Joshua J Woodward

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612381/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thymidine starvation promotes c-di-AMP-dependent inflammation during pathogenic bacterial infection. Cell Host and Microbe, 2022, 30, 961-974.e6.	11.0	10
2	A Luminescenceâ€Based Coupled Enzyme Assay Enables Highâ€Throughput Quantification of the Bacterial Second Messenger 3'3'â€Cyclicâ€Diâ€AMP. ChemBioChem, 2021, 22, 1030-1041.	2.6	2
3	4-Hydroxy-2-nonenal antimicrobial toxicity is neutralized by an intracellular pathogen. ELife, 2021, 10, .	6.0	7
4	Endomembrane targeting of human OAS1 p46 augments antiviral activity. ELife, 2021, 10, .	6.0	41
5	A Rationally Designed c-di-AMP Förster Resonance Energy Transfer Biosensor To Monitor Nucleotide Dynamics. Journal of Bacteriology, 2021, 203, e0008021.	2.2	1
6	A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells. Nature Communications, 2020, 11, 3533.	12.8	27
7	(p)ppGpp and c-di-AMP Homeostasis Is Controlled by CbpB in Listeria monocytogenes. MBio, 2020, 11, .	4.1	28
8	Cyclic dinucleotides at the forefront of innate immunity. Current Opinion in Cell Biology, 2020, 63, 49-56.	5.4	28
9	Metabolic Regulation by Cyclic di-AMP Signaling. , 2020, , 161-175.		1
10	Wholeâ€genome sequencing reveals <i>Listeria monocytogenes</i> diversity and allows identification of longâ€ŧerm persistent strains in Brazil. Environmental Microbiology, 2019, 21, 4478-4487.	3.8	30
11	SLC19A1 transports immunoreactive cyclic dinucleotides. Nature, 2019, 573, 434-438.	27.8	230
12	Cyclic di-AMP Acts as an Extracellular Signal That Impacts <i>Bacillus subtilis</i> Biofilm Formation and Plant Attachment. MBio, 2018, 9, .	4.1	69
13	RECON-Dependent Inflammation in Hepatocytes Enhances Listeria monocytogenes Cell-to-Cell Spread. MBio, 2018, 9, .	4.1	32
14	High-throughput interaction screens illuminate the role of c-di-AMP in cyanobacterial nighttime survival. PLoS Genetics, 2018, 14, e1007301.	3.5	39
15	Enhanced uptake of potassium or glycine betaine or export of cyclic-di-AMP restores osmoresistance in a high cyclic-di-AMP Lactococcus lactis mutant. PLoS Genetics, 2018, 14, e1007574.	3.5	61
16	<scp>c</scp> â€diâ€ <scp>AMP</scp> modulates <scp><i>L</i></scp> <i>isteria monocytogenes</i> central metabolism to regulate growth, antibiotic resistance and osmoregulation. Molecular Microbiology, 2017, 104, 212-233.	2.5	121
17	Sensing of Bacterial Cyclic Dinucleotides by the Oxidoreductase RECON Promotes NF-κB Activation and Shapes a Proinflammatory Antibacterial State. Immunity, 2017, 46, 433-445.	14.3	98
18	Replication-Transcription Conflicts Generate R-Loops that Orchestrate Bacterial Stress Survival and Pathogenesis. Cell, 2017, 170, 787-799.e18.	28.9	185

#	Article	IF	CITATIONS
19	Structural and functional studies of pyruvate carboxylase regulation by cyclic di-AMP in lactic acid bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7226-E7235.	7.1	44
20	Cyclic diâ€AMP targets the cystathionine betaâ€synthase domain of the osmolyte transporter OpuC. Molecular Microbiology, 2016, 102, 233-243.	2.5	89
21	Flying Under the Radar: Immune Evasion by Group B Streptococcus. Cell Host and Microbe, 2016, 20, 4-6.	11.0	2
22	Too much of a good thing: regulated depletion of c-di-AMP in the bacterial cytoplasm. Current Opinion in Microbiology, 2016, 30, 22-29.	5.1	80
23	An HD-domain phosphodiesterase mediates cooperative hydrolysis of c-di-AMP to affect bacterial growth and virulence. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E747-56.	7.1	171
24	STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Science Translational Medicine, 2015, 7, 283ra52.	12.4	543
25	Cutting Edge: Antimalarial Drugs Inhibit IFN-β Production through Blockade of Cyclic GMP-AMP Synthase–DNA Interaction. Journal of Immunology, 2015, 194, 4089-4093.	0.8	161
26	Molecular basis for the recognition of cyclicâ€diâ€ <scp>AMP</scp> by PstA, a P _{II} â€like signal transduction protein. MicrobiologyOpen, 2015, 4, 361-374.	3.0	40
27	The Cyclic Dinucleotide c-di-AMP Is an Allosteric Regulator of Metabolic Enzyme Function. Cell, 2014, 158, 1389-1401.	28.9	174
28	Cyclic di-AMP Is Critical for Listeria monocytogenes Growth, Cell Wall Homeostasis, and Establishment of Infection. MBio, 2013, 4, e00282-13.	4.1	166
29	The <i>N</i> -Ethyl- <i>N</i> -Nitrosourea-Induced <i>Goldenticket</i> Mouse Mutant Reveals an Essential Function of <i>Sting</i> in the <i>In Vivo</i> Interferon Response to <i>Listeria monocytogenes</i> and Cyclic Dinucleotides. Infection and Immunity, 2011, 79, 688-694.	2.2	492
30	c-di-AMP Secreted by Intracellular <i>Listeria monocytogenes</i> Activates a Host Type I Interferon Response. Science, 2010, 328, 1703-1705.	12.6	732