Jianming Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4612204/publications.pdf Version: 2024-02-01

HANMING WEN

#	Article	IF	CITATIONS
1	Study on a piezo-windmill for energy harvesting. Renewable Energy, 2016, 97, 210-217.	8.9	75
2	Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring. ACS Nano, 2021, 15, 16368-16375.	14.6	64
3	A Novel Piezoelectric Inchworm Actuator Driven by One Channel Direct Current Signal. IEEE Transactions on Industrial Electronics, 2021, 68, 2015-2023.	7.9	56
4	A Low-Frequency Structure-Control-Type Inertial Actuator Using Miniaturized Bimorph Piezoelectric Vibrators. IEEE Transactions on Industrial Electronics, 2019, 66, 6179-6188.	7.9	51
5	A self-adapting linear inchworm piezoelectric actuator based on a permanent magnets clamping structure. Mechanical Systems and Signal Processing, 2019, 132, 429-440.	8.0	50
6	Piezoelectric inertial rotary actuators based on asymmetrically clamping structures. Sensors and Actuators A: Physical, 2015, 223, 125-133.	4.1	46
7	Stretchable polyurethane composite foam triboelectric nanogenerator with tunable microwave absorption properties at elevated temperature. Nano Energy, 2021, 89, 106397.	16.0	37
8	A new inertial piezoelectric rotary actuator based on changing the normal pressure. Microsystem Technologies, 2013, 19, 277-283.	2.0	34
9	A novel linear inertial piezoelectric actuator based on asymmetric clamping materials. Sensors and Actuators A: Physical, 2020, 303, 111746.	4.1	34
10	An asymmetrical inertial piezoelectric rotary actuator with the bias unit. Sensors and Actuators A: Physical, 2016, 251, 179-187.	4.1	33
11	Flow rate self-sensing of a pump with double piezoelectric actuators. Mechanical Systems and Signal Processing, 2013, 41, 639-648.	8.0	29
12	A Novel Linear Walking Type Piezoelectric Actuator Based on the Parasitic Motion of Flexure Mechanisms. IEEE Access, 2019, 7, 25908-25914.	4.2	28
13	Piezoelectric inertial rotary actuator operating in two-step motion mode for eliminating backward motion. Applied Physics Letters, 2020, 117, .	3.3	26
14	A walking type piezoelectric actuator based on the parasitic motion of obliquely assembled PZT stacks. Smart Materials and Structures, 2021, 30, 085030.	3.5	26
15	Novel inertial piezoelectric actuator with high precision and stability based on a two fixed-end beam structure. Smart Materials and Structures, 2019, 28, 015030.	3.5	24
16	A linear inertial piezoelectric actuator using a single bimorph vibrator. Smart Materials and Structures, 2019, 28, 115020.	3.5	23
17	Performance comparison of two motion modes of a piezoelectric inertial linear motor and its potential application in cell manipulation. Mechanical Systems and Signal Processing, 2021, 157, 107743.	8.0	23
18	Performance evaluation and comparison of a serial–parallel hybrid multichamber piezoelectric pump. Journal of Intelligent Material Systems and Structures, 2018, 29, 1995-2007.	2.5	21

JIANMING WEN

#	Article	IF	CITATIONS
19	High-voltage output triboelectric nanogenerator with DC/AC optimal combination method. Nano Research, 2022, 15, 3239-3245.	10.4	20
20	A walking type piezoelectric actuator with two umbrella-shaped flexure mechanisms. Smart Materials and Structures, 2020, 29, 085014.	3.5	19
21	An Umbrella-Shaped Linear Piezoelectric Actuator Based on Stick-Slip Motion Principle. IEEE Access, 2019, 7, 157724-157729.	4.2	15
22	Design and Experimental Performance of a Novel Piezoelectric Inertial Actuator for Magnetorheological Fluid Control Using Permanent Magnet. IEEE Access, 2019, 7, 43573-43580.	4.2	15
23	A parasitic type piezoelectric actuator with an asymmetrical flexure hinge mechanism. Microsystem Technologies, 2020, 26, 917-924.	2.0	15
24	A two-fixed-end beam piezoelectric inertial actuator using electromagnet controlled magnetorheological fluid (MRF) for friction regulation. Smart Materials and Structures, 2020, 29, 065011.	3.5	15
25	Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy. Biosensors and Bioelectronics, 2019, 141, 111437.	10.1	14
26	An inertial piezoelectric hybrid actuator with large angular velocity and high resolution. Journal of Intelligent Material Systems and Structures, 2019, 30, 2099-2111.	2.5	14
27	An inertial piezoelectric rotary actuator characterized by the motion without rollback. Smart Materials and Structures, 2020, 29, 095015.	3.5	14
28	A linear piezoelectric actuator with the parasitic motion of equilateral triangle flexure mechanism. Smart Materials and Structures, 2020, 29, 015015.	3.5	12
29	A parasitic type piezoelectric actuator with the asymmetrical trapezoid flexure mechanism. Sensors and Actuators A: Physical, 2020, 309, 111907.	4.1	12
30	Quantitative Measurement and Evaluation of Red Blood Cell Aggregation in Normal Blood Based on a Modified Hanai Equation. Sensors, 2019, 19, 1095.	3.8	11
31	An inertial piezoelectric rotary actuator based on active friction regulation using magnetic force. Smart Materials and Structures, 2021, 30, 095014.	3.5	11
32	Piezoelectric stick-slip actuators with flexure hinge mechanisms: A review. Journal of Intelligent Material Systems and Structures, 2022, 33, 1879-1901.	2.5	10
33	Theoretical Modeling and Experimental Validation of Inertial Piezoelectric Actuators. IEEE Access, 2019, 7, 19881-19889.	4.2	8
34	Theoretical modeling and dynamic characteristics analysis of piezoelectric inertial actuator. International Journal of Mechanical Sciences, 2022, 225, 107363.	6.7	7
35	A Piezoelectric Linear Actuator Controlled by the Reversed-Phase Connection of Two Bimorphs. IEEE Access, 2021, 9, 45845-45852.	4.2	5
36	A Novel Bionic Piezoelectric Actuator Based on the Walrus Motion. Journal of Bionic Engineering, 2021, 18, 1117-1125.	5.0	5

JIANMING WEN

#	Article	IF	CITATIONS
37	An Air Velocity Monitor for Coal Mine Ventilation Based on Vortex-Induced Triboelectric Nanogenerator. Sensors, 2022, 22, 4832.	3.8	5
38	Feasibility study of a miniaturized magnetorhological grease timing trigger as safety and arming device for spinning projectile. Smart Materials and Structures, 2018, 27, 115030.	3.5	4
39	Quantitative Evaluation of Burn Injuries Based on Electrical Impedance Spectroscopy of Blood with a Seven-Parameter Equivalent Circuit. Sensors, 2021, 21, 1496.	3.8	4
40	An Integrated Piezoelectric Inertial Actuator Controlled by Cam Mechanisms. IEEE Access, 2021, 9, 152756-152764.	4.2	3
41	Principle, Design and Future of Inchworm Type Piezoelectric Actuators. , 0, , .		2
42	Quantitative Measurement of the Erythrocyte Sedimentation Based on Electrical Impedance Spectroscopy with Modified HANAI Theory and the Multi-frequency Parameter Xc. IEEE Sensors Journal, 2021, , 1-1.	4.7	2
43	An Improved Algorithm GVSPM-F for Electrical Impedance Tomography. IEEE Access, 2021, 9, 12592-12600.	4.2	1
44	An Optimization Algorithm H-GVSPM for Electrical Impedance Tomography. IEEE Sensors Journal, 2023, 23, 4518-4526.	4.7	1
45	Design, Characterisation and Prospect of Piezoelectric Microfluidic Technology. , 0, , .		0