Kangquan Yin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4611050/publications.pdf

Version: 2024-02-01

40 papers

2,087 citations

20 h-index

361296

289141 40 g-index

41 all docs

41 docs citations

times ranked

41

3022 citing authors

#	Article	IF	Citations
1	Progress and prospects in plant genome editing. Nature Plants, 2017, 3, 17107.	4.7	349
2	A geminivirus-based guide RNA delivery system for CRISPR/Cas9 mediated plant genome editing. Scientific Reports, 2015, 5, 14926.	1.6	179
3	Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleoproteins. Nature Protocols, 2018, 13, 413-430.	5.5	179
4	MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. Plant Cell, 2016, 28, 2866-2883.	3.1	166
5	A High-Throughput Screening System for Arabidopsis Transcription Factors and Its Application to Med25-Dependent Transcriptional Regulation. Molecular Plant, 2011, 4, 546-555.	3.9	135
6	<i>Arabidopsis</i> RAP2.2 plays an important role in plant resistance to <i>Botrytis cinerea</i> and ethylene responses. New Phytologist, 2012, 195, 450-460.	3.5	129
7	Phylogeography of <i>Quercus aquifolioides</i> provides novel insights into the Neogene history of a major global hotspot of plant diversity in southâ€west China. Journal of Biogeography, 2017, 44, 294-307.	1.4	113
8	Genome editing for plant disease resistance: applications and perspectives. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180322.	1.8	95
9	Virus-Based MicroRNA Silencing in Plants. Plant Physiology, 2014, 164, 36-47.	2.3	78
10	Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biology, 2019, 20, 145.	3.8	75
11	AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function of Arabidopsis shoot apical meristem. Cell Research, 2007, 17, 815-828.	5.7	72
12	Different Natural Selection Pressures on the atpF Gene in Evergreen Sclerophyllous and Deciduous Oak Species: Evidence from Comparative Analysis of the Complete Chloroplast Genome of Quercus aquifolioides with Other Oak Species. International Journal of Molecular Sciences, 2018, 19, 1042.	1.8	57
13	Engineer complete resistance to Cotton Leaf Curl Multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathology Research, 2019, 1, .	0.9	57
14	An improved method for chloroplast genome sequencing in non-model forest tree species. Tree Genetics and Genomes, 2015, 11 , 1 .	0.6	38
15	An efficient Potato virus X -based microRNA silencing in Nicotiana benthamiana. Scientific Reports, 2016, 6, 20573.	1.6	38
16	Exploiting the Transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae) to Develop and Characterize New EST-SSR Markers and Construct an EST-SSR Database. PLoS ONE, 2013, 8, e61337.	1.1	34
17	Postinvasive Bacterial Resistance Conferred by Open Stomata in Rice. Molecular Plant-Microbe Interactions, 2019, 32, 255-266.	1.4	33
18	Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Annals of Forest Science, 2018, 75, 1.	0.8	32

#	Article	IF	CITATIONS
19	Abscisic acid negatively regulates post-penetration resistance of Arabidopsis to the biotrophic powdery mildew fungus. Science China Life Sciences, 2017, 60, 891-901.	2.3	29
20	Recent Fragmentation May Not Alter Genetic Patterns in Endangered Long-Lived Species: Evidence From Taxus cuspidata. Frontiers in Plant Science, 2018, 9, 1571.	1.7	24
21	Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites. Science China Life Sciences, 2020, 63, 1918-1927.	2.3	23
22	Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant Physiology and Biochemistry, 2007, 45, 87-94.	2.8	20
23	Genome-Wide Characterization of miRNAs Involved in N Gene-Mediated Immunity in Response to Tobacco Mosaic Virus in Nicotiana benthamiana. Evolutionary Bioinformatics, 2015, 11s1, EBO.S20744.	0.6	20
24	Complete chloroplast genome of the Oriental white oak: <i>Quercus aliena</i> Blume. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2016, 27, 2802-2804.	0.7	20
25	Species Boundaries Between Three Sympatric Oak Species: Quercus aliena, Q. dentata, and Q. variabilis at the Northern Edge of Their Distribution in China. Frontiers in Plant Science, 2018, 9, 414.	1.7	20
26	Landscape Genomics in Tree Conservation Under a Changing Environment. Frontiers in Plant Science, 2022, 13, 822217.	1.7	14
27	Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & amp; E.H. Wilson. Annals of Forest Science, 2021, 78, 1.	0.8	9
28	Soil Bacterial Characteristics Under Four Habitats with Different Vegetation Communities on the Qinghai-Tibetan Plateau. Wetlands, 2021, 41, 1.	0.7	8
29	The complete chloroplast genome of the dove tree Davidia involucrata (Nyssaceae), a relict species endemic to China. Conservation Genetics Resources, 2016, 8, 263-266.	0.4	6
30	The complete chloroplast genome of Cathay Poplar: Poplus cathayana Rehder. Mitochondrial DNA Part B: Resources, 2016, 1, 86-87.	0.2	5
31	Chloroplast phylogenomic analyses maternal relationships among sections in the genus Populus. Biochemical Systematics and Ecology, 2017, 70, 132-140.	0.6	5
32	Protein Domain Analysis of Genomic Sequence Data Reveals Regulation of LRR Related Domains in Plant Transpiration in Ficus. PLoS ONE, 2014, 9, e108719.	1.1	4
33	Comparative Genomic Analysis Reveals the Mechanism Driving the Diversification of Plastomic Structure in Taxaceae Species. Frontiers in Genetics, 2019, 10, 1295.	1.1	4
34	Development of microsatellite markers for <i>Fargesia denudata</i> (Poaceae), the stapleâ€food bamboo of the giant panda. Applications in Plant Sciences, 2016, 4, 1600005.	0.8	3
35	Application of DNA barcodes for testing hypotheses on the role of trait conservatism and adaptive plasticity in Acer L. section Palmata Pax (Sapindaceae). Revista Brasileira De Botanica, 2017, 40, 993-1005.	0.5	3
36	Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule. Plant Biotechnology Journal, 2018, 16, 472-481.	4.1	3

#	Article	IF	CITATIONS
37	The complete chloroplast genome of <i>Quercus fabri</i> (Fagaceae) from China. Mitochondrial DNA Part B: Resources, 2019, 4, 2857-2858.	0.2	3
38	Use of Geminivirus for Delivery of CRISPR/Cas9 Components to Tobacco by Agro-infiltration. Bio-protocol, 2017, 7, e2209.	0.2	3
39	The complete chloroplast genome of a staple food of the giant panda, Fargesia denudata (Poaceae). Conservation Genetics Resources, 2017, 9, 561-563.	0.4	1
40	The complete chloroplast genome of Siebold's magnolia: Magnolia sieboldii (Magnoliaceae), a highly ornamental species with attractive aromatic flowers. Conservation Genetics Resources, 2019, 11, 299-301.	0.4	1