"synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain, Behavior, and Immunity, 2012, 26, 778-788.	4.1	46
87	The Neuroprotective Effect of a Specific P2X ₇ Receptor Antagonist Derives from its Ability to Inhibit Assembly of the NLRP3 Inflammasome in Glial Cells. Brain Pathology, 2012, 22, 295-306.	4.1	46

91	Dok2 mediates the CD200Fc attenuation of A1̂2-induced changes in glia. Journal of Neuroinflammation, 2012, 9, 107.	7.2	44
92	T Cellsâ $€$ "Protective or Pathogenic in Alzheimerâ $€^{T M}$ s Disease?. Journal of Neurolmmune Pharmacology, 2015, 10, 547-560.	4.1	42
93	The role of the immune system in driving neuroinflammation. Brain and Neuroscience Advances, 2020, 4, 239821281990108.	3.4	42
94	Glial Activation in Â̂2PP/PS1 Mice is Associated with Infiltration of IFNî3-Producing Cells. Journal of Alzheimer's Disease, 2013, 37, 63-75.	2.6	41
95	Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 70, 391-397.	2.2	39
96	Glial Uptake of Amyloid Beta Induces NLRP3 Inflammasome Formation via Cathepsin-Dependent Degradation of NLRP10. NeuroMolecular Medicine, 2014, 16, 205-215.	3.4	39
97	Analysis of Interleukin-1 $\hat{1}^{2}$-induced Cell Signaling Activation in Rat Hippocampus following Exposure to Gamma Irradiation. Journal of Biological Chemistry, 2003, 278, 51075-51084.	3.4	36
98	A synthetic NCAMâ€derived mimetic peptide, FGL, exerts antiâ€inflammatory properties via IGFâ€l and interferonâ€ ̂̂\}3 modulation. Journal of Neurochemistry, 2009, 109, 1516-1525.	3.9	35
99	Activation of the <scp>P<\|scp>2<scp>X<\|scp><sub>7<\|sub> receptor induces migration of glial cells by inducing cathepsin <scp>B<\|scp> degradation of tissue inhibitor of metalloproteinase 1 . Journal of Neurochemistry, 2012, 123, 761-770.	3.9	35

100 Analysis of the Impact of CD200 on Phagocytosis. Molecular Neurobiology, 2017, 54, 5730-5739.
101 Lipoic Acid Confers Protection Against Oxidative Injury in Non-neuronal and Neuronal Tissue.
101 Nutritional Neuroscience, 2001, 4, 419-438.
34Ageing is associated with changes in glutamate release, protein tyrosine kinase and protein kinase II in3.533
rat hippocampus. European Journal of Pharmacology, 1996, 309, 311-315. ?$\hat{I} \pm-T L R 2$ antibody attenuates the $A \hat{I}^{2}$-mediated inflammatory response in microglia through enhanced4.133expression of SIGIRR. Brain, Behavior, and Immunity, 2015, 46, 70-79.

Immunology meets neuroscience â€" Opportunities for immune intervention in neurodegenerativeDifferential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia. Molecular and30
Cellular Neurosciences, 2013, 56, 148-158.
109 Atorvastatin prevents age-related and amyloid-1-12-induced microglial activation by blocking interferon-î3 7.2
110 Activation of tyrosine receptor kinase plays a role in expression of long-term potentiation in the rat

113	Attenuation of LPS-Induced Changes in Synaptic Activity in Rat Hippocampus by Vasogenâ $€^{T M}$ s Immune Modulation Therapy. NeurolmmunoModulation, 2002, 10, 40-46.	1.8	25
114	The age-related neuroinflammatory environment promotes macrophage activation, which negatively impacts synaptic function. Neurobiology of Aging, 2016, 43, 140-148.	3.1	25
115	FTY720 Attenuates Infection-Induced Enhancement of Â² Accumulation in APP/PS1 Mice by Modulating Astrocytic Activation. Journal of Neurolmmune Pharmacology, 2017, 12, 670-681.	4.1	25

117 Biphasic modulation of intracellular $\mathrm{Ca} 2+$ concentration by interleukin-1 $\hat{1}^{2}$ in cortical synaptosomes. NeuroReport, 1998, 9, 1923-1927.Bone Marrow-Derived Macrophages from Â̂2PP/PS1 Mice are Sensitized to the Effects of Inflammatory
119 Interleukin-1 $\hat{1}^{2}$-dependent changes in the hippocampus following parenteral immunization with a whole cell pertussis vaccine. Journal of Neuroimmunology, 2000, 111, 68-76.
2.3 20
120 Neuroinflammatory changes increase the i3.420Inhibition of JAK2 attenuates the increase in inflammatory markers in microglia from APP/PS1 mice.121 Neurobiology of Aging, 2015, 36, 2716-2724.3.1

[^0]127 The Modulatory Effects of DMF on Microglia in Aged Mice Are Sex-Specific. Cells, 2022, 11, 729. 4.1 10
128 Thomas J. Connor (1971â€"2013). Brain, Behavior, and Immunity, 2013, 30, 1-2. 4.1 8

129	A Novel Phospholipid-Based Drug Formulation, VP025, Modulates Age- and LPS-Induced Microglial Activity in the Rat. NeurolmmunoModulation, 2009, 16, 400-410.	1.8	7
130	The age- and amyloid-12-related increases in Nogo B contribute to microglial activation. Neurochemistry International, 2011, 58, 161-168.	3.8	7
131	An NCAM Mimetic, FGL, Alters Hippocampal Cellular Morphometry in Young Adult (4 Month-Old) Rats. Neurochemical Research, 2013, 38, 1208-1218.	3.3	7
132	Identifying Early Inflammatory Changes in Monocyte-Derived Macrophages from a Population with IQ-Discrepant Episodic Memory. PLoS ONE, 2013, 8, e63194.	2.5	7
133	Sex-Related Microglial Perturbation Is Related to Mitochondrial Changes in a Model of Alzheimerâ $€^{\mathrm{TM}} \mathrm{S}_{\mathrm{S}}$ Disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	7

The impact of aging on the brain â€" Risk, resilience and repair. Brain, Behavior, and Immunity, 2012, 26,714-716.
$4.1 \quad 6$
The Age-related Gliosis and Accompanying Deficit in Spatial Learning are Unaffected by Dimebon.
137 Evidence of an Anti-Inflammatory Role for Vasogenâ $€^{T M}$ s Immune Modulation Therapy.
NeurolmmunoModulation, 2005, 12, 113-116.
$2.3 \quad 4$

A shift to glycolysis accompanies the inflammatory changes in PBMCs from individuals with an IQ-discrepant memory. Journal of Neuroimmunology, 2018, 317, 24-31.

$$
2.0
$$

Monocytes exposed to plasma from patients with Alzheimerâ€ ${ }^{T M}$ S disease undergo metabolic reprogramming. Neuroscience Research, 2019, 148, 54-60.
1.9

4

140 Dietary Antioxidants and Synaptic Plasticity: Cellular and Molecular Mechanisms. , 2002, , 47-61.

The Impact of an Imbalance Between Proinflammatory and Anti-inflammatory Influences on Synaptic

[^0]: 125 LTP occludes the interaction between arachidonic acid and ACPD and NGF and ACPD. NeuroReport, 1998, 9, 4087-4091.

