Jaewon Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4610312/publications.pdf

Version: 2024-02-01

51	3,190	172443	189881
papers	citations	h-index	g-index
54	54	54	3262
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	A Highâ€Performance Solutionâ€Processed Organic Photodetector for Nearâ€Infrared Sensing. Advanced Materials, 2020, 32, e1906027.	21.0	270
2	The role of charge recombination to triplet excitons in organic solar cells. Nature, 2021, 597, 666-671.	27.8	225
3	A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells. Advanced Materials, 2016, 28, 69-76.	21.0	205
4	A Narrowâ€Bandgap nâ€Type Polymer with an Acceptor–Acceptor Backbone Enabling Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2020, 32, e2004183.	21.0	184
5	Side-Chain Engineering of Nonfullerene Acceptors for Near-Infrared Organic Photodetectors and Photovoltaics. ACS Energy Letters, 2019, 4, 1401-1409.	17.4	182
6	Additive-induced miscibility regulation and hierarchical morphology enable 17.5% binary organic solar cells. Energy and Environmental Science, 2021, 14, 3044-3052.	30.8	170
7	Solutionâ€Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance. Advanced Materials, 2019, 31, e1900904.	21.0	168
8	Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy and Environmental Science, 2017, 10, 247-257.	30.8	131
9	Synthetic Tailoring of Solid-State Order in Diketopyrrolopyrrole-Based Copolymers via Intramolecular Noncovalent Interactions. Chemistry of Materials, 2015, 27, 829-838.	6.7	125
10	Bandgap Narrowing in Nonâ€Fullerene Acceptors: Single Atom Substitution Leads to High Optoelectronic Response Beyond 1000 nm. Advanced Energy Materials, 2018, 8, 1801212.	19.5	125
11	Quantifying the Nongeminate Recombination Dynamics in Nonfullerene Bulk Heterojunction Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901438.	19.5	115
12	Design of Nonfullerene Acceptors with Nearâ€Infrared Light Absorption Capabilities. Advanced Energy Materials, 2018, 8, 1801209.	19.5	95
13	Control of the molecular geometry and nanoscale morphology in perylene diimide based bulk heterojunctions enables an efficient non-fullerene organic solar cell. Journal of Materials Chemistry A, 2017, 5, 210-220.	10.3	78
14	Unifying Charge Generation, Recombination, and Extraction in Lowâ€Offset Nonâ€Fullerene Acceptor Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001203.	19.5	74
15	Two-Dimensionally Extended π-Conjugation of Donor–Acceptor Copolymers via Oligothienyl Side Chains for Efficient Polymer Solar Cells. Macromolecules, 2015, 48, 1723-1735.	4.8	69
16	Donor–Acceptor Alternating Copolymer Nanowires for Highly Efficient Organic Solar Cells. Advanced Materials, 2014, 26, 6706-6714.	21.0	68
17	Sideâ€Chain Engineering for Fineâ€Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells. Advanced Energy Materials, 2014, 4, 1400087.	19.5	67
18	Critical factors governing vertical phase separation in polymer–PCBM blend films for organic solar cells. Journal of Materials Chemistry A, 2016, 4, 15522-15535.	10.3	64

#	Article	IF	Citations
19	Understanding and Countering Illumination-Sensitive Dark Current: Toward Organic Photodetectors with Reliable High Detectivity. ACS Nano, 2021, 15, 1753-1763.	14.6	52
20	Design of narrow bandgap non-fullerene acceptors for photovoltaic applications and investigation of non-geminate recombination dynamics. Journal of Materials Chemistry C, 2020, 8, 15175-15182.	5.5	50
21	Naphthodithiophene-Based Conjugated Polymer with Linear, Planar Backbone Conformation and Strong Intermolecular Packing for Efficient Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21159-21169.	8.0	43
22	Medium-Bandgap Conjugated Polymers Containing Fused Dithienobenzochalcogenadiazoles: Chalcogen Atom Effects on Organic Photovoltaics. Macromolecules, 2016, 49, 9358-9370.	4.8	40
23	Bandgap Tailored Nonfullerene Acceptors for Low-Energy-Loss Near-Infrared Organic Photovoltaics. , 2020, 2, 395-402.		37
24	Positional effects of fluorination in conjugated side chains on photovoltaic properties of donor–acceptor copolymers. Chemical Communications, 2017, 53, 1176-1179.	4.1	36
25	A Novel Thermally Reversible Solubleâ€Insoluble Conjugated Polymer with Semiâ€Fluorinated Alkyl Chains: Enhanced Transistor Performance by Fluorophobic Selfâ€Organization and Orthogonal Hydrophobic Patterning. Advanced Materials, 2013, 25, 6416-6422.	21.0	34
26	Energy Level Engineering of Donor Polymers via Inductive and Resonance Effects for Polymer Solar Cells: Effects of Cyano and Alkoxy Substituents. Chemistry of Materials, 2015, 27, 6858-6868.	6.7	32
27	A Simple Approach for Unraveling Optoelectronic Processes in Organic Solar Cells under Shortâ€Circuit Conditions. Advanced Energy Materials, 2021, 11, 2002760.	19.5	32
28	Synthesis and photovoltaic properties of benzo[1,2-b:4,5-b′]dithiophene derivative-based polymers with deep HOMO levels. Journal of Materials Chemistry, 2012, 22, 17709.	6.7	31
29	Propeller-shaped small molecule acceptors containing a 9,9′-spirobifluorene core with imide-linked perylene diimides for non-fullerene organic solar cells. Journal of Materials Chemistry C, 2016, 4, 10610-10615.	5.5	30
30	Revealing the structural effects of non-fullerene acceptors on the performances of ternary organic photovoltaics under indoor light conditions. Nano Energy, 2020, 75, 104934.	16.0	30
31	Large-gain low-voltage and wideband organic photodetectors <i>via</i> unbalanced charge transport. Materials Horizons, 2020, 7, 3234-3241.	12.2	29
32	Nonfullerene/Fullerene Acceptor Blend with a Tunable Energy State for High-Performance Ternary Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2018, 10, 25570-25579.	8.0	27
33	Effect of Palladiumâ€Tetrakis(Triphenylphosphine) Catalyst Traces on Charge Recombination and Extraction in Nonâ€Fullereneâ€based Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2009363.	14.9	27
34	Unraveling the efficiency-limiting morphological issues of the perylene diimide-based non-fullerene organic solar cells. Scientific Reports, 2018, 8, 2849.	3.3	25
35	Carrierâ€Selectivityâ€Dependent Charge Recombination Dynamics in Organic Photovoltaic Cells with a Ferroelectric Blend Interlayer. Advanced Energy Materials, 2015, 5, 1500802.	19.5	23
36	Synergistic effects of an alkylthieno[3,2-b]thiophene π-bridging backbone extension on the photovoltaic performances of donor–acceptor copolymers. Journal of Materials Chemistry A, 2017, 5, 10269-10279.	10.3	23

#	Article	IF	CITATIONS
37	Temperature and Light Modulated Openâ€Circuit Voltage in Nonfullerene Organic Solar Cells with Different Effective Bandgaps. Advanced Energy Materials, 2021, 11, 2003091.	19.5	23
38	Hall of Fame Article: Solution-Processed Semitransparent Organic Photovoltaics: From Molecular Design to Device Performance (Adv. Mater. 30/2019). Advanced Materials, 2019, 31, 1970219.	21.0	21
39	Impact of side-chain fluorination on photovoltaic properties: fine tuning of the microstructure and energy levels of 2D-conjugated copolymers. Journal of Materials Chemistry A, 2017, 5, 16702-16711.	10.3	20
40	Design of Nonfused Nonfullerene Acceptors Based on Pyrido- or Benzothiadiazole Cores for Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 2202-2210.	5.1	14
41	Effects of conformational symmetry in conjugated side chains on intermolecular packing of conjugated polymers and photovoltaic properties. RSC Advances, 2015, 5, 106044-106052.	3.6	11
42	Difluorinated Oligothiophenes for Highâ€Efficiency Allâ€Smallâ€Molecule Organic Solar Cells: Positional Isomeric Effect of Fluorine Substitution on Performance Variations. Solar RrI, 2020, 4, 1900472.	5.8	11
43	Intrachain Delocalization Effect of Charge Carriers on the Charge-Transfer State Dynamics in Organic Solar Cells. Journal of Physical Chemistry C, 2022, 126, 3171-3179.	3.1	10
44	Excitation Intensity Dependent Carrier Dynamics of Chalcogen Heteroatoms in Medium-Bandgap Polymer Solar Cells. Scientific Reports, 2017, 7, 836.	3.3	5
45	Highly transparent antireflection coatings on fullerene-free organic solar cells using polymeric nanoparticles. Thin Solid Films, 2022, 742, 139043.	1.8	5
46	Microwave-Assisted Synthesis of Non-Fullerene Acceptors and Their Photovoltaic Studies for High-Performance Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 9816-9826.	5.1	3
47	Solar Cells: Donor-Acceptor Alternating Copolymer Nanowires for Highly Efficient Organic Solar Cells (Adv. Mater. 39/2014). Advanced Materials, 2014, 26, 6662-6662.	21.0	2
48	Polymer Solar Cells: Side-Chain Engineering for Fine-Tuning of Energy Levels and Nanoscale Morphology in Polymer Solar Cells (Adv. Energy Mater. 10/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	19.5	2
49	Competitive role between conformational lock and steric hindrance in D-A copolymers containing 1,4-bis(thieno[3,2-b]thiophen-2-yl)benzene unit. Dyes and Pigments, 2020, 181, 108540.	3.7	1
50	Organic Solar Cells: Carrierâ€Selectivityâ€Dependent Charge Recombination Dynamics in Organic Photovoltaic Cells with a Ferroelectric Blend Interlayer (Adv. Energy Mater. 19/2015). Advanced Energy Materials, 2015, 5, .	19.5	0
51	Structure–property relationships of diketopyrrolopyrrole- and thienoacene-based A–D–A type hole transport materials for efficient perovskite solar cells. New Journal of Chemistry, 0, , .	2.8	0