## Vincenzo Piluso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612457/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Experimental response of a large-scale two-storey steel building equipped with low-yielding friction joints. Soil Dynamics and Earthquake Engineering, 2022, 152, 107022.                        | 3.8 | 11        |
| 2  | Performance-based rules for the simplified assessment of steel CBFs. Journal of Constructional Steel Research, 2022, 191, 107167.                                                                | 3.9 | 8         |
| 3  | Simplified methods for the evaluation of seismic performances of steel frames. AIP Conference Proceedings, 2022, , .                                                                             | 0.4 | 0         |
| 4  | Simplified Approach for the Seismic Assessment of Existing X Shaped CBFs: Examples and Numerical Applications. Journal of Composites Science, 2022, 6, 62.                                       | 3.0 | 4         |
| 5  | Design, Analysis and Assessment of MRFs Equipped with FREEDAM Connections and Designed by TPMC:<br>Comparison with Traditional Connections. Lecture Notes in Civil Engineering, 2022, , 508-516. | 0.4 | 4         |
| 6  | Simplified Evaluation of Plastic Rotation Demand for Existing EBFs Equipped with Short Links. Metals, 2022, 12, 1002.                                                                            | 2.3 | 2         |
| 7  | Local buckling of aluminium channels under uniform compression: Theoretical analysis and experimental tests. Thin-Walled Structures, 2022, 179, 109511.                                          | 5.3 | 6         |
| 8  | Experimental tests on SHS aluminium beams under non-uniform bending. Engineering Structures, 2022,<br>267, 114649.                                                                               | 5.3 | 5         |
| 9  | Evaluation of the Seismic Capacity of Existing Moment Resisting Frames by a Simplified Approach:<br>Examples and Numerical Application. Applied Sciences (Switzerland), 2021, 11, 2594.          | 2.5 | 12        |
| 10 | Interactive Plastic Local Buckling of Box-shaped Aluminium Members under Uniform Compression.<br>Thin-Walled Structures, 2021, 164, 107828.                                                      | 5.3 | 24        |
| 11 | Pseudoâ€dynamic testing of a fullâ€scale twoâ€storey steel building with RBS connections. Ce/Papers, 2021,<br>4, 2285-2294.                                                                      | 0.3 | 2         |
| 12 | The influence of the axial restraint on the overstrength of short links. Journal of Constructional<br>Steel Research, 2021, 184, 106758.                                                         | 3.9 | 15        |
| 13 | A Simplified Approach for Seismic Performances Estimation for Steel Moment Resisting Frames.<br>Ce/Papers, 2021, 4, 2335-2340.                                                                   | 0.3 | 0         |
| 14 | Numerical Application of Effective Thickness Approach to Box Aluminium Sections. Journal of Composites Science, 2021, 5, 291.                                                                    | 3.0 | 9         |
| 15 | The Influence of the Material Properties on the Ultimate Behaviour of Aluminium H-shaped Beams.<br>Open Construction and Building Technology Journal, 2021, 15, 176-188.                         | 0.7 | 9         |
| 16 | Ultimate behaviour of high-yielding low-hardening aluminium alloy I-beams. Thin-Walled Structures,<br>2020, 146, 106463.                                                                         | 5.3 | 24        |
| 17 | A simplified performance based approach for the evaluation of seismic performances of steel frames.<br>Engineering Structures, 2020, 224, 111222.                                                | 5.3 | 29        |
| 18 | The influence of strain-hardening on the ultimate behaviour of aluminium RHS-beams under moment gradient. Thin-Walled Structures, 2020, 157, 107091.                                             | 5.3 | 17        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Seismic Behavior of Moment-Resisting Frames with Conventional and Innovative Connections.<br>Symmetry, 2020, 12, 2091.                                                                      | 2.2 | 9         |
| 20 | Design criteria for beam-to-column connections equipped with friction devices. Journal of Constructional Steel Research, 2020, 172, 106240.                                                 | 3.9 | 35        |
| 21 | Pseudo-dynamic testing of a full-scale two-storey steel building with RBS connections. Engineering Structures, 2020, 212, 110494.                                                           | 5.3 | 22        |
| 22 | Seismic response of steel Moment Resisting Frames equipped with friction beam-to-column joints. Soil<br>Dynamics and Earthquake Engineering, 2019, 119, 144-157.                            | 3.8 | 49        |
| 23 | Consideration of second-order effects on plastic design of steel moment resisting frames. Bulletin of<br>Earthquake Engineering, 2019, 17, 3041-3070.                                       | 4.1 | 30        |
| 24 | Probabilistic Theory of Plastic Mechanism Control for Steel Moment Resisting Frames. Structural Safety, 2019, 76, 95-107.                                                                   | 5.3 | 42        |
| 25 | Seismic response of MRF-CBF dual systems equipped with low damage friction connections. Journal of Constructional Steel Research, 2019, 154, 263-277.                                       | 3.9 | 51        |
| 26 | Partial safety factors and overstrength coefficient evaluation for the design of connections equipped with friction dampers. Engineering Structures, 2019, 178, 645-655.                    | 5.3 | 22        |
| 27 | Ultimate resistance and rotation capacity of low yielding high hardening aluminium alloy beams under non-uniform bending. Thin-Walled Structures, 2019, 135, 123-136.                       | 5.3 | 33        |
| 28 | The Use of TPMC for Designing MRFs Equipped with FREEDAM Connections: Performance Evaluation.<br>Key Engineering Materials, 2018, 763, 983-991.                                             | 0.4 | 8         |
| 29 | Experimental analysis of beam-to-column joints equipped with sprayed aluminium friction dampers.<br>Journal of Constructional Steel Research, 2018, 146, 33-48.                             | 3.9 | 64        |
| 30 | Cyclic response of low yielding connections using different friction materials. Soil Dynamics and Earthquake Engineering, 2018, 114, 404-423.                                               | 3.8 | 40        |
| 31 | Design of full-strength full-ductility extended end-plate beam-to-column joints. Journal of<br>Constructional Steel Research, 2018, 148, 77-96.                                             | 3.9 | 42        |
| 32 | Standardised friction damper bolt assemblies time-related relaxation and installed tension variability.<br>Journal of Constructional Steel Research, 2018, 141, 145-155.                    | 3.9 | 52        |
| 33 | Comparison Between Different Design Strategies For Freedam Frames: Push-Overs and Ida Analyses.<br>Open Construction and Building Technology Journal, 2018, 12, 140-153.                    | 0.7 | 7         |
| 34 | Investigation on Friction Features of Dissipative Lap Shear Connections by Means of Experimental and Numerical Tests. Open Construction and Building Technology Journal, 2018, 12, 154-169. | 0.7 | 11        |
| 35 | Thematic Issue on Advances in Modeling, Analysis and Design of Steel Connections. Open Construction and Building Technology Journal, 2018, 12, 80-82.                                       | 0.7 | 0         |
| 36 | Influence of connection typology on seismic response of MRâ€Frames with and without â€~setâ€backs'.<br>Earthquake Engineering and Structural Dynamics, 2017, 46, 5-25.                      | 4.4 | 32        |

| #  | Article                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Ultimate behaviour of RHS temper T6 aluminium alloy beams subjected to non-uniform bending:<br>Parametric analysis. Thin-Walled Structures, 2017, 115, 129-141.   | 5.3  | 41        |
| 38 | 01.23: Seismic design of full-strength full-ductility extended endplate beam-to-column joints.<br>Ce/Papers, 2017, 1, 362-371.                                    | 0.3  | 0         |
| 39 | 11.09: Validation of probabilistic theory of plastic mechanism control by means of Monte Carlo simulations. Ce/Papers, 2017, 1, 2897-2905.                        | 0.3  | 0         |
| 40 | 01.19: Cyclic behaviour of friction materials for FREEDAM connections. Ce/Papers, 2017, 1, 332-341.                                                               | 0.3  | 1         |
| 41 | FEM simulations and rotation capacity evaluation for RHS temper T4 aluminium alloy beams.<br>Composites Part B: Engineering, 2017, 115, 124-137.                  | 12.0 | 40        |
| 42 | Critical issues in parameter calibration of cyclic models for steel members. Engineering Structures, 2017, 132, 123-138.                                          | 5.3  | 50        |
| 43 | 11.08: Reliable calibration of cyclic models for steel members. Ce/Papers, 2017, 1, 2887-2896.                                                                    | 0.3  | 0         |
| 44 | 11.10: Probabilistic theory of plastic mechanism control. Ce/Papers, 2017, 1, 2906-2915.                                                                          | 0.3  | 0         |
| 45 | 01.12: Development and validation of design criteria for free from damage steel joints. Ce/Papers, 2017, 1, 263-271.                                              | 0.3  | 3         |
| 46 | P11.02: Experimental analysis and FE modeling of square hollow sections under combined axial and bending loads. Ce/Papers, 2017, 1, 4732-4739.                    | 0.3  | 1         |
| 47 | 01.18: Optimization of the pre-loading procedure for high-strength bolts of FREEDAM connections.<br>Ce/Papers, 2017, 1, 316-331.                                  | 0.3  | 1         |
| 48 | Theory of Plastic Mechanism Control for MRF–EBF dual systems: Closed form solution. Engineering<br>Structures, 2016, 118, 287-306.                                | 5.3  | 60        |
| 49 | Moment frames – concentrically braced frames dual systems: analysis of different design criteria.<br>Structure and Infrastructure Engineering, 2016, 12, 122-141. | 3.7  | 26        |
| 50 | Bolted T-stubs: A refined model for flange and bolt fracture modes. Steel and Composite Structures, 2016, 20, 267-293.                                            | 1.3  | 39        |
| 51 | Advances in theory of plastic mechanism control: closed form solution for MRâ€Frames. Earthquake<br>Engineering and Structural Dynamics, 2015, 44, 1035-1054.     | 4.4  | 85        |
| 52 | Free from damage beam-to-column joints: Testing and design of DST connections with friction pads.<br>Engineering Structures, 2015, 85, 219-233.                   | 5.3  | 106       |
| 53 | Simplified finite element analysis of bolted T-stub connection components. Engineering Structures, 2015, 100, 656-664.                                            | 5.3  | 53        |
| 54 | Analysis and modelling of CFT members: Moment curvature analysis. Thin-Walled Structures, 2015, 86, 157-166.                                                      | 5.3  | 34        |

| #  | Article                                                                                                                                                                     | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Seismic design of chevron braces cupled with MRF fail safe systems. Earthquake and Structures, 2015,<br>8, 1215-1240.                                                       | 1.0  | 10        |
| 56 | Theory of plastic mechanism control for eccentrically braced frames with inverted y-scheme. Journal of Constructional Steel Research, 2014, 92, 122-135.                    | 3.9  | 51        |
| 57 | Rigid-plastic analysis and moment–shear interaction for hierarchy criteria of inverted Y EB-Frames.<br>Journal of Constructional Steel Research, 2014, 95, 71-80.           | 3.9  | 42        |
| 58 | Theory of plastic mechanism control for the seismic design of braced frames equipped with friction dampers. Mechanics Research Communications, 2014, 58, 112-123.           | 1.8  | 39        |
| 59 | Innovative structural details in MR-frames for free from damage structures. Mechanics Research<br>Communications, 2014, 58, 146-156.                                        | 1.8  | 48        |
| 60 | Ultimate behaviour of FRP wrapped sections under axial force and bending: Influence of stress–strain<br>confinement model. Composites Part B: Engineering, 2013, 54, 85-96. | 12.0 | 20        |
| 61 | Experimental behaviour of friction Tâ€stub beamâ€ŧoâ€column joints under cyclic loads. Steel<br>Construction, 2013, 6, 11-18.                                               | 0.8  | 19        |
| 62 | Validation of a Design Procedure for Failure Mode Control of EB-Frames: Push-Over and IDA Analyses.<br>Open Construction and Building Technology Journal, 2013, 7, 193-207. | 0.7  | 18        |
| 63 | Ultimate behavior of steel beams under non-uniform bending. Journal of Constructional Steel<br>Research, 2012, 78, 144-158.                                                 | 3.9  | 94        |
| 64 | Moment resistance statistical distribution of beam-to-column composite joints. Journal of<br>Constructional Steel Research, 2012, 78, 183-191.                              | 3.9  | 0         |
| 65 | Comparative analysis and critical issues of the main constitutive laws for concrete elements confined with FRP. Composites Part B: Engineering, 2012, 43, 3219-3230.        | 12.0 | 22        |
| 66 | Theory of plastic mechanism control of dissipative truss moment frames. Engineering Structures, 2012, 37, 63-75.                                                            | 5.3  | 56        |
| 67 | An advanced mechanical model for composite connections under hogging/sagging moments. Journal of Constructional Steel Research, 2012, 72, 35-50.                            | 3.9  | 9         |
| 68 | Experimental analysis of innovative dissipative bolted double split tee beamâ€ŧo olumn connections.<br>Steel Construction, 2011, 4, 53-64.                                  | 0.8  | 58        |
| 69 | Seismic reliability of traditional and innovative concentrically braced frames. Earthquake Engineering and Structural Dynamics, 2011, 40, 1455-1474.                        | 4.4  | 37        |
| 70 | Local Buckling of Aluminum Alloy Angles under Uniform Compression. Journal of Structural<br>Engineering, 2011, 137, 173-184.                                                | 3.4  | 45        |
| 71 | Plastic design of CB-frames with reduced section solution for bracing members. Journal of Constructional Steel Research, 2010, 66, 611-621.                                 | 3.9  | 35        |
| 72 | Failure Mode and Drift Control of MRF-CBF Dual Systems. Open Construction and Building Technology Journal, 2010, 4, 121-133.                                                | 0.7  | 22        |

| #  | Article                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Seismic reliability of Vâ€braced frames: Influence of design methodologies. Earthquake Engineering and<br>Structural Dynamics, 2009, 38, 1587-1608.  | 4.4 | 35        |
| 74 | Plastic design of eccentrically braced frames, II: Failure mode control. Journal of Constructional Steel Research, 2009, 65, 1015-1028.              | 3.9 | 40        |
| 75 | Plastic design of eccentrically braced frames, I: Moment–shear interaction. Journal of<br>Constructional Steel Research, 2009, 65, 1007-1014.        | 3.9 | 28        |
| 76 | Seismic reliability assessment of a two-story steel-concrete composite frame designed according to Eurocode 8. Structural Safety, 2009, 31, 383-395. | 5.3 | 29        |
| 77 | Reinforced concrete columns strengthened with angles and battens subjected to eccentric load.<br>Engineering Structures, 2009, 31, 539-550.          | 5.3 | 95        |
| 78 | Experimental analysis and modelling of bolted T-stubs under cyclic loads. Journal of Constructional<br>Steel Research, 2008, 64, 655-669.            | 3.9 | 86        |
| 79 | Plastic Design of Seismic Resistant V-Braced Frames. Journal of Earthquake Engineering, 2008, 12, 1246-1266.                                         | 2.5 | 61        |
| 80 | Ultimate Behavior of Bolted T-Stubs. II: Model Validation. Journal of Structural Engineering, 2001, 127, 694-704.                                    | 3.4 | 79        |
| 81 | Ultimate Behavior of Bolted T-Stubs. I: Theoretical Model. Journal of Structural Engineering, 2001, 127, 686-693.                                    | 3.4 | 100       |
| 82 | Experimental Analysis of Bolted Connections: Snug versus Preloaded Bolts. Journal of Structural<br>Engineering, 1998, 124, 765-774.                  | 3.4 | 67        |
| 83 | PLASTIC DESIGN OF SEISMIC RESISTANT STEEL FRAMES. Earthquake Engineering and Structural Dynamics, 1997, 26, 167-191.                                 | 4.4 | 129       |
| 84 | The Use of TPMC for Designing MRFs Equipped with FREEDAM Connections: A Case Study. Key Engineering Materials, 0, 763, 1041-1049.                    | 0.4 | 6         |