Jianbin Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4611786/publications.pdf

Version: 2024-02-01

		101535	62593
105	6,657	36	80
papers	citations	h-index	g-index
107	107	107	7903
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Rosai-Dorfman disease of the lumbar region: A case report. Asian Journal of Surgery, 2022, 45, 481-482.	0.4	O
2	Mitochondria-targeted polymer-celastrol conjugate with enhanced anticancer efficacy. Journal of Controlled Release, 2022, 342, 122-133.	9.9	19
3	Multipotent Poly(Tertiary Amineâ€Oxide) Micelles for Efficient Cancer Drug Delivery. Advanced Science, 2022, 9, e2200173.	11.2	36
4	Mucus Penetrating and Cellâ€Binding Polyzwitterionic Micelles as Potent Oral Nanomedicine for Cancer Drug Delivery. Advanced Materials, 2022, 34, e2109189.	21.0	63
5	Nanoprodrug ratiometrically integrating autophagy inhibitor and genotoxic agent for treatment of triple-negative breast cancer. Biomaterials, 2022, 283, 121458.	11.4	13
6	Xanthogranulomatous appendicitis misdiagnosed as a malignant tumor: A case report. Asian Journal of Surgery, 2022, , .	0.4	1
7	A dual-channel fluorescent ratio probe with hypoxia targeting and hypoxia activation capacity for tumour imaging. Polymer Chemistry, 2022, 13, 3358-3366.	3.9	2
8	Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications. Angewandte Chemie - International Edition, 2022, 61, .	13.8	6
9	Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced Pyroptosis to Enhance Osteosarcoma Immunotherapy. ACS Nano, 2022, 16, 10327-10340.	14.6	51
10	Natural Polyphenols-Platinum Nanocomplexes Stimulate Immune System for Combination Cancer Therapy. Nano Letters, 2022, 22, 5615-5625.	9.1	21
11	Enzymatic drug release cascade from polymeric prodrug nanoassemblies enables targeted chemotherapy. Journal of Controlled Release, 2022, 348, 444-455.	9.9	6
12	Improving safety of cancer immunotherapy via delivery technology. Biomaterials, 2021, 265, 120407.	11.4	22
13	Polyphenol-cisplatin complexation forming core-shell nanoparticles with improved tumor accumulation and dual-responsive drug release for enhanced cancer chemotherapy. Journal of Controlled Release, 2021, 330, 992-1003.	9.9	24
14	Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives. Journal of Controlled Release, 2021, 330, 842-850.	9.9	9
15	Progress and perspective of microneedle system for anti-cancer drug delivery. Biomaterials, 2021, 264, 120410.	11.4	65
16	Molecular level precision and high molecular weight peptide dendrimers for drug-specific delivery. Journal of Materials Chemistry B, 2021, 9, 8594-8603.	5.8	7
17	Hydrogen sulfide-activatable prodrug-backboned block copolymer micelles for delivery of chemotherapeutics. Polymer Chemistry, 2021, 12, 4167-4174.	3.9	9
18	Glutathione-Responsive Magnetic Nanoparticles for Highly Sensitive Diagnosis of Liver Metastases. Nano Letters, 2021, 21, 2199-2206.	9.1	29

#	Article	IF	Citations
19	Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. Journal of Controlled Release, 2021, 330, 362-371.	9.9	31
20	Engineering molecular self-assembly of theranostic nanoprobes for dual-modal imaging-guided precise chemotherapy. Science China Chemistry, 2021, 64, 2045-2052.	8.2	10
21	Co-delivery of IOX1 and doxorubicin for antibody-independent cancer chemo-immunotherapy. Nature Communications, 2021, 12, 2425.	12.8	75
22	Enhanced tumour penetration and prolonged circulation in blood of polyzwitterion–drug conjugates with cell-membrane affinity. Nature Biomedical Engineering, 2021, 5, 1019-1037.	22.5	148
23	Doseâ€Independent Transfection of Hydrophobized Polyplexes. Advanced Materials, 2021, 33, e2102219.	21.0	23
24	Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle. Advanced Healthcare Materials, 2021, 10, e2100125.	7.6	11
25	An MRI-trackable therapeutic nanovaccine preventing cancer liver metastasis. Biomaterials, 2021, 274, 120893.	11.4	24
26	Polyplex nanovesicles of single strand oligonucleotides for efficient cytosolic delivery of biomacromolecules. Nano Today, 2021, 39, 101221.	11.9	11
27	Linear-Dendritic Polymer-Platinum Complexes Forming Well-Defined Nanocapsules for Acid-Responsive Drug Delivery. ACS Applied Materials & Samp; Interfaces, 2021, 13, 44028-44040.	8.0	9
28	Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell. Bioactive Materials, 2021, 6, 3568-3579.	15.6	25
29	Vanadyl nanocomplexes enhance photothermia-induced cancer immunotherapy to inhibit tumor metastasis and recurrence. Biomaterials, 2021, 277, 121130.	11.4	19
30	Self-assembly of hyaluronic acid-mediated tumor-targeting theranostic nanoparticles. Biomaterials Science, 2021, 9, 2221-2229.	5.4	16
31	Vanadium-based nanomaterials for cancer diagnosis and treatment. Biomedical Materials (Bristol), 2021, 16, 014101.	3.3	11
32	A tyrosinase-responsive tumor-specific cascade amplification drug release system for melanoma therapy. Journal of Materials Chemistry B, 2021, 9, 9406-9412.	5.8	4
33	Effect of Cationic Charge Density on Transcytosis of Polyethylenimine. Biomacromolecules, 2021, 22, 5139-5150.	5.4	20
34	Single-step formulation of levodopa-based nanotheranostics – strategy for ultra-sensitive high longitudinal relaxivity MRI guided switchable therapeutics. Biomaterials Science, 2020, 8, 1615-1621.	5.4	10
35	On/off switchable epicatechin-based ultra-sensitive MRI-visible nanotheranostics – see it and treat it. Biomaterials Science, 2020, 8, 5210-5218.	5.4	3
36	Autophagy-inhibiting polymer as an effective nonviral cancer gene therapy vector with inherent apoptosis-sensitizing ability. Biomaterials, 2020, 255, 120156.	11.4	18

#	Article	IF	Citations
37	Glutathione-Specific and Intracellularly Labile Polymeric Nanocarrier for Efficient and Safe Cancer Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2020, 12, 14825-14838.	8.0	20
38	Scar Tissue‶argeting Polymer Micelle for Spinal Cord Injury Treatment. Small, 2020, 16, e1906415.	10.0	21
39	Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102058.	3.3	12
40	Enzyme-activatable polymer–drug conjugate augments tumour penetration and treatment efficacy. Nature Nanotechnology, 2019, 14, 799-809.	31.5	555
41	[2]Pseudorotaxaneâ€Based Supramolecular Optical Indicator for the Visual Detection of Cellular Cyanide Excretion. Chemistry - A European Journal, 2019, 25, 14447-14453.	3.3	19
42	Wavelength‶unable Micro/Nanolasers. Advanced Optical Materials, 2019, 7, 1900275.	7.3	13
43	Hypoxia-targeting dendritic MRI contrast agent based on internally hydroxy dendrimer for tumor imaging. Biomaterials, 2019, 213, 119195.	11.4	34
44	Simple Analysis of the Computed Tomography Features of Gastric Schwannoma. Canadian Association of Radiologists Journal, 2019, 70, 246-253.	2.0	16
45	A MnO ₂ Nanoparticle-Dotted Hydrogel Promotes Spinal Cord Repair <i>via</i> Regulating Reactive Oxygen Species Microenvironment and Synergizing with Mesenchymal Stem Cells. ACS Nano, 2019, 13, 14283-14293.	14.6	166
46	Assemblies of Peptideâ€Cytotoxin Conjugates for Tumorâ€Homing Chemotherapy. Advanced Functional Materials, 2019, 29, 1807446.	14.9	44
47	SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. Journal of Drug Targeting, 2019, 27, 306-314.	4.4	13
48	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomaterials Science, 2018, 6, 1800-1817.	5.4	50
49	Zinc phthalocyanine encapsulated in polymer micelles as a potent photosensitizer for the photodynamic therapy of osteosarcoma. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1099-1110.	3.3	50
50	Synthesis of enzyme-responsive phosphoramidate dendrimers for cancer drug delivery. Polymer Chemistry, 2018, 9, 438-449.	3.9	26
51	Facile synthesis of semi-library of low charge density cationic polyesters from poly(alkylene maleate)s for efficient local gene delivery. Biomaterials, 2018, 178, 559-569.	11.4	50
52	Synthesis and evaluation of a paclitaxel-binding polymeric micelle for efficient breast cancer therapy. Science China Life Sciences, 2018, 61, 436-447.	4.9	37
53	Stabilized calcium phosphate hybrid nanocomposite using a benzoxaborole-containing polymer for pH-responsive siRNA delivery. Biomaterials Science, 2018, 6, 3178-3188.	5.4	28
54	Reactive Oxygen Species (ROS)-Responsive Charge-Switchable Nanocarriers for Gene Therapy of Metastatic Cancer. ACS Applied Materials & Samp; Interfaces, 2018, 10, 43352-43362.	8.0	37

#	Article	IF	Citations
55	Integration of Polymerization and Biomineralization as a Strategy to Facilely Synthesize Nanotheranostic Agents. ACS Nano, 2018, 12, 12682-12691.	14.6	45
56	Albumin-Stabilized Metal–Organic Nanoparticles for Effective Delivery of Metal Complex Anticancer Drugs. ACS Applied Materials & Drugs. ACS Applied Mate	8.0	40
57	The Blood Clearance Kinetics and Pathway of Polymeric Micelles in Cancer Drug Delivery. ACS Nano, 2018, 12, 6179-6192.	14.6	186
58	New path to treating pancreatic cancer: TRAIL gene delivery targeting the fibroblast-enriched tumor microenvironment. Journal of Controlled Release, 2018, 286, 254-263.	9.9	30
59	Intracellularly Disintegratable Polysulfoniums for Efficient Gene Delivery. Advanced Functional Materials, 2017, 27, 1606826.	14.9	85
60	Enhancing MRI of liver metastases with a zwitterionized biodegradable dendritic contrast agent. Biomaterials Science, 2017, 5, 1588-1595.	5.4	21
61	A Tumorâ€Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers. Advanced Materials, 2017, 29, 1702342.	21.0	278
62	A non-cytotoxic dendrimer with innate and potent anticancer and anti-metastatic activities. Nature Biomedical Engineering, $2017, 1, 745-757$.	22.5	74
63	Terminating the criminal collaboration in pancreatic cancer: Nanoparticle-based synergistic therapy for overcoming fibroblast-induced drug resistance. Biomaterials, 2017, 144, 105-118.	11.4	53
64	A facile synthesis of a theranostic nanoparticle by oxidation of dopamine-DTPA-Gd conjugates. Journal of Materials Chemistry B, 2017, 5, 8754-8760.	5.8	4
65	Dendrimers with the protocatechuic acid building block for anticancer drug delivery. Journal of Materials Chemistry B, 2016, 4, 5236-5245.	5.8	24
66	Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery. Advanced Materials, 2016, 28, 1743-1752.	21.0	288
67	Cancer Therapy: Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy (Adv. Mater. 48/2016). Advanced Materials, 2016, 28, 10578-10578.	21.0	2
68	Gene Delivery: Fusogenic Reactive Oxygen Species Triggered Chargeâ€Reversal Vector for Effective Gene Delivery (Adv. Mater. 9/2016). Advanced Materials, 2016, 28, 1714-1714.	21.0	11
69	Self-assembled and covalently linked capillary coating of diazoresin and cyclodextrin-derived dendrimer for analysis of proteins by capillary electrophoresis. Talanta, 2016, 152, 76-81.	5.5	28
70	Jumping the nuclear envelope barrier: Improving polyplex-mediated gene transfection efficiency by a selective CDK1 inhibitor RO-3306. Journal of Controlled Release, 2016, 234, 90-97.	9.9	12
71	Dual-channel NIR activatable theranostic prodrug for in vivo spatiotemporal tracking thiol-triggered chemotherapy. Chemical Science, 2016, 7, 4958-4965.	7.4	135
72	Facile synthesis of zwitterionic polyglycerol dendrimers with a \hat{l}^2 -cyclodextrin core as MRI contrast agent carriers. Polymer Chemistry, 2016, 7, 6354-6362.	3.9	23

#	Article	IF	Citations
73	Selfâ€Assembling Doxorubicin Prodrug Forming Nanoparticles and Effectively Reversing Drug Resistance In Vitro and In Vivo. Advanced Healthcare Materials, 2016, 5, 2517-2527.	7.6	22
74	Esteraseâ€Activated Chargeâ€Reversal Polymer for Fibroblastâ€Exempt Cancer Gene Therapy. Advanced Materials, 2016, 28, 10613-10622.	21.0	189
75	A porphyrin-based magnetic and fluorescent dual-modal nanoprobe for tumor imaging. Polymer, 2016, 88, 94-101.	3.8	16
76	Zwitterionic poly(lysine methacrylate) brush as an effective carrier for drug delivery. Journal of Controlled Release, 2015, 213, e27-e28.	9.9	3
77	A tumor-targeting MRI contrast agent based on hypoxia and pH-responsive nanogel. Journal of Controlled Release, 2015, 213, e104-e105.	9.9	0
78	In vitro inhibition of cancer stem cells by biguanidine-based macromolecular drug. Journal of Controlled Release, 2015, 213, e79.	9.9	0
79	Paclitaxel improved gene transfection efficiency through cell synchronization in SW480 cells. Journal of Controlled Release, 2015, 213, e83.	9.9	3
80	Amphiphilic block copolymer of SN38 prodrugs by atom transfer radical polymerization: Synthesis, kinetic studies and self-assembly. Journal of Controlled Release, 2015, 213, e124.	9.9	4
81	The Role of Micelle Size in Tumor Accumulation, Penetration, and Treatment. ACS Nano, 2015, 9, 7195-7206.	14.6	552
82	A novel brush-shaped copolymer for drug delivery. Journal of Controlled Release, 2015, 213, e120.	9.9	1
83	Synthesis and properties of zwitterionic dendrimer as drug and imaging probe carrier. Journal of Controlled Release, 2015, 213, e144-e145.	9.9	1
84	Amphiphilic drugs as surfactants to fabricate excipient-free stable nanodispersions of hydrophobic drugs for cancer chemotherapy. Journal of Controlled Release, 2015, 220, 175-179.	9.9	73
85	A theoretical hypothesis on co-precipitation of hydrophobic antitumor drug and amphiphilic block copolymers. Journal of Controlled Release, 2015, 213, e98-e99.	9.9	1
86	Synthesis and Properties of a Biodegradable Dendritic Magnetic Resonance Imaging Contrast Agent. Chinese Journal of Chemistry, 2014, 32, 91-96.	4.9	11
87	Facile synthesis of size-tunable stable nanoparticles via click reaction for cancer drug delivery. Science China Chemistry, 2014, 57, 633-644.	8.2	15
88	Jellyfish-Shaped Amphiphilic Dendrimers: Synthesis and Formation of Extremely Uniform Aggregates. Macromolecules, 2014, 47, 916-921.	4.8	32
89	Targeted biodegradable dendritic MRI contrast agent for enhanced tumor imaging. Journal of Controlled Release, 2013, 169, 239-245.	9.9	65
90	Macromolecular MRI contrast agents: Structures, properties and applications. Progress in Polymer Science, 2013, 38, 462-502.	24.7	130

#	Article	IF	CITATIONS
91	Constructing NIR silica–cyanine hybrid nanocomposite for bioimaging in vivo: a breakthrough in photo-stability and bright fluorescence with large Stokes shift. Chemical Science, 2013, 4, 1221.	7.4	76
92	Synthesis of degradable bifunctional dendritic polymers as versatile drug carriers. Polymer Chemistry, 2013, 4, 812-819.	3.9	15
93	Linear-dendritic drug conjugates forming long-circulating nanorods for cancer-drug delivery. Biomaterials, 2013, 34, 5722-5735.	11.4	157
94	Acid-Active Cell-Penetrating Peptides for in Vivo Tumor-Targeted Drug Delivery. Journal of the American Chemical Society, 2013, 135, 933-940.	13.7	303
95	Tumor Redox Heterogeneityâ€Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Advanced Materials, 2013, 25, 3670-3676.	21.0	355
96	Targeted acid-labile conjugates of norcantharidin for cancer chemotherapy. Journal of Materials Chemistry, 2012, 22, 15804.	6.7	21
97	Facile synthesis and in vivo evaluation of biodegradable dendritic MRI contrast agents. Journal of Materials Chemistry, 2012, 22, 14369.	6.7	32
98	Linear polyethyleneimine-based charge-reversal nanoparticles for nuclear-targeted drug delivery. Journal of Materials Chemistry, 2011, 21, 19114.	6.7	53
99	\hat{l}^2 -Cyclodextrin-based biodegradable dendrimers for drug delivery. Journal of Controlled Release, 2011, 152, e89-e90.	9.9	4
100	Charge-reversal polyamidoamine dendrimer for cascade nuclear drug delivery. Nanomedicine, 2010, 5, 1205-1217.	3.3	97
101	Prodrugs Forming High Drug Loading Multifunctional Nanocapsules for Intracellular Cancer Drug Delivery. Journal of the American Chemical Society, 2010, 132, 4259-4265.	13.7	532
102	Chargeâ€Reversal Drug Conjugate for Targeted Cancer Cell Nuclear Drug Delivery. Advanced Functional Materials, 2009, 19, 3580-3589.	14.9	291
103	Facile Synthesis of Polyester Dendrimers from Sequential Click Coupling of Asymmetrical Monomers. Journal of the American Chemical Society, 2009, 131, 14795-14803.	13.7	104
104	Isothermal Carbon Dioxide Sorption in Poly(ionic liquid)s. Industrial & Engineering Chemistry Research, 2009, 48, 9113-9118.	3.7	107
105	Molecularly Precise, Bright, Photostable, and Biocompatible Cyanine Nanodots as Alternatives to Quantum Dots for Biomedical Applications. Angewandte Chemie, 0, , .	2.0	0