
Alexander Kirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612602/publications.pdf Version: 2024-02-01

ALEXANDED KIDSCH

#	Article	IF	CITATIONS
1	Collection of Metal Aerosol Nanoparticles at High Temperature. Colloid Journal, 2020, 82, 122-129.	0.5	2
2	Viscous Drag and Filtration Efficiency of Bimodal Fibrous Materials. Colloid Journal, 2019, 81, 288-291.	0.5	0
3	Inertial Deposition of Submicron Aerosol Particles of Heavy Metals in Fibrous Filters. Colloid Journal, 2019, 81, 98-104.	0.5	1
4	Collection of Aerosol Particles by Filters Composed of Whisker-Coated Fibers. Colloid Journal, 2019, 81, 670-680.	0.5	3
5	Aerosol Particle Collection by Filters Composed of Fibers Coated with Porous Permeable Shells. Colloid Journal, 2019, 81, 515-526.	0.5	3
6	The Stokes–Brinkman Flow Field and Diffusion Deposition of Nanoparticles in a Layer of Hollow Permeable Grains. Colloid Journal, 2018, 80, 49-53.	0.5	0
7	Pressure Drop and Aerosol-Particle-Collection Efficiency of Polydisperse Fibrous Filters. Colloid Journal, 2018, 80, 331-338.	0.5	2
8	Electrohydrodynamic generation of monodisperse submicron aerosols. Colloid Journal, 2017, 79, 61-75.	0.5	3
9	Filtration of nanoaerosols through a granular layer. Colloid Journal, 2017, 79, 474-480.	0.5	3
10	Nanoparticle deposition in granular filters at Reynolds numbers higher than unity. Colloid Journal, 2017, 79, 481-486.	0.5	2
11	The effect of gas slip on pressure drop and deposition of submicron particles in model granular filters. Colloid Journal, 2016, 78, 459-464.	0.5	4
12	Efficiency of filtration through fibrous materials with nonuniform charge distribution on fibers. Colloid Journal, 2015, 77, 802-811.	0.5	2
13	Diffusion deposition of submicron aerosol particles in screen filters. Colloid Journal, 2015, 77, 298-305.	O.5	2
14	Determination of the fiber-size distribution function in polydisperse dielectric fibrous materials. Colloid Journal, 2014, 76, 207-220.	0.5	3
15	A diffusion method for determining sizes of nanoparticles suspended in a gas. Colloid Journal, 2013, 75, 487-489.	0.5	4
16	Elastic vibrations of a fiber due to impact of an aerosol particle and their influence on the efficiency of fibrous filters. Physical Review E, 2011, 83, 056303.	0.8	8
17	Penetration of aerosol particles through fine fibrous filters. Theoretical Foundations of Chemical Engineering, 2011, 45, 891-897.	0.2	3
18	Efficiency of inertial deposition of aerosol particles in fibrous filters with regard to particle rebounds from fibers. Colloid Journal, 2011, 73, 389-393.	0.5	10

ALEXANDER KIRSCH

#	Article	IF	CITATIONS
19	Deposition of aerosol nanoparticles on filters coated with layer of carbon nanotubes. Colloid Journal, 2011, 73, 807-814.	0.5	2
20	Penetration of nanoparticles through screen-type diffusion batteries. Colloid Journal, 2010, 72, 491-498.	0.5	7
21	Filtration of aerosols with fiber materials FP. Russian Journal of General Chemistry, 2009, 79, 2045-2050.	0.3	4
22	Simulation of nanofibrous filters produced by the electrospinning method: 1. Pressure drop and deposition of nanoparticles. Colloid Journal, 2008, 70, 574-583.	0.5	4
23	Simulation of nanofibrous filters produced by the electrospinning method: 2. The effect of gas slip on the pressure drop. Colloid Journal, 2008, 70, 584-588.	0.5	4
24	Efficiency of aerosol particle collection with filtering materials containing dispersed inclusions. Colloid Journal, 2007, 69, 240-247.	0.5	0
25	Efficiency of Fibrous Filters in Suspension Filtration. Colloid Journal, 2001, 63, 259-261.	0.5	Ο
26	Title is missing!. Colloid Journal, 2001, 63, 506-510.	0.5	1
27	Diffusion Deposition of Finite Size Particles on Fibrous Filters at Intermediate Knudsen Numbers. Colloid Journal, 2001, 63, 619-625.	0.5	4
28	15.P.07 Aerosol filtration by fibrous filters at intermediate knudsen numbers. Journal of Aerosol Science, 1994, 25, 201-202.	1.8	0
29	15.P.08 Multistage high efficiency air filtration. Journal of Aerosol Science, 1994, 25, 203-204.	1.8	1
30	15.P.09 The minimization of the fold filter resistance under nonsteady filtration. Journal of Aerosol Science, 1994, 25, 205-206.	1.8	0
31	15.P.10 Aerosol control and monitoring system LADA. Journal of Aerosol Science, 1994, 25, 207-208.	1.8	1
32	Field Charging of Fine Aerosol Particles by Unipolar Ions. Aerosol Science and Technology, 1990, 12, 465-470.	1.5	21
33	Diffusion Deposition of Aerosol in Fibrous Filters at Intermediate Peclet Numbers. Aerosol Science and Technology, 1985, 4, 11-16.	1.5	31
34	Diffusion charging of submicrometer aerosol particles by unipolar ions. Journal of Colloid and Interface Science, 1981, 80, 111-117.	5.0	40
35	Increase of pressure drop in a model filter during mist filtration. Journal of Colloid and Interface Science, 1978, 64, 120-125.	5.0	16
36	Measurement of aerosol penetration through high efficiency filters. Journal of Aerosol Science, 1978, 9, 291-298.	1.8	17

ALEXANDER KIRSCH

#	Article	IF	CITATIONS
37	Inertial deposition of aerosol particles in model filters at low reynolds numbers. Journal of Aerosol Science, 1977, 8, 301-307.	1.8	19
38	Gas flow in high-porous layers of high-dispersed particles. Journal of Colloid and Interface Science, 1975, 52, 270-276.	5.0	14
39	Gas flow in aerosol filters made of polydisperse ultrafine fibres. Journal of Aerosol Science, 1974, 5, 39-45.	1.8	30
40	Pressure drop and diffusional deposition of aerosol in polydisperse model filter. Journal of Colloid and Interface Science, 1973, 43, 10-16.	5.0	14
41	Effect of gas slip on the pressure drop in fibrous filters. Journal of Aerosol Science, 1973, 4, 287-293.	1.8	27
42	A contribution to the theory of fibrous aerosol filters. Faraday Symposia of the Chemical Society, 1973, 7, 143.	0.5	12
43	The influence of an external electric field on the deposition of aerosols in fibrous filters. Journal of Aerosol Science, 1972, 3, 25-29.	1.8	21
44	Effect of gas slip on the pressure drop in a system of parallel cylinders at small reynolds numbers. Journal of Colloid and Interface Science, 1971, 37, 458-461.	5.0	22
45	Studies on Fibrous Aerosol Filters—IV Calculation of Aerosol Deposition in Model Filters in the Range of Maximum Penetration. Annals of Occupational Hygiene, 1969, 12, 1-8.	1.9	89
46	Studies on Fibrous Aerosol Filters—III Diffusional Deposition of Aerosols in Fibrous Filters. Annals of Occupational Hygiene, 1968, 11, 299-304.	1.9	87
47	The Fluid Flow in a System of Parallel Cylinders Perpendicular to the Flow Direction at Small Reynolds Numbers. Journal of the Physical Society of Japan, 1967, 22, 1251-1255.	0.7	61
48	Studies on Fibrous Aerosol Filters—II. Pressure Drops in Systems of Parallel Cylinders. Annals of Occupational Hygiene, 1967, 10, 23-30.	1.9	94
49	The effect of condensation of a vapour on the grains and of evaporation from their surface on the deposition of aerosols in granular beds. Chemical Engineering Science, 1965, 20, 181-185.	1.9	7