
Zhibin Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612395/publications.pdf Version: 2024-02-01

7hirin Yii

#	Article	IF	CITATIONS
1	User-interactive electronic skin for instantaneous pressure visualization. Nature Materials, 2013, 12, 899-904.	27.5	1,044
2	Elastomeric polymer light-emitting devices and displays. Nature Photonics, 2013, 7, 817-824.	31.4	859
3	Highly Flexible Silver Nanowire Electrodes for Shapeâ€Memory Polymer Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 664-668.	21.0	622
4	Intrinsically Stretchable Polymer Lightâ€Emitting Devices Using Carbon Nanotubeâ€Polymer Composite Electrodes. Advanced Materials, 2011, 23, 3989-3994.	21.0	490
5	Silver Nanowireâ€Polymer Composite Electrodes for Efficient Polymer Solar Cells. Advanced Materials, 2011, 23, 4453-4457.	21.0	326
6	Single‣ayer Lightâ€Emitting Diodes Using Organometal Halide Perovskite/Poly(ethylene oxide) Composite Thin Films. Advanced Materials, 2015, 27, 5196-5202.	21.0	288
7	Photoactuators and motors based on carbon nanotubes with selective chirality distributions. Nature Communications, 2014, 5, 2983.	12.8	269
8	Fully Printed Halide Perovskite Light-Emitting Diodes with Silver Nanowire Electrodes. ACS Nano, 2016, 10, 1795-1801.	14.6	261
9	Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1703-1707.	7.1	234
10	Highly deformable liquid-state heterojunction sensors. Nature Communications, 2014, 5, 5032.	12.8	221
11	Single-Layer Halide Perovskite Light-Emitting Diodes with Sub-Band Gap Turn-On Voltage and High Brightness. Journal of Physical Chemistry Letters, 2016, 7, 4059-4066.	4.6	175
12	Intrinsically stretchable transparent electrodes based on silver-nanowire–crosslinked-polyacrylate composites. Nanotechnology, 2012, 23, 344002.	2.6	162
13	Stretchable Lightâ€Emitting Diodes with Organometalâ€Halideâ€Perovskite–Polymer Composite Emitters. Advanced Materials, 2017, 29, 1607053.	21.0	147
14	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	14.6	118
15	Electrochemical Doping of Halide Perovskites with Ion Intercalation. ACS Nano, 2017, 11, 1073-1079.	14.6	118
16	Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. Applied Physics Letters, 2009, 95, .	3.3	101
17	Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. Journal of Materials Chemistry C, 2018, 6, 11961-11967.	5.5	96
18	Manipulating Ion Migration for Highly Stable Light-Emitting Diodes with Single-Crystalline Organometal Halide Perovskite Microplatelets. ACS Nano, 2017, 11, 6312-6318.	14.6	90

Zhibin Yu

#	Article	IF	CITATIONS
19	Stabilizing the Dynamic pâ^'iâ^'n Junction in Polymer Light-Emitting Electrochemical Cells. Journal of Physical Chemistry Letters, 2011, 2, 367-372.	4.6	84
20	Direct Printing for Additive Patterning of Silver Nanowires for Stretchable Sensor and Display Applications. Advanced Materials Technologies, 2018, 3, 1700232.	5.8	68
21	A direct thin-film path towards low-cost large-area III-V photovoltaics. Scientific Reports, 2013, 3, 2275.	3.3	65
22	Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. Applied Physics Letters, 2009, 95, .	3.3	59
23	Fully Solution-Based Fabrication of Flexible Light-Emitting Device at Ambient Conditions. Journal of Physical Chemistry C, 2013, 117, 16632-16639.	3.1	58
24	Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5698-5705.	14.9	52
25	Electrochemical Formation of Stable p-i-n Junction in Conjugated Polymer Thin Films. Journal of Physical Chemistry B, 2009, 113, 8481-8486.	2.6	47
26	Polymer light-emitting electrochemical cells: Recent developments to stabilize the p-i-n junction and explore novel device applications. Science China Chemistry, 2013, 56, 1075-1086.	8.2	43
27	Structures and Materials in Stretchable Electroluminescent Devices. Advanced Materials, 2022, 34, e2106184.	21.0	40
28	Transparent Perovskite Light-Emitting Touch-Responsive Device. ACS Nano, 2017, 11, 11368-11375.	14.6	39
29	Engineering Crack Formation in Carbon Nanotube-Silver Nanoparticle Composite Films for Sensitive and Durable Piezoresistive Sensors. Nanoscale Research Letters, 2016, 11, 422.	5.7	33
30	Deterministic Nucleation of InP on Metal Foils with the Thin-Film Vapor–Liquid–Solid Growth Mode. Chemistry of Materials, 2014, 26, 1340-1344.	6.7	32
31	Junction Propagation in Organometal Halide Perovskite–Polymer Composite Thin Films. Journal of Physical Chemistry Letters, 2017, 8, 2412-2419.	4.6	30
32	Highâ€Speed Fabrication of Allâ€Inkjetâ€Printed Organometallic Halide Perovskite Lightâ€Emitting Diodes on Elastic Substrates. Advanced Materials, 2021, 33, e2102095.	21.0	29
33	Deterministic Nucleation for Halide Perovskite Thin Films with Large and Uniform Grains. Advanced Functional Materials, 2017, 27, 1702180.	14.9	27
34	Porous Halide Perovskite–Polymer Nanocomposites for Explosive Detection with a High Sensitivity. Advanced Materials Interfaces, 2019, 6, 1801686.	3.7	22
35	High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition. Journal of Applied Physics, 2012, 111, 123112.	2.5	21
36	Morphological and spatial control of InP growth using closed-space sublimation. Journal of Applied Physics, 2012, 112, 123102.	2.5	18

Zhibin Yu

#	Article	IF	CITATIONS
37	PEDOT:PSS-polyethylene oxide composites for stretchable and 3D-Printed thermoelectric devices. Composites Communications, 2021, 23, 100599.	6.3	18
38	An ambipolar poly(meta-phenylene) copolymer with high triplet energy to host blue and green electrophosphorescence. Journal of Materials Chemistry, 2011, 21, 9772.	6.7	10
39	Highly efficient blue phosphorescent polymer light-emitting diodes by using interfacial modification. Applied Physics Letters, 2011, 98, 201110.	3.3	9
40	Fluorene-Benzothiadiazole Copolymer for Single Component Green Light-Emitting Electrochemical Cells. Journal of Display Technology, 2013, 9, 476-482.	1.2	7
41	Efficient, Stable, and Low-Cost PbS Quantum Dot Solar Cells with Cr–Ag Electrodes. Nanomaterials, 2019, 9, 1205.	4.1	6
42	Iontronic Electroluminescence Devices: Comparing Halide Perovskites and Conjugated Polymers. ACS Applied Electronic Materials, 2022, 4, 568-575.	4.3	4
43	3D-Printed Photoactive Semiconducting Nanowire–Polymer Composites for Light Sensors. ACS Applied Nano Materials, 2020, 3, 969-976.	5.0	3
44	Single-Layer White Polymer Phosphorescent Light-Emitting Diodes Employing Poly(Ethylene Glycol) Dimethyl Ether Blended in the Emissive Layer as Functional Interlayer. Journal of Display Technology, 2013, 9, 483-489.	1.2	2
45	Organometal halide perovskite light-emitting diodes with laminated carbon nanotube electrodes. , 2017, , .		1
46	Absorption and transport enhancement by Ag nanoparticle plasmonics for organic optoelectronics. , 2011, , .		0
47	Low Cost Fabrication of High Efficiency Polymer Solar Cells. ECS Transactions, 2015, 66, 1-9.	0.5	0