
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4610134/publications.pdf Version: 2024-02-01

CAMIEL LE BOON

#	Article	IF	CITATIONS
1	Non-syndromic retinitis pigmentosa. Progress in Retinal and Eye Research, 2018, 66, 157-186.	15.5	565
2	The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Progress in Retinal and Eye Research, 2009, 28, 187-205.	15.5	290
3	Central serous chorioretinopathy: Towards an evidence-based treatment guideline. Progress in Retinal and Eye Research, 2019, 73, 100770.	15.5	276
4	Association of Axial Length With Risk of Uncorrectable Visual Impairment for Europeans With Myopia. JAMA Ophthalmology, 2016, 134, 1355.	2.5	211
5	Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy. Ophthalmology, 2018, 125, 1547-1555.	5.2	209
6	The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Progress in Retinal and Eye Research, 2008, 27, 213-235.	15.5	200
7	Clinical and Genetic Characteristics of Late-onset Stargardt's Disease. Ophthalmology, 2012, 119, 1199-1210.	5.2	162
8	A functional variant in the CFI gene confers a high risk of age-related macular degeneration. Nature Genetics, 2013, 45, 813-817.	21.4	162
9	OCT Angiography Compared to Fluorescein and Indocyanine Green Angiography in Chronic Central Serous Chorioretinopathy. , 2015, 56, 5229.		137
10	Venous overload choroidopathy: A hypothetical framework for central serous chorioretinopathy and allied disorders. Progress in Retinal and Eye Research, 2022, 86, 100973.	15.5	133
11	Risk Alleles in CFH and ARMS2 Are Independently Associated with Systemic Complement Activation in Age-related Macular Degeneration. Ophthalmology, 2012, 119, 339-346.	5.2	127
12	Early-Onset Stargardt Disease. Ophthalmology, 2015, 122, 335-344.	5.2	127
13	A rare nonsynonymous sequence variant in C3 is associated with high risk of age-related macular degeneration. Nature Genetics, 2013, 45, 1371-1374.	21.4	125
14	Central serous chorioretinopathy: An update on risk factors, pathophysiology and imaging modalities. Progress in Retinal and Eye Research, 2020, 79, 100865.	15.5	125
15	Clinical Course, Genetic Etiology, and Visual Outcome in Cone and Cone–Rod Dystrophy. Ophthalmology, 2012, 119, 819-826.	5.2	115
16	Autosomal Recessive Bestrophinopathy. Ophthalmology, 2013, 120, 809-820.	5.2	115
17	Mutations in the peripherin/RDS gene are an important cause of multifocal pattern dystrophy simulating STGD1/fundus flavimaculatus. British Journal of Ophthalmology, 2007, 91, 1504-1511.	3.9	110
18	Chronic Central Serous Chorioretinopathy Is Associated with Genetic Variants Implicated in Age-Related Macular Degeneration. Ophthalmology, 2015, 122, 562-570.	5.2	107

CAMIEL J F BOON

#	Article	IF	CITATIONS
19	Diagnostic exome sequencing in 266 Dutch patients with visual impairment. European Journal of Human Genetics, 2017, 25, 591-599.	2.8	104
20	Chronic central serous chorioretinopathy: long-term follow-up and vision-related quality of life. Clinical Ophthalmology, 2017, Volume 11, 39-46.	1.8	102
21	Basal Laminar Drusen Caused by Compound Heterozygous Variants in the CFH Gene. American Journal of Human Genetics, 2008, 82, 516-523.	6.2	99
22	Central Areolar Choroidal Dystrophy. Ophthalmology, 2009, 116, 771-782.e1.	5.2	94
23	Adult-onset foveomacular vitelliform dystrophy: A fresh perspective. Progress in Retinal and Eye Research, 2015, 47, 64-85.	15.5	93
24	Resolving the dark matter of ABCA4 for 1054 Stargardt disease probands through integrated genomics and transcriptomics. Genetics in Medicine, 2020, 22, 1235-1246.	2.4	92
25	Clinical and Genetic Heterogeneity in Multifocal Vitelliform Dystrophy. JAMA Ophthalmology, 2007, 125, 1100.	2.4	88
26	Increased High-Density Lipoprotein Levels Associated with Age-Related Macular Degeneration. Ophthalmology, 2019, 126, 393-406.	5.2	88
27	Pars plana vitrectomy for disturbing primary vitreous floaters: clinical outcome and patient satisfaction. Graefe's Archive for Clinical and Experimental Ophthalmology, 2013, 251, 1373-1382.	1.9	78
28	Increased Fundus Autofluorescence Related to Outer Retinal Disruption. JAMA Ophthalmology, 2013, 131, 1645.	2.5	78
29	Erosive Vitreoretinopathy and Wagner Disease Are Caused by Intronic Mutations inCSPG2/VersicanThat Result in an Imbalance of Splice Variants. , 2006, 47, 3565.		77
30	On the origin of proteins in human drusen: The meet, greet and stick hypothesis. Progress in Retinal and Eye Research, 2019, 70, 55-84.	15.5	77
31	The spectrum of phenotypes caused by variants in the CFH gene. Molecular Immunology, 2009, 46, 1573-1594.	2.2	76
32	Genotypic and Phenotypic Characteristics of CRB1 -Associated Retinal Dystrophies. Ophthalmology, 2017, 124, 884-895.	5.2	75
33	Human iPSC-Derived Retinas Recapitulate the Fetal CRB1 CRB2 Complex Formation and Demonstrate that Photoreceptors and Müller Glia Are Targets of AAV5. Stem Cell Reports, 2019, 12, 906-919.	4.8	75
34	Macular dystrophies mimicking age-related macular degeneration. Progress in Retinal and Eye Research, 2014, 39, 23-57.	15.5	74
35	Fundus autofluorescence imaging of retinal dystrophies. Vision Research, 2008, 48, 2569-2577.	1.4	73
36	Serous Retinopathy Associated with Mitogen-Activated Protein Kinase Kinase Inhibition (Binimetinib) for Metastatic Cutaneous and Uveal Melanoma. Ophthalmology, 2015, 122, 1907-1916.	5.2	69

#	Article	IF	CITATIONS
37	The Common <i>ABCA4</i> Variant p.Asn1868lle Shows Nonpenetrance and Variable Expression of Stargardt Disease When Present in <i>trans</i> With Severe Variants. , 2018, 59, 3220.		67
38	Mitochondrial Retinal Dystrophy Associated with the m.3243A>G Mutation. Ophthalmology, 2013, 120, 2684-2696.	5.2	65
39	CLINICAL AND MOLECULAR GENETIC ANALYSIS OF BEST VITELLIFORM MACULAR DYSTROPHY. Retina, 2009, 29, 835-847.	1.7	62
40	Systemic and Ocular Determinants of Peripapillary Retinal Nerve Fiber Layer Thickness Measurements in the European Eye Epidemiology (E3) Population. Ophthalmology, 2018, 125, 1526-1536.	5.2	62
41	Central Areolar Choroidal Dystrophy (CACD) and Age-Related Macular Degeneration (AMD): Differentiating Characteristics in Multimodal Imaging. , 2011, 52, 8908.		61
42	Association of a Haplotype in the <i>NR3C2</i> Gene, Encoding the Mineralocorticoid Receptor, With Chronic Central Serous Chorioretinopathy. JAMA Ophthalmology, 2017, 135, 446.	2.5	61
43	Foveal Sparing in Stargardt Disease. , 2014, 55, 7467.		60
44	Special Issue Introduction: Inherited Retinal Disease: Novel Candidate Genes, Genotype–Phenotype Correlations, and Inheritance Models. Genes, 2018, 9, 215.	2.4	58
45	Subthreshold Micropulse Laser (577 nm) Treatment in Chronic Central Serous Chorioretinopathy. Ophthalmologica, 2015, 234, 189-194.	1.9	57
46	CLINICAL AND GENETIC CHARACTERISTICS OF MALE PATIENTS WITH RPGR-ASSOCIATED RETINAL DYSTROPHIES. Retina, 2019, 39, 1186-1199.	1.7	56
47	Cuticular drusen: Stars in the sky. Progress in Retinal and Eye Research, 2013, 37, 90-113.	15.5	53
48	Rare Genetic Variants Associated With Development of Age-Related Macular Degeneration. JAMA Ophthalmology, 2016, 134, 287.	2.5	52
49	Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity. Nature Genetics, 2016, 48, 144-151.	21.4	50
50	Role of the Complement System in Chronic Central Serous Chorioretinopathy. JAMA Ophthalmology, 2018, 136, 1128.	2.5	49
51	Discrepancy in current central serous chorioretinopathyÂclassification. British Journal of Ophthalmology, 2019, 103, 737-742.	3.9	45
52	Focal and Diffuse Chronic Central Serous Chorioretinopathy Treated With Half-Dose Photodynamic Therapy or Subthreshold Micropulse Laser: PLACE Trial Report No. 3. American Journal of Ophthalmology, 2019, 205, 1-10.	3.3	44
53	Half-Dose Photodynamic Therapy Versus Eplerenone in Chronic Central Serous Chorioretinopathy (SPECTRA): A Randomized Controlled Trial. American Journal of Ophthalmology, 2022, 233, 101-110.	3.3	44
54	Clinical characteristics and long-term visual outcome of severe phenotypes of chronic central serous chorioretinopathy. Clinical Ophthalmology, 2018, Volume 12, 1061-1070.	1.8	42

#	Article	IF	CITATIONS
55	Clinical impact of the worldwide shortage of verteporfin (Visudyne®) on ophthalmic care. Acta Ophthalmologica, 2022, 100, .	1.1	42
56	Comparing half-dose photodynamic therapy with high-density subthreshold micropulse laser treatment in patients with chronic central serous chorioretinopathy (the PLACE trial): study protocol for a randomized controlled trial. Trials, 2015, 16, 419.	1.6	41
57	The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the <i>RPGR</i> Gene. , 2018, 59, 4123.		41
58	The use of eplerenone in therapyâ€resistant chronic central serous chorioretinopathy. Acta Ophthalmologica, 2014, 92, e488-90.	1.1	39
59	Genomic Copy Number Variations of the Complement Component <i>C4B</i> Gene Are Associated With Chronic Central Serous Chorioretinopathy. , 2015, 56, 5608.		39
60	Genome-wide association analyses identify two susceptibility loci for pachychoroid disease central serous chorioretinopathy. Communications Biology, 2019, 2, 468.	4.4	39
61	Serous business: Delineating the broad spectrum of diseases with subretinal fluid in the macula. Progress in Retinal and Eye Research, 2021, 84, 100955.	15.5	37
62	Choroidal Anatomic Alterations After Photodynamic Therapy for Chronic Central Serous Chorioretinopathy: A Multicenter Study. American Journal of Ophthalmology, 2020, 217, 104-113.	3.3	36
63	Near-infrared reflectance imaging of neovascular age-related macular degeneration. Graefe's Archive for Clinical and Experimental Ophthalmology, 2009, 247, 1625-1633.	1.9	35
64	Photodynamic Therapy for Chorioretinal Diseases: A Practical Approach. Ophthalmology and Therapy, 2020, 9, 329-342.	2.3	35
65	Clinical Evaluation of 3 Families With Basal Laminar Drusen Caused by Novel Mutations in the Complement Factor H Gene. JAMA Ophthalmology, 2012, 130, 1038-47.	2.4	34
66	Preferred practice pattern in central serous chorioretinopathy. British Journal of Ophthalmology, 2017, 101, 587-590.	3.9	34
67	Course of Visual Decline in Relation to the Best1 Genotype in Vitelliform Macular Dystrophy. Ophthalmology, 2010, 117, 1415-1422.	5.2	32
68	Whole Exome Sequencing in Patients with the Cuticular Drusen Subtype of Age-Related Macular Degeneration. PLoS ONE, 2016, 11, e0152047.	2.5	31
69	Loss of MAPK Pathway Activation in Post-Mitotic Retinal Cells as Mechanism in MEK Inhibition-Related Retinopathy in Cancer Patients. Medicine (United States), 2016, 95, e3457.	1.0	30
70	Clinical spectrum of severe chronic central serous chorioretinopathy and outcome of photodynamic therapy. Clinical Ophthalmology, 2018, Volume 12, 2167-2176.	1.8	29
71	Central serous chorioretinopathy in primary hyperaldosteronism. Graefe's Archive for Clinical and Experimental Ophthalmology, 2016, 254, 2033-2042.	1.9	28
72	Correlation between redefined optical coherence tomography parameters and best-corrected visual acuity in non-resolving central serous chorioretinopathy treated with half-dose photodynamic therapy. PLoS ONE, 2018, 13, e0202549.	2.5	28

#	Article	IF	CITATIONS
73	Chronic Central Serous Chorioretinopathy as a Presenting Symptom of Cushing Syndrome. European Journal of Ophthalmology, 2016, 26, 442-448.	1.3	27
74	Reflux after Intravitreal Injection of Bevacizumab. Ophthalmology, 2008, 115, 1270.	5.2	26
75	Halfâ€dose photodynamic therapy followed by diode micropulse laser therapy as treatment for chronic central serous chorioretinopathy: evaluation of a prospective treatment protocol. Acta Ophthalmologica, 2016, 94, 187-197.	1.1	26
76	BESTROPHINOPATHY. Retina, 2016, 36, 1586-1595.	1.7	25
77	Clinical characteristics of chronic central serous chorioretinopathy patients with insufficient response to reduced-settings photodynamic therapy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2018, 256, 1395-1402.	1.9	25
78	Foveal Sparing in Central Retinal Dystrophies. , 2019, 60, 3456.		24
79	Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the <i>RP1</i> Gene: Extending the <i>RP1</i> Disease Spectrum. , 2019, 60, 1192.		23
80	RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features. International Journal of Molecular Sciences, 2020, 21, 835.	4.1	23
81	The Role of Small Molecules and Their Effect on the Molecular Mechanisms of Early Retinal Organoid Development. International Journal of Molecular Sciences, 2021, 22, 7081.	4.1	23
82	Cushing's Syndrome and Hypothalamic–Pituitary–Adrenal Axis Hyperactivity in Chronic Central Serous Chorioretinopathy. Frontiers in Endocrinology, 2018, 9, 39.	3.5	22
83	Elevated Steroid Hormone Levels in Active Chronic Central Serous Chorioretinopathy. , 2019, 60, 3407.		22
84	Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. Acta Ophthalmologica, 2022, 100, 946-959.	1.1	22
85	The Ocular Phenotype in Primary Hyperoxaluria Type 1. American Journal of Ophthalmology, 2019, 206, 184-191.	3.3	21
86	FAMILIAL CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2019, 39, 398-407.	1.7	21
87	Genetic, Behavioral, and Sociodemographic Risk Factors for Second Eye Progression in Age-Related Macular Degeneration. , 2012, 53, 5846.		20
88	The Decreasing Prevalence of Nonrefractive Visual Impairment in Older Europeans. Ophthalmology, 2018, 125, 1149-1159.	5.2	20
89	Retinal Dystrophies and the Road to Treatment: Clinical Requirements and Considerations. Asia-Pacific Journal of Ophthalmology, 2020, 9, 159-179.	2.5	20
90	Dominant Cystoid Macular Dystrophy. Ophthalmology, 2015, 122, 180-191.	5.2	19

CAMIEL J F BOON

#	Article	IF	CITATIONS
91	The Effect of Corticosteroids on Human Choroidal Endothelial Cells: A Model to Study Central Serous Chorioretinopathy. , 2018, 59, 5682.		19
92	Maladaptive personality traits, psychological morbidity and coping strategies in chronic central serous chorioretinopathy. Acta Ophthalmologica, 2019, 97, e572-e579.	1.1	18
93	CLINICAL CHARACTERISTICS AND OUTCOME OF POSTERIOR CYSTOID MACULAR DEGENERATION IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2020, 40, 1742-1750.	1.7	18
94	CLINICAL CHARACTERISTICS AND NATURAL HISTORY OF RHO-ASSOCIATED RETINITIS PIGMENTOSA. Retina, 2021, 41, 213-223.	1.7	18
95	Prospective evaluation of changes in choroidal vascularity index after half-dose photodynamic therapy versus micropulse laser treatment in chronic central serous chorioretinopathy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2020, 258, 1191-1197.	1.9	17
96	GENETIC RISK FACTORS IN SEVERE, NONSEVERE AND ACUTE PHENOTYPES OF CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2020, 40, 1734-1741.	1.7	17
97	CRB1-Associated Retinal Dystrophies: A Prospective Natural History Study in Anticipation of Future Clinical Trials. American Journal of Ophthalmology, 2022, 234, 37-48.	3.3	17
98	Short-Term Changes of Basal Laminar Drusen on Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 2012, 154, 560-567.	3.3	16
99	GENETIC RISK FACTORS IN ACUTE CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2019, 39, 2303-2310.	1.7	16
100	Exome sequencing in families with chronic central serous chorioretinopathy. Molecular Genetics & Genomic Medicine, 2019, 7, e00576.	1.2	15
101	Longâ€ŧerm followâ€up of chronic central serous chorioretinopathy after successful treatment with photodynamic therapy or micropulse laser. Acta Ophthalmologica, 2021, 99, 805-811.	1.1	15
102	Long-Term Follow-Up of Retinal Degenerations Associated With <i>LRAT</i> Mutations and Their Comparability to Phenotypes Associated With <i>RPE65</i> Mutations. Translational Vision Science and Technology, 2019, 8, 24.	2.2	14
103	Clinical Utility Gene Card for: autosomal recessive cone-rod dystrophy. European Journal of Human Genetics, 2015, 23, 3-5.	2.8	13
104	Patient characteristics of untreated chronic central serous chorioretinopathy patients with focal versus diffuse leakage. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1419-1425.	1.9	13
105	The spectrum of polypoidal choroidal vasculopathy in Caucasians: clinical characteristics and proposal of a classification. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 351-361.	1.9	13
106	CRB1-associated retinal dystrophies in a Belgian cohort: genetic characteristics and long-term clinical follow-up. British Journal of Ophthalmology, 2021, , bjophthalmol-2020-316781.	3.9	13
107	<i>PRPH2</i> mutation update: In silico assessment of 245 reported and 7 novel variants in patients with retinal disease. Human Mutation, 2021, 42, 1521-1547.	2.5	13
108	Prevalence of Myopic Macular Features in Dutch Individuals of European Ancestry With High Myopia. JAMA Ophthalmology, 2022, 140, 115.	2.5	13

#	Article	IF	CITATIONS
109	Efficacy of photodynamic therapy in steroidâ€associated chronic central serous chorioretinopathy: a case–control study. Acta Ophthalmologica, 2016, 94, 565-572.	1.1	12
110	SHORT-TERM FINDINGS ON OPTICAL COHERENCE TOMOGRAPHY AND MICROPERIMETRY IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY PATIENTS TREATED WITH HALF-DOSE PHOTODYNAMIC THERAPY. Retinal Cases and Brief Reports, 2018, 12, 266-271.	0.6	12
111	Exome sequencing in patients with chronic central serous chorioretinopathy. Scientific Reports, 2019, 9, 6598.	3.3	12
112	An international collaborative evaluation of central serous chorioretinopathy: different therapeutic approaches and review of literature. The European Vitreoretinal Society central serous chorioretinopathy study. Acta Ophthalmologica, 2020, 98, e549.	1.1	12
113	The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. Journal of Clinical Endocrinology and Metabolism, 2022, 107, 512-524.	3.6	12
114	Spectrum of retinal abnormalities in renal transplant patients using chronic low-dose steroids. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2443-2449.	1.9	11
115	LONG-TERM FOLLOW-UP OF PATIENTS WITH CHOROIDEREMIA WITH SCLERAL PITS AND TUNNELS AS A NOVEL OBSERVATION. Retina, 2018, 38, 1713-1724.	1.7	11
116	Reply to Comment on: Focal and Diffuse Chronic Central Serous Chorioretinopathy Treated With Half-Dose Photodynamic Therapy or Subthreshold Micropulse Laser: PLACE Trial Report No. 3. American Journal of Ophthalmology, 2020, 212, 187-188.	3.3	11
117	Analysis of Risk Alleles and Complement Activation Levels in Familial and Non-Familial Age-Related Macular Degeneration. PLoS ONE, 2016, 11, e0144367.	2.5	11
118	Photodynamic therapy in chronic central serous chorioretinopathy with subretinal fluid outside the fovea. Graefe's Archive for Clinical and Experimental Ophthalmology, 2017, 255, 2029-2035.	1.9	10
119	Central serous chorioretinopathy in active endogenous Cushing's syndrome. Scientific Reports, 2021, 11, 2748.	3.3	10
120	Defining inclusion criteria and endpoints for clinical trials: a prospective crossâ€sectional study in <i>CRB1</i> â€essociated retinal dystrophies. Acta Ophthalmologica, 2021, 99, e402-e414.	1.1	10
121	Photodynamic therapy as a treatment option for peripapillary pachychoroid syndrome: a pilot study. Eye, 2022, 36, 716-723.	2.1	10
122	Clinical Characteristics of Familial and Sporadic Age-Related Macular Degeneration: Differences and Similarities. , 2014, 55, 7085.		9
123	AAV Serotype Testing on Cultured Human Donor Retinal Explants. Methods in Molecular Biology, 2018, 1715, 275-288.	0.9	9
124	Measuring Central Retinal Sensitivity Using Microperimetry. Methods in Molecular Biology, 2018, 1715, 339-349.	0.9	9
125	Clinical Phenotype and Course of <i>PDE6A</i> -Associated Retinitis Pigmentosa Disease, Characterized in Preparation for a Gene Supplementation Trial. JAMA Ophthalmology, 2020, 138, 1241.	2.5	9
126	Systemic complement activation in central serous chorioretinopathy. PLoS ONE, 2017, 12, e0180312.	2.5	9

#	Article	IF	CITATIONS
127	Outcome of Full-Thickness Macular Hole Surgery in Choroideremia. Genes, 2017, 8, 187.	2.4	8
128	Antiretinal antibodies in central serous chorioretinopathy: prevalence and clinical implications. Acta Ophthalmologica, 2018, 96, 56-62.	1.1	7
129	Recording and Analysis of Goldmann Kinetic Visual Fields. Methods in Molecular Biology, 2018, 1715, 327-338.	0.9	7
130	The Phenotypic Spectrum of Patients with PHARC Syndrome Due to Variants in ABHD12: An Ophthalmic Perspective. Genes, 2021, 12, 1404.	2.4	7
131	Management of central serous chorioretinopathy: Expert panel discussion. Indian Journal of Ophthalmology, 2018, 66, 1700.	1.1	7
132	Estimation of current and post-treatment retinal function in chronic central serous chorioretinopathy using artificial intelligence. Scientific Reports, 2021, 11, 20446.	3.3	7
133	EFFICACY OF HALF-DOSE PHOTODYNAMIC THERAPY VERSUS HIGH-DENSITY SUBTHRESHOLD MICROPULSE LASER FOR TREATING PIGMENT EPITHELIAL DETACHMENTS IN CHRONIC CENTRAL SEROUS CHORIORETINOPATHY. Retina, 2022, 42, 721-729.	1.7	7
134	Pimasertibâ€associated ophthalmological adverse events. Acta Ophthalmologica, 2018, 96, 712-718.	1.1	6
135	Outcome of half-dose photodynamic therapy in chronic central serous chorioretinopathy with fovea-involving atrophy. Graefe's Archive for Clinical and Experimental Ophthalmology, 2021, 259, 905-910.	1.9	6
136	Subretinal fluid morphology in chronic central serous chorioretinopathy and its relationship to treatment: a retrospective analysis on PLACE trial data. Acta Ophthalmologica, 2022, 100, 89-95.	1.1	6
137	The Lratâ^'/â^' Rat: CRISPR/Cas9 Construction and Phenotyping of a New Animal Model for Retinitis Pigmentosa. International Journal of Molecular Sciences, 2021, 22, 7234.	4.1	6
138	Extensive Macular Atrophy With Pseudodrusen-like Appearance: A New Clinical Entity. American Journal of Ophthalmology, 2009, 148, 173-174.	3.3	5
139	Hair cortisol concentrations in chronic central serous chorioretinopathy. Acta Ophthalmologica, 2020, 98, 390-395.	1.1	5
140	Stress and vision-related quality of life in acute and chronic central serous chorioretinopathy. BMC Ophthalmology, 2020, 20, 90.	1.4	5
141	Phenotypic Consequences of the <i>GJD2</i> Risk Genotype in Myopia Development. , 2021, 62, 16.		5
142	Neovascular age-related macular degeneration without drusen in the fellow eye: clinical spectrum and therapeutic outcome. Clinical Ophthalmology, 2017, Volume 11, 63-70.	1.8	4
143	MAINTENANCE OF GOOD VISUAL ACUITY IN BEST DISEASE ASSOCIATED WITH CHRONIC BILATERAL SEROUS MACULAR DETACHMENT. Retinal Cases and Brief Reports, 2020, 14, 1-5.	0.6	4
144	GUCY2D-Related Retinal Dystrophy with Autosomal Dominant Inheritance—A Multicenter Case Series and Review of Reported Data. Genes, 2022, 13, 313.	2.4	4

#	Article	IF	CITATIONS
145	Reply. Ophthalmology, 2015, 122, e60.	5.2	3
146	Serous maculopathy with absence of retinal pigment epithelium (SMARPE). Acta Ophthalmologica, 2022, 100, 583-588.	1.1	3
147	Complement Factor H Gene Mutations: Implications for Genetic Testing and Precision Medicine in Macular Degeneration. Ophthalmology, 2019, 126, 1422-1423.	5.2	2
148	Artificial vision: the effectiveness of the OrCam in patients with advanced inherited retinal dystrophies. Acta Ophthalmologica, 2022, 100, .	1.1	2
149	Response to Letter to the Editor From Behar-Cohen et al.: The Cortisol Response of Male and Female Choroidal Endothelial Cells: Implications for Central Serous Chorioretinopathy. Journal of Clinical Endocrinology and Metabolism, 2022, 107, e2213-e2214.	3.6	2
150	Photodynamic Therapy in Central Serous Chorioretinopathy. , 2019, , 283-292.		1
151	Correspondence. Retina, 2015, 35, e52-e54.	1.7	0
152	Correspondence. Retina, 2015, 35, e57-e58.	1.7	0
153	Dystrophies. , 2017, , 63-72.		0
154	Reply. Ophthalmology, 2019, 126, e30-e31.	5.2	0
155	Reply. Ophthalmology, 2019, 126, e11.	5.2	Ο
156	Miscellaneous Rare Macular Dystrophies. , 2016, , 83-99.		0
157	The Pattern Dystrophies. , 2016, , 11-23.		0