Milena Holmgren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/461129/publications.pdf

Version: 2024-02-01

85 papers

7,206 citations

39 h-index 82 g-index

88 all docs 88 docs citations

88 times ranked 9684 citing authors

#	Article	IF	CITATIONS
1	Shrubs and Degraded Permafrost Pave the Way for Tree Establishment in Subarctic Peatlands. Ecosystems, 2021, 24, 370-383.	1.6	13
2	Species interactions across trophic levels mediate rainfall effects on dryland vegetation dynamics. Ecological Monographs, 2021, 91, e01441.	2.4	5
3	White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires. Ecosystems, 2021, 24, 1624-1637.	1.6	27
4	Topography and vegetation structure mediate drought impacts on the understory of the South American Atlantic Forest. Science of the Total Environment, 2021, 766, 144234.	3.9	9
5	Why forest fails to recover after repeated wildfires in Amazonian floodplains? Experimental evidence on tree recruitment limitation. Journal of Ecology, 2021, 109, 3473-3486.	1.9	13
6	Greening vs browning? Surface water cover mediates how tundra and boreal ecosystems respond to climate warming. Environmental Research Letters, 2021, 16, 104004.	2.2	6
7	Soil erosion as a resilience drain in disturbed tropical forests. Plant and Soil, 2020, 450, 11-25.	1.8	43
8	Cats singing in the dark? Spawning aggregations of sound-producing fish in Amazonian floodplain forests. Environmental Biology of Fishes, 2020, 103, 1265-1267.	0.4	4
9	Biased-corrected richness estimates for the Amazonian tree flora. Scientific Reports, 2020, 10, 10130.	1.6	53
10	Critical transitions in Chinese dunes during the past 12,000 years. Science Advances, 2020, 6, eaay8020.	4.7	38
11	Priority questions for biodiversity conservation in the Mediterranean biome: Heterogeneous perspectives across continents and stakeholders. Conservation Science and Practice, 2019, 1, e118.	0.9	11
12	Rarity of monodominance in hyperdiverse Amazonian forests. Scientific Reports, 2019, 9, 13822.	1.6	28
13	The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Scientific Reports, 2019, 9, 8828.	1.6	65
14	Forests expand as livestock pressure declines in subtropical South America. Ecology and Society, 2019, 24, .	1.0	7
15	Livestock Herbivory Shapes Fire Regimes and Vegetation Structure Across the Global Tropics. Ecosystems, 2019, 22, 1457-1465.	1.6	17
16	What Is Gender Equality in Science?. Trends in Ecology and Evolution, 2019, 34, 395-399.	4.2	12
17	A global climate niche for giant trees. Global Change Biology, 2018, 24, 2875-2883.	4.2	15
18	Remotely sensed canopy height reveals three pantropical ecosystem states: reply. Ecology, 2018, 99, 235-237.	1.5	2

#	Article	IF	CITATIONS
19	Forest-rainfall cascades buffer against drought across the Amazon. Nature Climate Change, 2018, 8, 539-543.	8.1	191
20	Resilience of tropical tree cover: The roles of climate, fire, and herbivory. Global Change Biology, 2018, 24, 5096-5109.	4.2	43
21	Fire forbids fifty-fifty forest. PLoS ONE, 2018, 13, e0191027.	1.1	42
22	Floodplains as an Achilles' heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4442-4446.	3.3	96
23	To Tree or Not to Tree: Cultural Views from Ancient Romans to Modern Ecologists. Ecosystems, 2017, 20, 62-68.	1.6	7
24	Reply to Schöngart et al.: Forest resilience variation across Amazonian floodplains. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8552-E8554.	3.3	0
25	Assessing effect of rainfall on rate of alien shrub expansion in a southern African savanna. African Journal of Range and Forage Science, 2017, 34, 39-44.	0.6	8
26	Rare, Intense, Big fires dominate the global tropics under drier conditions. Scientific Reports, 2017, 7, 14374.	1.6	30
27	Background invertebrate herbivory on dwarf birch (Betula glandulosa-nana complex) increases with temperature and precipitation across the tundra biome. Polar Biology, 2017, 40, 2265-2278.	0.5	47
28	When can positive interactions cause alternative stable states in ecosystems?. Functional Ecology, 2016, 30, 88-97.	1.7	139
29	Remotely sensed resilience of tropical forests. Nature Climate Change, 2016, 6, 1028-1031.	8.1	157
30	Trees improve forage quality and abundance in South American subtropical grasslands. Agriculture, Ecosystems and Environment, 2016, 232, 227-231.	2.5	22
31	Remotely sensed canopy height reveals three pantropical ecosystem states. Ecology, 2016, 97, 2518-2521.	1.5	47
32	Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. Journal of Applied Ecology, 2016, 53, 1597-1603.	1.9	44
33	Why are forests so scarce in subtropical South America? The shaping roles of climate, fire and livestock. Forest Ecology and Management, 2016, 363, 212-217.	1.4	35
34	Forest resilience and tipping points at different spatioâ€ŧemporal scales: approaches and challenges. Journal of Ecology, 2015, 103, 5-15.	1.9	224
35	A Changing Number of Alternative States in the Boreal Biome: Reproducibility Risks of Replacing Remote Sensing Products. PLoS ONE, 2015, 10, e0143014.	1.1	13
36	The mystery of missing trubs revisited: a response to McGlone et al. and Qian and Ricklefs. Trends in Ecology and Evolution, 2015, 30, 7-8.	4.2	6

#	Article	IF	CITATIONS
37	Positive shrub–tree interactions facilitate woody encroachment in boreal peatlands. Journal of Ecology, 2015, 103, 58-66.	1.9	63
38	Temperate forest and open landscapes are distinct alternative states as reflected in canopy height and tree cover. Trends in Ecology and Evolution, 2015, 30, 501-502.	4.2	8
39	Can we infer plant facilitation from remote sensing? a test across global drylands. Ecological Applications, 2015, 25, 1456-1462.	1.8	35
40	Local Facilitation May Cause Tipping Points on a Landscape Level Preceded by Early-Warning Indicators. American Naturalist, 2015, 186, E81-E90.	1.0	43
41	How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment. PLoS ONE, 2014, 9, e91748.	1.1	23
42	Do plant traits explain tree seedling survival in bogs?. Functional Ecology, 2014, 28, 283-290.	1.7	17
43	Pathways for resilience in Mediterranean cork oak land use systems. Annals of Forest Science, 2014, 71, 5-13.	0.8	40
44	Tipping points in tropical tree cover: linking theory to data. Global Change Biology, 2014, 20, 1016-1021.	4.2	80
45	Why trees and shrubs but rarely trubs?. Trends in Ecology and Evolution, 2014, 29, 433-434.	4.2	46
46	Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130198.	1.8	49
47	Seabird Nutrient Subsidies Benefit Non-Nitrogen Fixing Trees and Alter Species Composition in South American Coastal Dry Forests. PLoS ONE, 2014, 9, e86381.	1.1	18
48	Testing the stress gradient hypothesis in herbivore communities: facilitation peaks at intermediate nutrient levels. Ecology, 2013, 94, 1776-1784.	1.5	26
49	Effects of interannual climate variability on tropical tree cover. Nature Climate Change, 2013, 3, 755-758.	8.1	115
50	Persistent versus transient tree encroachment of temperate peat bogs: effects of climate warming and drought events. Global Change Biology, 2013, 19, 2240-2250.	4.2	70
51	Response to Comment on "Global Resilience of Tropical Forest and Savanna to Critical Transitions― Science, 2012, 336, 541-541.	6.0	11
52	Thresholds for boreal biome transitions. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21384-21389.	3.3	286
53	Resource use of specialist butterflies in agricultural landscapes: conservation lessons from the butterfly Phengaris (Maculinea) nausithous. Journal of Insect Conservation, 2012, 16, 921-930.	0.8	10
54	Nucleated regeneration of semiarid sclerophyllous forests close to remnant vegetation. Forest Ecology and Management, 2012, 274, 38-47.	1.4	23

#	Article	IF	CITATIONS
55	Non-linear effects of drought under shade: reconciling physiological and ecological models in plant communities. Oecologia, 2012, 169, 293-305.	0.9	139
56	Rainfall‶uned Management Facilitates Dry Forest Recovery. Restoration Ecology, 2012, 20, 33-42.	1.4	36
57	Shrub facilitation increases plant diversity along an arid scrubland–temperate rain forest boundary in <scp>S</scp> outh <scp>A</scp> merica. Journal of Vegetation Science, 2012, 23, 541-551.	1.1	51
58	Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science, 2011, 334, 232-235.	6.0	954
59	Persistent Acacia savannas replace Mediterranean sclerophyllous forests in South America. Forest Ecology and Management, 2011, 262, 1100-1108.	1.4	36
60	Stress-Driven Changes in the Strength of Facilitation on Tree Seedling Establishment in West African Woodlands. Biotropica, 2011, 43, 23-30.	0.8	12
61	Plant Functional Traits and the Distribution of West African Rain Forest Trees along the Rainfall Gradient. Biotropica, 2011, 43, 552-561.	0.8	52
62	Rapid root extension during water pulses enhances establishment of shrub seedlings in the Atacama Desert. Journal of Vegetation Science, 2011, 22, 120-129.	1.1	43
63	Effects of plant–soil feedback on tree seedling growth under arid conditions. Journal of Plant Ecology, 2011, 4, 193-200.	1.2	19
64	Strong facilitation in mild environments: the stress gradient hypothesis revisited. Journal of Ecology, 2010, 98, 1269-1275.	1.9	271
65	Oak Persistence in Mediterranean Landscapes: The Combined Role of Management, Topography, and Wildfires. Ecology and Society, 2010, 15, .	1.0	32
66	From Scientific Speculation to Effective Adaptive Management: A case study of the role of social marketing in promoting novel restoration strategies for degraded dry lands. Ecology and Society, 2010, 15, .	1.0	8
67	Are drought and wildfires turning Mediterranean cork oak forests into persistent shrublands?. Agroforestry Systems, 2009, 76, 389-400.	0.9	137
68	Pulse-Driven Loss of Top-Down Control: The Critical-Rate Hypothesis. Ecosystems, 2008, 11, 226-237.	1.6	103
69	Does a ruderal strategy dominate the endemic flora of the West African forests?. Journal of Biogeography, 2007, 34, 1100-1111.	1.4	30
70	Tree establishment along an ENSO experimental gradient in the Atacama desert. Journal of Vegetation Science, 2007, 18, 195-202.	1.1	48
71	Reduced herbivory during simulated ENSO rainy events increases native herbaceous plants in semiarid Chile. Plant Ecology, 2007, 191, 21-31.	0.7	12
72	Multiple Recruitment Limitation Causes Arrested Succession in Mediterranean Cork Oak Systems. Ecosystems, 2007, 10, 1220-1230.	1.6	156

#	Article	IF	CITATIONS
73	Extreme climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the Environment, 2006, 4, 87-95.	1.9	380
74	Herbivory and plant growth rate determine the success of El Niño Southern Oscillation-driven tree establishment in semiarid South America. Global Change Biology, 2006, 12, 2263-2271.	4.2	87
75	Synergy between small- and large-scale feedbacks of vegetation on the water cycle. Global Change Biology, 2005, 11, 1003-1012.	4.2	118
76	Science on the Rise in Developing Countries. PLoS Biology, 2004, 2, e1.	2.6	143
77	Exotic Herbivores as Drivers of Plant Invasion and Switch to Ecosystem Alternative States. Biological Invasions, 2002, 4, 25-33.	1.2	96
78	El Ni $\tilde{A}\pm o$ effects on the dynamics of terrestrial ecosystems. Trends in Ecology and Evolution, 2001, 16, 89-94.	4.2	409
79	El Ni $ ilde{A}\pm o$ as a Window of Opportunity for the Restoration of Degraded Arid Ecosystems. Ecosystems, 2001, 4, 151-159.	1.6	211
80	Combined effects of shade and drought on tulip poplar seedlings: trade-off in tolerance or facilitation?. Oikos, 2000, 90, 67-78.	1.2	117
81	Title is missing!. Plant Ecology, 2000, 147, 49-57.	0.7	59
82	Why have European herbs so successfully invaded the Chilean matorral? Effects of herbivory, soil nutrients, and fire. Journal of Arid Environments, 2000, 44, 197-211.	1.2	76
83	The significance of fire intensity in creating local patchiness in the Chilean matorral. Plant Ecology, 1998, 139, 259-264.	0.7	42
84	THE INTERPLAY OF FACILITATION AND COMPETITION IN PLANT COMMUNITIES. Ecology, 1997, 78, 1966-1975.	1.5	835
85	THE INTERPLAY OF FACILITATION AND COMPETITION IN PLANT COMMUNITIES. , 1997, 78, 1966.		3