Marina A Lynch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Potentiation and Memory. Physiological Reviews, 2004, 84, 87-136.	28.8	1,646
2	Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 2010, 24, 641-651.	4.1	378
3	Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain, Behavior, and Immunity, 2017, 61, 306-316.	4.1	371
4	Evidence That Increased Hippocampal Expression of the Cytokine Interleukin-1β Is a Common Trigger for Age- and Stress-Induced Impairments in Long-Term Potentiation. Journal of Neuroscience, 1998, 18, 2974-2981.	3.6	352
5	The Multifaceted Profile of Activated Microglia. Molecular Neurobiology, 2009, 40, 139-156.	4.0	279
6	The ageâ€related attenuation in longâ€term potentiation is associated with microglial activation. Journal of Neurochemistry, 2006, 99, 1263-1272.	3.9	253
7	IFN-γ Production by Amyloid β–Specific Th1 Cells Promotes Microglial Activation and Increases Plaque Burden in a Mouse Model of Alzheimer's Disease. Journal of Immunology, 2013, 190, 2241-2251.	0.8	247
8	CD200 Ligand–Receptor Interaction Modulates Microglial Activation <i>In Vivo</i> and <i>In Vitro</i> A Role for IL-4. Journal of Neuroscience, 2007, 27, 8309-8313.	3.6	235
9	Role of Interleukin-4 in Regulation of Age-related Inflammatory Changes in the Hippocampus. Journal of Biological Chemistry, 2005, 280, 9354-9362.	3.4	187
10	Adenosine A _{2A} receptors control neuroinflammation and consequent hippocampal neuronal dysfunction. Journal of Neurochemistry, 2011, 117, 100-111.	3.9	182
11	Modulation of Intestinal Microbiota by the Probiotic VSL#3 Resets Brain Gene Expression and Ameliorates the Age-Related Deficit in LTP. PLoS ONE, 2014, 9, e106503.	2.5	175
12	Fractalkineâ€induced activation of the phosphatidylinositolâ€3 kinase pathway attentuates microglial activation <i>in vivo</i> and <i>in vitro</i> . Journal of Neurochemistry, 2009, 110, 1547-1556.	3.9	172
13	Age-related impairment in long-term potentiation in hippocampus: a role for the cytokine, interleukin-1β?. Progress in Neurobiology, 1998, 56, 571-589.	5.7	162
14	Lipopolysaccharide Inhibits Long Term Potentiation in the Rat Dentate Gyrus by Activating Caspase-1. Journal of Biological Chemistry, 2000, 275, 26252-26258.	3.4	154
15	Activation of p38 Plays a Pivotal Role in the Inhibitory Effect of Lipopolysaccharide and Interleukin-1β on Long Term Potentiation in Rat Dentate Gyrus. Journal of Biological Chemistry, 2003, 278, 19453-19462.	3.4	150
16	Age-related neuroinflammatory changes negatively impact on neuronal function. Frontiers in Aging Neuroscience, 2010, 1, 6.	3.4	143
17	Linear Assemblies of Magnetic Nanoparticles as MRI Contrast Agents. Journal of the American Chemical Society, 2008, 130, 4214-4215.	13.7	142
18	Dietary Supplementation with Vitamin E Reverses the Age-related Deficit in Long Term Potentiation in Dentate Gyrus. Journal of Biological Chemistry, 1998, 273, 12161-12168.	3.4	139

#	Article	IF	CITATIONS
19	Long-term potentiation in dentate gyrus of the rat is inhibited by the phosphoinositide 3–kinase inhibitor, wortmannin. Neuropharmacology, 2000, 39, 643-651.	4.1	138
20	Inflammatory microglia are glycolytic and iron retentive and typify the microglia in APP/PS1 mice. Brain, Behavior, and Immunity, 2018, 68, 183-196.	4.1	137
21	Downregulation of IL-4-induced signalling in hippocampus contributes to deficits in LTP in the aged rat. Neurobiology of Aging, 2005, 26, 717-728.	3.1	135
22	Eicosapentaenoic acid confers neuroprotection in the amyloid-β challenged aged hippocampus. Neurobiology of Aging, 2007, 28, 845-855.	3.1	135
23	Long Term Potentiation Is Impaired in Membrane Glycoprotein CD200-deficient Mice. Journal of Biological Chemistry, 2011, 286, 34722-34732.	3.4	134
24	Apoptotic Changes in the Aged Brain Are Triggered by Interleukin-1β-induced Activation of p38 and Reversed by Treatment with Eicosapentaenoic Acid. Journal of Biological Chemistry, 2002, 277, 34239-34246.	3.4	128
25	Lipopolysaccharideâ€induced increase in signalling in hippocampus is abrogated by ILâ€10 – a role for ILâ€1Î2?. Journal of Neurochemistry, 2004, 88, 635-646.	3.9	124
26	Lung CD4 Tissue-Resident Memory T Cells Mediate Adaptive Immunity Induced by Previous Infection of Mice with <i>Bordetella pertussis</i> . Journal of Immunology, 2017, 199, 233-243.	0.8	124
27	The Anti-inflammatory Cytokine, Interleukin (IL)-10, Blocks the Inhibitory Effect of IL-1Î ² on Long Term Potentiation. Journal of Biological Chemistry, 2001, 276, 45564-45572.	3.4	122
28	Amyloid-β-Induced Astrocytic Phagocytosis is Mediated by CD36, CD47 and RAGE. Journal of NeuroImmune Pharmacology, 2013, 8, 301-311.	4.1	120
29	BDNF-induced LTP in dentate gyrus is impaired with age: analysis of changes in cell signaling events. Neurobiology of Aging, 2004, 25, 1323-1331.	3.1	116
30	IL-4 attenuates the neuroinflammation induced by amyloid-βÂin vivoÂandÂin vitro. Journal of Neurochemistry, 2007, 101, 771-781.	3.9	115
31	Age-associated dysregulation of microglial activation is coupled with enhanced blood-brain barrier permeability and pathology in APP/PS1 mice. Neurobiology of Aging, 2014, 35, 1442-1452.	3.1	113
32	Respiratory infection promotes T cell infiltration and amyloid-β deposition in APP/PS1 mice. Neurobiology of Aging, 2014, 35, 109-121.	3.1	111
33	Neuroprotective Effect of Eicosapentaenoic Acid in Hippocampus of Rats Exposed to Î ³ -Irradiation. Journal of Biological Chemistry, 2002, 277, 20804-20811.	3.4	107
34	Activation of the c-Jun N-terminal Kinase Signaling Cascade Mediates the Effect of Amyloid-β on Long Term Potentiation and Cell Death in Hippocampus. Journal of Biological Chemistry, 2003, 278, 27971-27980.	3.4	107
35	The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat. Neurobiology of Aging, 2011, 32, 2318.e1-2318.e15.	3.1	107
36	Targeting innate immunity for neurodegenerative disorders of the central nervous system. Journal of Neurochemistry, 2016, 138, 653-693.	3.9	106

#	Article	IF	CITATIONS
37	Iron accumulation in microglia triggers a cascade of events that leads to altered metabolism and compromised function in APP/PS1 mice. Brain Pathology, 2019, 29, 606-621.	4.1	103
38	The ageâ€related increase in ILâ€1 type I receptor in rat hippocampus is coupled with an increase in caspaseâ€3 activation. European Journal of Neuroscience, 2002, 15, 1779-1788.	2.6	98
39	Possible association of alcohol tolerance with increased synaptic Ca2+ sensitivity. Nature, 1983, 303, 175-176.	27.8	97
40	CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain, Behavior, and Immunity, 2012, 26, 789-796.	4.1	97
41	Modulation of amyloid-β-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. Journal of Neurochemistry, 2007, 103, 914-926.	3.9	90
42	Interleukin-4 mediates the neuroprotective effects of rosiglitazone in the aged brain. Neurobiology of Aging, 2009, 30, 920-931.	3.1	90
43	Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain, Behavior, and Immunity, 2013, 34, 86-97.	4.1	89
44	Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain, Behavior, and Immunity, 2009, 23, 1020-1027.	4.1	88
45	The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1Î ² -dependent manner in macrophages. Scientific Reports, 2019, 9, 4034.	3.3	88
46	Evidence that lipopolysaccharide-induced cell death is mediated by accumulation of reactive oxygen species and activation of p38 in rat cortex and hippocampus. Experimental Neurology, 2003, 184, 794-804.	4.1	84
47	Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal-regulated kinase (ERK) in the dentate gyrus: Evidence for a role for brain-derived neurotrophic factor Behavioral Neuroscience, 2002, 116, 455-463.	1.2	81
48	Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer's disease. Brain, Behavior, and Immunity, 2016, 58, 191-200.	4.1	81
49	Dietary antioxidant supplementation reverses age-related neuronal changes. Neurobiology of Aging, 1998, 19, 461-467.	3.1	80
50	Age-related changes in LTP and antioxidant defenses are reversed by an α-lipoic acid-enriched diet. Neurobiology of Aging, 1999, 20, 655-664.	3.1	78
51	A Pivotal Role for Interleukin-4 in Atorvastatin-associated Neuroprotection in Rat Brain. Journal of Biological Chemistry, 2008, 283, 1808-1817.	3.4	78
52	Neuroinflammatory changes negatively impact on LTP: A focus on IL-1β. Brain Research, 2015, 1621, 197-204.	2.2	76
53	Neuroprotective actions of eicosapentaenoic acid on lipopolysaccharideâ€induced dysfunction in rat hippocampus. Journal of Neurochemistry, 2004, 91, 20-29.	3.9	75
54	Interaction between interferon ? and insulin-like growth factor-1 in hippocampus impacts on the ability of rats to sustain long-term potentiation. Journal of Neurochemistry, 2006, 96, 1560-1571.	3.9	75

#	Article	IF	CITATIONS
55	ILâ€1F5 mediates antiâ€inflammatory activity in the brain through induction of ILâ€4 following interaction with SIGIRR/TIR8. Journal of Neurochemistry, 2008, 105, 1960-1969.	3.9	73
56	Activation of mixed glia by AÎ ² -specific Th1 and Th17 cells and its regulation by Th2 cells. Brain, Behavior, and Immunity, 2010, 24, 598-607.	4.1	70
57	A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiology of Aging, 2010, 31, 118-128.	3.1	70
58	The age-related deficit in LTP is associated with changes in perfusion and blood-brain barrier permeability. Neurobiology of Aging, 2012, 33, 1005.e23-1005.e35.	3.1	68
59	LPS-induced release of IL-6 from glia modulates production of IL-1Î ² in a JAK2-dependent manner. Journal of Neuroinflammation, 2012, 9, 126.	7.2	68
60	Innate IFNâ€Î³ promotes development of experimental autoimmune encephalomyelitis: A role for NK cells and M1 macrophages. European Journal of Immunology, 2014, 44, 2903-2917.	2.9	68
61	Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of \hat{I}^2 -amyloid. Journal of Neuroinflammation, 2018, 15, 247.	7.2	68
62	Increased IL- $1\hat{I}^2$ in cortex of aged rats is accompanied by downregulation of ERK and PI-3 kinase. Neurobiology of Aging, 2004, 25, 795-806.	3.1	67
63	Tollâ€iike receptor 3 activation modulates hippocampal network excitability, via glial production of interferonâ€Î². Hippocampus, 2013, 23, 696-707.	1.9	65
64	Age-related changes in oxidative mechanisms and LTP are reversed by dietary manipulation. Neurobiology of Aging, 1999, 20, 643-653.	3.1	64
65	The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation. Journal of Neuroinflammation, 2012, 9, 79.	7.2	64
66	Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer's disease. Communications Biology, 2021, 4, 711.	4.4	61
67	Interleukin-1β exerts a myriad of effects in the brain and in particular in the hippocampus: Analysis of some of these actions. Vitamins and Hormones, 2002, 64, 185-219.	1.7	60
68	The HMG-CoA reductase inhibitor, atorvastatin, attenuates the effects of acute administration of amyloid-β1–42 in the rat hippocampus in vivo. Neuropharmacology, 2007, 52, 136-145.	4.1	60
69	Ischemic brain injury: A consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction. Archives of Biochemistry and Biophysics, 2013, 534, 88-97.	3.0	60
70	Interleukin-11 \pm and HMGB1 Mediate Hippocampal Dysfunction in SIGIRR-Deficient Mice. Journal of Neuroscience, 2011, 31, 3871-3879.	3.6	59
71	Modest Amyloid Deposition is Associated with Iron Dysregulation, Microglial Activation, and Oxidative Stress. Journal of Alzheimer's Disease, 2012, 28, 147-161.	2.6	59
72	The effects of ILâ€1 receptor antagonist on beta amyloid mediated depression of LTP in the rat CA1 in vivo. Hippocampus, 2009, 19, 670-676.	1.9	56

#	Article	IF	CITATIONS
73	The impact of neuroimmune changes on development of amyloid pathology; relevance to <scp>A</scp> lzheimer's disease. Immunology, 2014, 141, 292-301.	4.4	56
74	Bone marrow-derived macrophages from aged rats are more responsive to inflammatory stimuli. Journal of Neuroinflammation, 2015, 12, 67.	7.2	56
75	Analysis of the Mechanisms Underlying the Age-related Impairment in Long-Term Potentiation in the Rat. Reviews in the Neurosciences, 1998, 9, 169-201.	2.9	55
76	The impact of glial activation in the aging brain. , 2010, 1, 262-78.		54
77	Whole-Cell but Not Acellular Pertussis Vaccines Induce Convulsive Activity in Mice: Evidence of a Role for Toxin-Induced Interleukin-1β in a New Murine Model for Analysis of Neuronal Side Effects of Vaccination. Infection and Immunity, 2001, 69, 4217-4223.	2.2	53
78	Can the emerging field of immunometabolism provide insights into neuroinflammation?. Progress in Neurobiology, 2020, 184, 101719.	5.7	53
79	Evidence that interleukin-1β and reactive oxygen species production play a pivotal role in stress-induced impairment of LTP in the rat dentate gyrus. European Journal of Neuroscience, 2001, 14, 1809-1819.	2.6	52
80	Rosiglitazone attenuates the age-related changes in astrocytosis and the deficit in LTP. Neurobiology of Aging, 2012, 33, 162-175.	3.1	51
81	Involvement of IGF-1 and Akt in M1/M2 activation state in bone marrow-derived macrophages. Experimental Cell Research, 2015, 335, 258-268.	2.6	50
82	Exercise-induced re-programming of age-related metabolic changes in microglia is accompanied by a reduction in senescent cells. Brain, Behavior, and Immunity, 2020, 87, 413-428.	4.1	50
83	Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Frontiers in Aging Neuroscience, 2022, 14, 868448.	3.4	47
84	Interleukin-1 receptor antagonist exerts agonist activity in the hippocampus independent of the interleukin-1 type I receptor. Journal of Neuroimmunology, 2003, 137, 117-124.	2.3	46
85	Activation of c-Jun-N-terminal kinase is critical in mediating lipopolysaccharide-induced changes in the rat hippocampus. Journal of Neurochemistry, 2005, 93, 221-231.	3.9	46
86	Age-related changes in the hippocampus (loss of synaptophysin and glial–synaptic interaction) are modified by systemic treatment with an NCAM-derived peptide, FGL. Brain, Behavior, and Immunity, 2012, 26, 778-788.	4.1	46
87	The Neuroprotective Effect of a Specific P2X ₇ Receptor Antagonist Derives from its Ability to Inhibit Assembly of the NLRP3 Inflammasome in Glial Cells. Brain Pathology, 2012, 22, 295-306.	4.1	46
88	Rosiglitazone Improves Spatial Memory and Decreases Insoluble Aβ1–42 in APP/PS1 Mice. Journal of NeuroImmune Pharmacology, 2012, 7, 140-144.	4.1	46
89	Evidence for a role for synaptophysin in expression of long-term potentiation in rat dentate gyrus. NeuroReport, 1998, 9, 2489-2494.	1.2	45
90	Proinflammatory Responses in the Murine Brain after Intranasal Delivery of Cholera Toxin: Implications for the Use of AB Toxins as Adjuvants in Intranasal Vaccines. Journal of Infectious Diseases, 2005, 192, 1628-1633.	4.0	45

#	Article	IF	CITATIONS
91	Dok2 mediates the CD200Fc attenuation of AÎ ² -induced changes in glia. Journal of Neuroinflammation, 2012, 9, 107.	7.2	44
92	T Cells—Protective or Pathogenic in Alzheimer's Disease?. Journal of NeuroImmune Pharmacology, 2015, 10, 547-560.	4.1	42
93	The role of the immune system in driving neuroinflammation. Brain and Neuroscience Advances, 2020, 4, 239821281990108.	3.4	42
94	Clial Activation in AβPP/PS1 Mice is Associated with Infiltration of IFNγ-Producing Cells. Journal of Alzheimer's Disease, 2013, 37, 63-75.	2.6	41
95	Eicosapentaenoic acid and gamma-linolenic acid increase hippocampal concentrations of IL-4 and IL-10 and abrogate lipopolysaccharide-induced inhibition of long-term potentiation. Prostaglandins Leukotrienes and Essential Fatty Acids, 2004, 70, 391-397.	2.2	39
96	Glial Uptake of Amyloid Beta Induces NLRP3 Inflammasome Formation via Cathepsin-Dependent Degradation of NLRP10. NeuroMolecular Medicine, 2014, 16, 205-215.	3.4	39
97	Analysis of Interleukin-1β-induced Cell Signaling Activation in Rat Hippocampus following Exposure to Gamma Irradiation. Journal of Biological Chemistry, 2003, 278, 51075-51084.	3.4	36
98	A synthetic NCAMâ€derived mimetic peptide, FGL, exerts antiâ€inflammatory properties via IGFâ€1 and interferonâ€Î³ modulation. Journal of Neurochemistry, 2009, 109, 1516-1525.	3.9	35
99	Activation of the <scp>P</scp> 2 <scp>X</scp> ₇ receptor induces migration of glial cells by inducing cathepsin <scp>B</scp> degradation of tissue inhibitor of metalloproteinase 1. Journal of Neurochemistry, 2012, 123, 761-770.	3.9	35
100	Analysis of the Impact of CD200 on Phagocytosis. Molecular Neurobiology, 2017, 54, 5730-5739.	4.0	35
101	Lipoic Acid Confers Protection Against Oxidative Injury in Non-neuronal and Neuronal Tissue. Nutritional Neuroscience, 2001, 4, 419-438.	3.1	34
102	Ageing is associated with changes in glutamate release, protein tyrosine kinase and protein kinase II in rat hippocampus. European Journal of Pharmacology, 1996, 309, 311-315.	3.5	33
103	α-TLR2 antibody attenuates the Aβ-mediated inflammatory response in microglia through enhanced expression of SIGIRR. Brain, Behavior, and Immunity, 2015, 46, 70-79.	4.1	33
104	Immunology meets neuroscience – Opportunities for immune intervention in neurodegenerative diseases. Brain, Behavior, and Immunity, 2012, 26, 1-10.	4.1	31
105	Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia. Molecular and Cellular Neurosciences, 2013, 56, 148-158.	2.2	30
106	Linking T cells to Alzheimer's disease: from neurodegeneration to neurorepair. Current Opinion in Pharmacology, 2016, 26, 67-73.	3.5	30
107	Treatment with dexamethasone and vitamin D ₃ attenuates neuroinflammatory ageâ€ŧelated changes in rat hippocampus. Synapse, 2007, 61, 851-861.	1.2	29
108	SIGIRR modulates the inflammatory response in the brain. Brain, Behavior, and Immunity, 2010, 24, 985-995.	4.1	27

#	Article	IF	CITATIONS
109	Atorvastatin prevents age-related and amyloid-Î ² -induced microglial activation by blocking interferon-Î ³ release from natural killer cells in the brain. Journal of Neuroinflammation, 2011, 8, 27.	7.2	27
110	Activation of tyrosine receptor kinase plays a role in expression of long-term potentiation in the rat dentate gyrus. , 1999, 9, 519-526.		26
111	A neural cell adhesion molecule-derived peptide, FGL, attenuates glial cell activation in the aged hippocampus. Experimental Neurology, 2011, 232, 318-328.	4.1	26
112	Induction of inflammatory cytokines in the brain following respiratory infection with Bordetella pertussis. Journal of Neuroimmunology, 2000, 102, 172-181.	2.3	25
113	Attenuation of LPS-Induced Changes in Synaptic Activity in Rat Hippocampus by Vasogen's Immune Modulation Therapy. NeuroImmunoModulation, 2002, 10, 40-46.	1.8	25
114	The age-related neuroinflammatory environment promotes macrophage activation, which negatively impacts synaptic function. Neurobiology of Aging, 2016, 43, 140-148.	3.1	25
115	FTY720 Attenuates Infection-Induced Enhancement of AÎ ² Accumulation in APP/PS1 Mice by Modulating Astrocytic Activation. Journal of NeuroImmune Pharmacology, 2017, 12, 670-681.	4.1	25
116	Glycerol-induced seizure. NeuroReport, 1999, 10, 1821-1825.	1.2	24
117	Biphasic modulation of intracellular Ca2+ concentration by interleukin- $1\hat{l}^2$ in cortical synaptosomes. NeuroReport, 1998, 9, 1923-1927.	1.2	21
118	Bone Marrow-Derived Macrophages from AβPP/PS1 Mice are Sensitized to the Effects of Inflammatory Stimuli. Journal of Alzheimer's Disease, 2015, 44, 949-962.	2.6	21
119	Interleukin-1β-dependent changes in the hippocampus following parenteral immunization with a whole cell pertussis vaccine. Journal of Neuroimmunology, 2000, 111, 68-76.	2.3	20
120	Neuroinflammatory changes increase the impact of stressors on neuronal function. Biochemical Society Transactions, 2009, 37, 303-307.	3.4	20
121	Inhibition of JAK2 attenuates the increase in inflammatory markers in microglia from APP/PS1 mice. Neurobiology of Aging, 2015, 36, 2716-2724.	3.1	20
122	How dependent is synaptic plasticity on microglial phenotype?. Neuropharmacology, 2015, 96, 3-10.	4.1	20
123	IL-1β-dependent neurological effects of the whole cell pertussis vaccine: a role for IL-1-associated signalling components in vaccine reactogenicity. Journal of Neuroimmunology, 2003, 136, 25-33.	2.3	17
124	With mouse age comes wisdom: A review and suggestions of relevant mouse models for age-related conditions. Mechanisms of Ageing and Development, 2016, 160, 54-68.	4.6	14
125	LTP occludes the interaction between arachidonic acid and ACPD and NGF and ACPD. NeuroReport, 1998, 9, 4087-4091.	1.2	13
126	The deficit in long-term potentiation induced by chronic administration of amyloid-Î ² is attenuated by treatment of rats with a novel phospholipid-based drug formulation, VP025. Experimental Gerontology, 2009, 44, 300-304.	2.8	10

#	Article	IF	CITATIONS
127	The Modulatory Effects of DMF on Microglia in Aged Mice Are Sex-Specific. Cells, 2022, 11, 729.	4.1	10
128	Thomas J. Connor (1971–2013). Brain, Behavior, and Immunity, 2013, 30, 1-2.	4.1	8
129	A Novel Phospholipid-Based Drug Formulation, VP025, Modulates Age- and LPS-Induced Microglial Activity in the Rat. NeuroImmunoModulation, 2009, 16, 400-410.	1.8	7
130	The age- and amyloid-β-related increases in Nogo B contribute to microglial activation. Neurochemistry International, 2011, 58, 161-168.	3.8	7
131	An NCAM Mimetic, FGL, Alters Hippocampal Cellular Morphometry in Young Adult (4 Month-Old) Rats. Neurochemical Research, 2013, 38, 1208-1218.	3.3	7
132	Identifying Early Inflammatory Changes in Monocyte-Derived Macrophages from a Population with IQ-Discrepant Episodic Memory. PLoS ONE, 2013, 8, e63194.	2.5	7
133	Sex-Related Microglial Perturbation Is Related to Mitochondrial Changes in a Model of Alzheimer's Disease. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	7
134	Analysis of the presynaptic signalling mechanisms underlying the inhibition of LTP in rat dentate gyrus by the tyrosine kinase inhibitor, genistein. Hippocampus, 2004, 14, 4-4.	1.9	6
135	The impact of aging on the brain – Risk, resilience and repair. Brain, Behavior, and Immunity, 2012, 26, 714-716.	4.1	6
136	The Age-related Gliosis and Accompanying Deficit in Spatial Learning are Unaffected by Dimebon. Neurochemical Research, 2013, 38, 1190-1195.	3.3	6
137	Evidence of an Anti-Inflammatory Role for Vasogen's Immune Modulation Therapy. NeuroImmunoModulation, 2005, 12, 113-116.	1.8	5
138	A shift to glycolysis accompanies the inflammatory changes in PBMCs from individuals with an IQ-discrepant memory. Journal of Neuroimmunology, 2018, 317, 24-31.	2.3	4
139	Monocytes exposed to plasma from patients with Alzheimer's disease undergo metabolic reprogramming. Neuroscience Research, 2019, 148, 54-60.	1.9	4
140	Dietary Antioxidants and Synaptic Plasticity: Cellular and Molecular Mechanisms. , 2002, , 47-61.		2
141	The risky business of ageing. Brain, Behavior, and Immunity, 2008, 22, 299-300.	4.1	1
142	The Impact of an Imbalance Between Proinflammatory and Anti-inflammatory Influences on Synaptic function in the Aged Brain. , 2007, , 121-136.		0