
Patricia J Mclaughlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The biology of the opioid growth factor receptor (OGFr). Brain Research Reviews, 2002, 38, 351-376.	9.1	293
2	Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system. Brain Research, 1991, 542, 318-323.	1.1	167
3	Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Research, 1987, 416, 157-161.	1.1	165
4	Endogenous opioid systems and the regulation of dendritic growth and spine formation. Journal of Comparative Neurology, 1989, 281, 13-22.	0.9	132
5	Naltrexone modulates body and brain development in rats: A role for endogenous opioid systems in growth. Life Sciences, 1984, 35, 2057-2064.	2.0	115
6	Endogenous opioids regulate cell proliferation in the retina of developing rat. Brain Research, 1991, 544, 79-85.	1.1	100
7	The OGF–OGFr Axis Utilizes the p16 ^{INK4a} and p21 ^{WAF1/CIP1} Pathways to Restrict Normal Cell Proliferation. Molecular Biology of the Cell, 2009, 20, 319-327.	0.9	99
8	Opioid antagonist-induced modulation of cerebral and hippocampal development: Histological and morphometric studies. Developmental Brain Research, 1986, 28, 233-246.	2.1	93
9	Opioids and the apoptotic pathway in human cancer cells. Neuropeptides, 2003, 37, 79-88.	0.9	92
10	Endogenous opioid systems regulate growth of neural tumor cells in culture. Brain Research, 1989, 490, 14-25.	1.1	87
11	Use of Topical Insulin to Normalize Corneal Epithelial Healing in Diabetes Mellitus. JAMA Ophthalmology, 2007, 125, 1082.	2.6	80
12	Duration of opiate receptor blockade determines tumorigenic response in mice with neuroblastoma: A role for endogenous opioid systems in cancer. Life Sciences, 1984, 35, 409-416.	2.0	76
13	Opioid growth factor and organ development in rat and human embryos. Brain Research, 1999, 839, 313-322.	1.1	75
14	Zeta (ξ), a growth-related opioid receptor in developing rat cerebellum: identification and characterization. Brain Research, 1991, 551, 28-35.	1.1	72
15	The Opioid Growth Factor (OGF)–OGF Receptor Axis Uses the p16 Pathway to Inhibit Head and Neck Cancer. Cancer Research, 2007, 67, 10511-10518.	0.4	70
16	Opioid growth factor modulates angiogenesis. Journal of Vascular Surgery, 2000, 32, 364-373.	0.6	69
17	The opioid growth factor–opioid growth factor receptor axis: Homeostatic regulator of cell proliferation and its implications for health and disease. Biochemical Pharmacology, 2012, 84, 746-755.	2.0	68
18	Naltrexone, an Opioid Antagonist, Facilitates Reepithelialization of the Cornea in Diabetic Rat. Diabetes, 2002, 51, 3055-3062.	0.3	67

#	Article	IF	CITATIONS
19	Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R1154-R1161.	0.9	67
20	Characterization of zeta (ζ): a new opioid receptor involved in growth. Brain Research, 1989, 482, 297-305.	1.1	64
21	Cell proliferation of human ovarian cancer is regulated by the opioid growth factor-opioid growth factor factor receptor axis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 296, R1716-R1725.	0.9	64
22	Cloning, sequencing, chromosomal location, and function of cDNAs encoding an opioid growth factor receptor (OGFr) in humans. Brain Research, 2000, 856, 75-83.	1.1	63
23	The OCF-OCFr axis utilizes the p21 pathway to restrict progression of human pancreatic cancer. Molecular Cancer, 2008, 7, 5.	7.9	62
24	The effects of different schedules of methadone treatment on rat brain development. Experimental Neurology, 1977, 56, 538-552.	2.0	61
25	Imiquimod Upregulates the Opioid Growth Factor Receptor to Inhibit Cell Proliferation Independent of Immune Function. Experimental Biology and Medicine, 2008, 233, 968-979.	1.1	58
26	T lymphocyte proliferation is suppressed by the opioid growth factor ([Met5]-enkephalin)–opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology, 2011, 216, 579-590.	0.8	58
27	PERINATAL METHADONE EXPOSURE AND BRAIN DEVELOPMENT: A BIOCHEMICAL STUDY. Journal of Neurochemistry, 1978, 31, 49-54.	2.1	57
28	The Opioid Growth Factor, [Met5]-Enkephalin, and the ζ(Zeta) Opioid Receptor Are Present in Human and Mouse Skin and Tonically Act to Inhibit DNA Synthesis in the Epidermis. Journal of Investigative Dermatology, 1996, 106, 490-497.	0.3	57
29	Insulin Treatment Ameliorates Impaired Corneal Reepithelialization in Diabetic Rats. Diabetes, 2006, 55, 1141-1147.	0.3	57
30	Naltrexone's influence on neurobehavioral development. Pharmacology Biochemistry and Behavior, 1985, 22, 441-448.	1.3	55
31	Low-dose naltrexone targets the opioid growth factor–opioid growth factor receptor pathway to inhibit cell proliferation: mechanistic evidence from a tissue culture model. Experimental Biology and Medicine, 2011, 236, 1036-1050.	1.1	54
32	Treatment of advanced pancreatic cancer with opioid growth factor: phase I. Anti-Cancer Drugs, 2004, 15, 203-209.	0.7	53
33	Opioids and migration, chemotaxis, invasion, and adhesion of human cancer cells. Neuropeptides, 2007, 41, 441-452.	0.9	53
34	Immunoelectron microscopic localization of the opioid growth factor receptor (OGFr) and OGF in the cornea. Brain Research, 2003, 967, 37-47.	1.1	52
35	HUMAN RENAL CELL CANCER PROLIFERATION IN TISSUE CULTURE IS TONICALLY INHIBITED BY OPIOID GROWTH FACTOR. Journal of Urology, 1999, 162, 2186-2191.	0.2	51
36	Preproenkephalin mRNA expression in the developing and adult rat brain. Molecular Brain Research, 1994, 21, 85-98.	2.5	50

#	Article	IF	CITATIONS
37	Re-epithelialization of the rabbit cornea is regulated by opioid growth factor. Brain Research, 1998, 803, 61-68.	1.1	50
38	Dry Eye Reversal and Corneal Sensation Restoration With Topical Naltrexone in Diabetes Mellitus. JAMA Ophthalmology, 2009, 127, 1468.	2.6	50
39	Effects of Chronic Morphine Administration on Pregnant Rats and Their Offspring. Pharmacology, 1977, 15, 302-310.	0.9	49
40	Conserved expression of the opioid growth factor, [Met5]enkephalin, and the zeta (ζ) opioid receptor in vertebrate cornea. Brain Research, 1995, 671, 105-111.	1.1	48
41	B lymphocyte proliferation is suppressed by the opioid growth factor–opioid growth factor receptor axis: Implication for the treatment of autoimmune diseases. Immunobiology, 2011, 216, 173-183.	0.8	48
42	Low-dose naltrexone suppresses ovarian cancer and exhibits enhanced inhibition in combination with cisplatin. Experimental Biology and Medicine, 2011, 236, 883-895.	1.1	48
43	Opioid growth factor (OGF) inhibits human pancreatic cancer transplanted into nude mice. Cancer Letters, 1997, 112, 167-175.	3.2	47
44	Diabetic keratopathy and treatment by modulation of the opioid growth factor (OGF)–OGF receptor (OGFr) axis with naltrexone: A review. Brain Research Bulletin, 2010, 81, 236-247.	1.4	47
45	Re-epithelialization of the rat cornea is accelerated by blockade of opioid receptors. Brain Research, 1998, 798, 254-260.	1.1	46
46	Opioids and differentiation in human cancer cells. Neuropeptides, 2005, 39, 495-505.	0.9	46
47	Duration of opioid receptor blockade determines biotherapeutic response. Biochemical Pharmacology, 2015, 97, 236-246.	2.0	46
48	Prevention and diminished expression of experimental autoimmune encephalomyelitis by low dose naltrexone (LDN) or opioid growth factor (OGF) for an extended period: Therapeutic implications for multiple sclerosis. Brain Research, 2011, 1381, 243-253.	1.1	45
49	Homeostasis of ocular surface epithelium in the rat is regulated by opioid growth factor. Brain Research, 1997, 759, 92-102.	1.1	43
50	Topically Applied Naltrexone Restores Corneal Reepithelialization in Diabetic Rats. Journal of Ocular Pharmacology and Therapeutics, 2007, 23, 89-102.	0.6	42
51	Endogenous Opioids Regulate Expression of Experimental Autoimmune Encephalomyelitis: A New Paradigm for the Treatment of Multiple Sclerosis. Experimental Biology and Medicine, 2009, 234, 1383-1392.	1.1	42
52	The opioid growth factor (OGF) and low dose naltrexone (LDN) suppress human ovarian cancer progression in mice. Gynecologic Oncology, 2011, 122, 382-388.	0.6	42
53	Dependence on Nuclear Localization Signals of the Opioid Growth Factor Receptor in the Regulation of Cell Proliferation. Experimental Biology and Medicine, 2009, 234, 532-541.	1.1	41
54	Cloning, sequencing, expression and function of a cDNA encoding a receptor for the opioid growth factor, [Met5]enkephalin1The nucleotide sequence of the rat OGFr has been deposited in GenBank under accession number AF 156878.1. Brain Research, 1999, 849, 147-154.	1.1	40

#	Article	IF	CITATIONS
55	Endogenous opioids and the growth regulation of a neural tumor. Life Sciences, 1988, 43, 1313-1318.	2.0	38
56	Combination chemotherapy with gemcitabine and biotherapy with opioid growth factor (OGF) enhances the growth inhibition of pancreatic adenocarcinoma. Cancer Chemotherapy and Pharmacology, 2005, 56, 510-520.	1.1	38
57	An opioid growth factor regulates the replication of microorganisms. Life Sciences, 1992, 50, 1179-1187.	2.0	37
58	Production and characterization of polyclonal and monoclonal antibodies to the zeta ($\hat{1}$ ¾) opioid receptor. Brain Research, 1993, 630, 295-302.	1.1	37
59	Ontogeny of zeta (ζ), the opioid growth factor receptor, in the rat brain. Brain Research, 1992, 596, 149-156.	1.1	36
60	Opioid growth factor – opioid growth factor receptor axis inhibits proliferation of triple negative breast cancer. Experimental Biology and Medicine, 2013, 238, 589-599.	1.1	36
61	Topical naltrexone accelerates full-thickness wound closure in type 1 diabetic rats by stimulating angiogenesis. Experimental Biology and Medicine, 2013, 238, 733-743.	1.1	36
62	The opioid growth factor-opioid growth factor receptor axis regulates cell proliferation of human hepatocellular cancer. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 298, R459-R466.	0.9	35
63	Opioid growth factor suppresses expression of experimental autoimmune encephalomyelitis. Brain Research, 2010, 1310, 154-161.	1.1	34
64	Regulation of cell proliferation by the opioid growth factor receptor is dependent on karyopherin <i>β</i> and Ran for nucleocytoplasmic trafficking. Experimental Biology and Medicine, 2010, 235, 1093-1101.	1.1	34
65	Opioid growth factor arrests the progression of clinical disease and spinal cord pathology in established experimental autoimmune encephalomyelitis. Brain Research, 2012, 1472, 138-148.	1.1	34
66	Targeting the opioid growth factor: Opioid growth factor receptor axis for treatment of human ovarian cancer. Experimental Biology and Medicine, 2013, 238, 579-587.	1.1	33
67	Ocular surface abnormalities related to type 2 diabetes are reversed by the opioid antagonist naltrexone. Clinical and Experimental Ophthalmology, 2014, 42, 159-168.	1.3	33
68	Featured Article: Serum [Met ⁵]-enkephalin levels are reduced in multiple sclerosis and restored by low-dose naltrexone. Experimental Biology and Medicine, 2017, 242, 1524-1533.	1.1	33
69	Opioid growth factor and the treatment of human pancreatic cancer: A review. World Journal of Gastroenterology, 2014, 20, 2218.	1.4	32
70	Stereospecific modulation of tumorigenicity by opioid antagonists. European Journal of Pharmacology, 1985, 113, 115-120.	1.7	31
71	Opioid growth factor (OGF) inhibits the progression of human squamous cell carcinoma of the head and neck transplanted into nude mice. Cancer Letters, 2003, 199, 209-217.	3.2	31
72	Opioid growth factor enhances tumor growth inhibition and increases the survival of paclitaxel-treated mice with squamous cell carcinoma of the head and neck. Cancer Chemotherapy and Pharmacology, 2005, 56, 97-104.	1.1	31

#	Article	IF	CITATIONS
73	Topical application of naltrexone facilitates reepithelialization of the cornea in diabetic rabbits. Brain Research Bulletin, 2010, 81, 248-255.	1.4	31
74	Opioid Growth Factor Receptor in the Developing Nervous System. , 1993, , 39-62.		31
75	Naloxone modulates body and organ growth of rats: Dependency on the duration of opioid receptor blockade and stereospecificity. Pharmacology Biochemistry and Behavior, 1989, 33, 325-328.	1.3	30
76	Molecular characterization and distribution of the opioid growth factor receptor (OGFr) in mouse. Molecular Brain Research, 2000, 84, 106-114.	2.5	30
77	Naltrexone and insulin are independently effective but not additive in accelerating corneal epithelial healing in type I diabetic rats. Experimental Eye Research, 2009, 89, 686-692.	1.2	30
78	Modulation of the opioid growth factor ([Met ⁵]â€enkephalin)–opioid growth factor receptor axis: Novel therapies for squamous cell carcinoma of the head and neck. Head and Neck, 2012, 34, 513-519.	0.9	30
79	Opiate antagonist-induced regulation of organ development. Physiology and Behavior, 1985, 34, 507-511.	1.0	29
80	Defects in the opioid growth factor receptor in human squamous cell carcinoma of the head and neck. Cancer, 2003, 97, 1701-1710.	2.0	29
81	Endogenous opioid inhibition of proliferation of T and B cell subpopulations in response to immunization for experimental autoimmune encephalomyelitis. BMC Immunology, 2015, 16, 24.	0.9	29
82	Zeta (ζ), the opioid growth factor receptor: identification and characterization of binding subunits. Brain Research, 1993, 605, 50-56.	1.1	28
83	Opioid Receptor Blockade During Prenatal Life Modifies Postnatal Behavioral Development. Pharmacology Biochemistry and Behavior, 1997, 58, 1075-1082.	1.3	28
84	Opioid gene expression in the developing and adult rat heart. , 1998, 211, 153-163.		27
85	Particle-Mediated Gene Transfer of Opioid Growth Factor Receptor cDNA Regulates Cell Proliferation of the Corneal Epithelium. Cornea, 2005, 24, 614-619.	0.9	27
86	Low Dose Naltrexone for Treatment of Multiple Sclerosis. Journal of Clinical Psychopharmacology, 2015, 35, 609-611.	0.7	27
87	Opioid antagonist modulation of rat heart development. Life Sciences, 1994, 54, 1423-1431.	2.0	26
88	Regulation of Corneal Repair by Particle-Mediated Gene Transfer of Opioid Growth Factor Receptor Complementary DNA. JAMA Ophthalmology, 2006, 124, 1620.	2.6	26
89	Topical treatment with the opioid antagonist naltrexone accelerates the remodeling phase of full-thickness wound healing in type 1 diabetic rats. Experimental Biology and Medicine, 2013, 238, 1127-1135.	1.1	26
90	Opioid growth factor and low-dose naltrexone impair central nervous system infiltration by CD4 + T lymphocytes in established experimental autoimmune encephalomyelitis, a model of multiple sclerosis. Experimental Biology and Medicine, 2016, 241, 71-78.	1.1	26

#	Article	IF	CITATIONS
91	A spectrin-like protein from mouse brain membranes: Immunological and structural correlations with erythrocyte spectrin. Cell Motility, 1983, 3, 635-647.	1.9	25
92	Autoradiographic localization of ornithine decarboxylase in mouse kidney by use of radiolabeled ?-difluoromethylornithine. Cell and Tissue Research, 1984, 235, 371-7.	1.5	25
93	Astrocyte proliferation is regulated by the OCF-OCFr axis in vitro and in experimental autoimmune encephalomyelitis. Brain Research Bulletin, 2013, 90, 43-51.	1.4	25
94	Featured Article: Selective blockade of the OGF–OGFr pathway by naltrexone accelerates fibroblast proliferation and wound healing. Experimental Biology and Medicine, 2014, 239, 1300-1309.	1.1	25
95	Topical Naltrexone Is a Safe and Effective Alternative to Standard Treatment of Diabetic Wounds. Advances in Wound Care, 2017, 6, 279-288.	2.6	25
96	Nucleocytoplasmic distribution of opioid growth factor and its receptor in tongue epithelium. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2004, 282, 24-37.	2.0	24
97	Opioid growth factor (OGF) for hepatoblastoma: a novel non-toxic treatment. Investigational New Drugs, 2013, 31, 1066-1070.	1.2	24
98	Gene-peptide relationships in the developing rat brain: the response of preproenkephalin rnRNA and [Met5]-enkephalin to acute opioid antagonist (naltrexone) exposure. Molecular Brain Research, 1995, 33, 111-120.	2.5	23
99	Expression of the Opioid Growth Factor, [Met5]-Enkephalin, and the Zeta Opioid Receptor in Head and Neck Squamous Cell Carcinoma. Laryngoscope, 1997, 107, 335-339.	1.1	23
100	The autocrine derivation of the opioid growth factor, [Met5]-enkephalin, in ocular surface epithelium. Brain Research, 1998, 792, 72-78.	1.1	23
101	Corneal Safety of Topically Applied Naltrexone. Journal of Ocular Pharmacology and Therapeutics, 2006, 22, 377-387.	0.6	23
102	Treatment of a relapse-remitting model of multiple sclerosis with opioid growth factor. Brain Research Bulletin, 2013, 98, 122-131.	1.4	23
103	Ontogeny of the opioid growth factor, [Met5]-enkephalin, preproenkephalin gene expression, and the ζ opioid receptor in the developing and adult aorta of rat. , 1998, 211, 327-337.		22
104	Topical treatment with the opioid antagonist naltrexone facilitates closure of full-thickness wounds in diabetic rats. Experimental Biology and Medicine, 2011, 236, 1122-1132.	1.1	22
105	Improved clinical behavior of established relapsing-remitting experimental autoimmune encephalomyelitis following treatment with endogenous opioids: Implications for the treatment of multiple sclerosis. Brain Research Bulletin, 2015, 112, 42-51.	1.4	21
106	Ontogeny of preproenkephalin mRNA expression in the rat retina. Visual Neuroscience, 1996, 13, 695-704.	0.5	19
107	Internalization of the opioid growth factor, [Met ⁵]-enkephalin, is dependent on clathrin-mediated endocytosis for downregulation of cell proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R774-R785.	0.9	19
108	Characterization of opioid binding sites in murine neuroblastoma. Brain Research, 1988, 449, 80-88.	1.1	18

7

#	Article	IF	CITATIONS
109	Opioid antagonist modulation of DNA synthesis in mouse tongue epithelium is circadian dependent. Pharmacology Biochemistry and Behavior, 1994, 48, 709-714.	1.3	18
110	Under-expression of the opioid growth factor receptor promotes progression of human ovarian cancer. Experimental Biology and Medicine, 2012, 237, 167-177.	1.1	18
111	Overexpression of the opioid growth factor receptor downregulates cell proliferation of human squamous carcinoma cells of the head and neck. International Journal of Molecular Medicine, 2007, 19, 421-8.	1.8	18
112	Preproenkephalin gene expression and [Met5]–enkephalin levels in the developing rat heart. Molecular Brain Research, 1998, 60, 160-167.	2.5	17
113	Chronic exposure to the opioid growth factor, [Met5]-enkephalin, during pregnancy: Maternal and preweaning effects. Pharmacology Biochemistry and Behavior, 2002, 71, 171-181.	1.3	17
114	Adaptation of Homeostatic Ocular Surface Epithelium to Chronic Treatment With the Opioid Antagonist Naltrexone. Cornea, 2006, 25, 821-829.	0.9	17
115	Topical Naltrexone as Treatment for Type 2 Diabetic Cutaneous Wounds. Advances in Wound Care, 2014, 3, 419-427.	2.6	17
116	Cellular dynamics of corneal wound re-epithelialization in the rat. Brain Research, 1999, 822, 149-163.	1.1	16
117	Growth inhibition of thyroid follicular cell-derived cancers by the opioid growth factor (OGF) - opioid growth factor receptor (OGFr) axis. BMC Cancer, 2009, 9, 369.	1.1	16
118	Expression of the opioid growth factor–opioid growth factor receptor axis in human ovarian cancer. Gynecologic Oncology, 2012, 124, 319-324.	0.6	16
119	Elevated serum [Met5]-enkephalin levels correlate with improved clinical and behavioral outcomes in experimental autoimmune encephalomyelitis. Brain Research Bulletin, 2017, 134, 1-9.	1.4	16
120	Ontogeny of the opioid growth factor, [Met ⁵]-enkephalin, and its binding activity in the rat retina. Visual Neuroscience, 1995, 12, 939-950.	0.5	15
121	Spontaneous Episodic Decreased Tear Secretion in Rats Is Related to Opioidergic Signaling Pathways. , 2012, 53, 3234.		15
122	Passive diffusion of naltrexone into human and animal cells and upregulation of cell proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R844-R852.	0.9	14
123	Intermittent blockade of OGFr and treatment of autoimmune disorders. Experimental Biology and Medicine, 2018, 243, 1323-1330.	1.1	14
124	Efficacy and safety of a novel naltrexone treatment for dry eye in type 1 diabetes. BMC Ophthalmology, 2019, 19, 35.	0.6	14
125	Cellular dynamics of corneal wound re-epithelialization in the rat. Brain Research, 1999, 839, 243-252.	1.1	13
126	Long-term treatment with low dose naltrexone maintains stable health in patients with multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2016, 2, 205521731667224.	0.5	13

#	Article	IF	CITATIONS
127	Topical Application of Naltrexone to the Ocular Surface of Healthy Volunteers: A Tolerability Study. Journal of Ocular Pharmacology and Therapeutics, 2016, 32, 127-132.	0.6	13
128	TRANSPLACENTAL TRANSFER OF NALTREXONE IN RATS. Life Sciences, 1997, 61, 1261-1267.	2.0	12
129	Mutations in the opioid growth factor receptor in human cancers alter receptor function. International Journal of Molecular Medicine, 2015, 36, 289-293.	1.8	12
130	Effects of Chronic Methadone Treatment on Maternal Body Weight and Food and Water Consumption in Rats. Pharmacology, 1978, 17, 227-232.	0.9	10
131	Exposure to the Opioid Antagonist Naltrexone throughout Gestation Alters Postnatal Heart Development. Neonatology, 2002, 82, 207-216.	0.9	10
132	Targeting opioid signaling in Crohn's disease: new therapeutic pathways. Expert Review of Gastroenterology and Hepatology, 2011, 5, 555-558.	1.4	10
133	Blockade of OGFr delays the onset and reduces the severity of diabetic ocular surface complications. Experimental Biology and Medicine, 2021, 246, 629-636.	1.1	10
134	Identification of [Met5]-enkephalin in developing, adult, and renewing tissues by reversed-phase high performance liquid chromatography and radioimmunoassay. Life Sciences, 1997, 61, 363-370.	2.0	9
135	Prevention of Exuberant Granulation Tissue and Neovascularization in the Rat Cornea by Naltrexone. JAMA Ophthalmology, 2008, 126, 501.	2.6	9
136	Inhibition of DNA synthesis in mouse epidermis by topical imiquimod is dependent on opioid receptors. Experimental Biology and Medicine, 2010, 235, 1292-1299.	1.1	9
137	Targeted overexpression of OCFr in epithelium of transgenic mice suppresses cell proliferation and impairs full-thickness wound closure. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 302, R1084-R1090.	0.9	9
138	Featured Article: Modulation of the OGF–OGFr pathway alters cytokine profiles in experimental autoimmune encephalomyelitis and multiple sclerosis. Experimental Biology and Medicine, 2018, 243, 361-369.	1.1	9
139	Dysregulation of the OGF–OGFr pathway correlates with elevated serum OGF and ocular surface complications in the diabetic rat. Experimental Biology and Medicine, 2020, 245, 1414-1421.	1.1	9
140	Overexpression of OGFr Downregulates Ovarian Cancer Cell Proliferation <i>In Vitro</i> and Inhibits Tumorigenesis. Journal of Cancer Therapy, 2011, 02, 579-594.	0.1	9
141	Prevention and delay in progression of human pancreatic cancer by stable overexpression of the opioid growth factor receptor. International Journal of Oncology, 2008, 33, 317-23.	1.4	9
142	Transplacental transfer of the opioid growth factor, [Met 5]-enkephalin, in rats. Brain Research Bulletin, 2001, 55, 341-346.	1.4	8
143	Opioid growth factor inhibits intimal hyperplasia in balloon-injured rat carotid artery. Journal of Vascular Surgery, 2003, 37, 636-643.	0.6	8
144	Overexpression of the opioid growth factor receptor downregulates cell proliferation of human squamous carcinoma cells of the head and neck. International Journal of Molecular Medicine, 0, , .	1.8	8

#	Article	IF	CITATIONS
145	Expression of Opioid Growth Factor (OGF)–OGF Receptor (OGFr) Axis in Human Nonmedullary Thyroid Cancer. Thyroid, 2008, 18, 1165-1170.	2.4	8
146	The Opioid Growth Factor Inhibits Established Ovarian Cancer in Nude Mice and Can Be Combined with Taxol or Cisplatin to Enhance Growth Inhibition. Journal of Cancer Therapy, 2011, 02, 110-124.	0.1	8
147	Novel treatment for triple-negative breast and ovarian cancer: endogenous opioid suppression of women's cancers. Expert Review of Anticancer Therapy, 2014, 14, 247-250.	1.1	7
148	Overexpression of the opioid growth factor receptor potentiates growth inhibition in human pancreatic cancer cells. International Journal of Oncology, 2007, 30, 775-83.	1.4	7
149	Gene expression of OGFr in the developing and adult rat brain and cerebellum. Brain Research Bulletin, 2004, 63, 57-63.	1.4	6
150	Enhanced growth inhibition of squamous cell carcinoma of the head and neck by combination therapy of paclitaxel and opioid growth factor. International Journal of Oncology, 2005, 26, 809.	1.4	6
151	Ocular surface complications result from dysregulation of the OGF‑OGFr signaling pathway in female diabetic rats. Experimental and Therapeutic Medicine, 2021, 22, 687.	0.8	6
152	Opioid growth factor inhibition of a human squamous cell carcinoma of the head and neck in nude mice: dependency on the route of administration. International Journal of Oncology, 2004, 24, 227-32.	1.4	6
153	Regulation of Tenon's Capsule Fibroblast Cell Proliferation by the Opioid Growth Factor and the Opioid Growth Factor Receptor Axis. , 2010, 51, 5054.		5
154	Featured Article: Nuclear export of opioid growth factor receptor is CRM1 dependent. Experimental Biology and Medicine, 2016, 241, 273-281.	1.1	5
155	Selective opioid growth factor receptor antagonists based on a stilbene isostere. Bioorganic and Medicinal Chemistry, 2017, 25, 4464-4474.	1.4	5
156	[Met5]-enkephalin preserves diffusion metrics in EAE mice. Brain Research Bulletin, 2020, 165, 246-252.	1.4	5
157	Ocular surface complications in diabetes: The interrelationship between insulin and enkephalin. Biochemical Pharmacology, 2021, 192, 114712.	2.0	5
158	Opioid growth factor inhibition of a human squamous cell carcinoma of the head and neck in nude mice: Dependency on the route of administration. International Journal of Oncology, 2004, 24, 227.	1.4	4
159	Proenkephalin-Derived Opioid Peptides. , 2006, , 1313-1318.		4
160	Blockade of the OGF-OGFr pathway in diabetic bone. Connective Tissue Research, 2019, 60, 521-529.	1.1	4
161	Sex differences in the magnitude of diabetic ocular surface complications: Role of serum OGF. Physiology and Behavior, 2021, 237, 113436.	1.0	4
162	Endogenous Opioids in the Etiology and Treatment of Multiple Sclerosis. , 0, , 125-138.		4

Endogenous Opioids in the Etiology and Treatment of Multiple Sclerosis. , 0, , 125-138. 162

#	Article	IF	CITATIONS
163	Low dose naltrexone inhibits the progression of clinical disease in established relapseâ€remitting experimental autoimmune encephalomyelitis Å' a model for multiple sclerosis (651.3). FASEB Journal, 2014, 28, 651.3.	0.2	4
164	Naltrexone as a Novel Therapeutic for Diabetic Corneal Complications. , 2020, 2, 42-46.		4
165	Enhanced growth inhibition of squamous cell carcinoma of the head and neck by combination therapy of paclitaxel and opioid growth factor. International Journal of Oncology, 2005, 26, 809-16.	1.4	4
166	NALTREXONE IS NOT DETECTED IN PREWEANING RATS FOLLOWING TRANSPLACENTAL EXPOSURE: IMPLICATIONS FOR GROWTH MODULATION. Life Sciences, 1997, 62, 221-228.	2.0	3
167	Opioid growth factor receptor is unaltered with the progression of human pancreatic and colon cancers. International Journal of Oncology, 2006, 29, 489.	1.4	3
168	Prevention and delay in progression of human squamous cell carcinoma of the head and neck in nude mice by stable overexpression of the opioid growth factor receptor. International Journal of Oncology, 2008, 33, 751-7.	1.4	3
169	β-endorphin and opioid growth factor as biomarkers of physical ability in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2021, 50, 102868.	0.9	2
170	Enkephalin Therapy Improves Relapsing-Remitting Multiple Sclerosis. , 0, , .		2
171	Progression of squamous cell carcinoma of the head and neck is associated with down-regulation of the opioid growth factor receptor. International Journal of Oncology, 2006, 28, 1577-83.	1.4	2
172	Opioid Growth Factor and Retinal Morphogenesis. , 1995, , 89-105.		1
173	Progression of squamous cell carcinoma of the head and neck is associated with down-regulation of the opioid growth factor receptor. International Journal of Oncology, 2006, 28, 1577.	1.4	1
174	Naltrexone blockade of OGFr enhances cutaneous wound closure in diabetic rats. Medicine in Drug Discovery, 2021, 11, 100098.	2.3	1
175	Opioid growth factor receptor (OGFR) expression is downregulated with progression of triple negative breast cancer. International Journal of Cancer Therapy and Oncology, 2015, 3, 347.	0.2	1
176	Opioid growth factor reverses the progression of clinical disease in established relapseâ€remitting experimental autoimmune encephalomyelitis Å' a model for multiple sclerosis (651.2). FASEB Journal, 2014, 28, .	0.2	1
177	Timing of treatment with an endogenous opioid alters immune response and spinal cord pathology in female mice with experimental autoimmune encephalomyelitis. Journal of Neuroscience Research, 2022, 100, 551-563.	1.3	1
178	Endogenous opioids and brain development. International Journal of Developmental Neuroscience, 1985, 3, 425-425.	0.7	0
179	Stability of Opioid Growth Factor ([Met5]â€Enkephalin) in Solution Using HPLC and Photodiode Array Detection. Journal of Liquid Chromatography and Related Technologies, 2006, 29, 151-157.	0.5	0
180	Opioid growth factor (OGF) prevents relapses in mice with relapsingâ€remitting EAE, a model for multiple sclerosis. FASEB Journal, 2013, 27, 873.10.	0.2	0