Mikhail V Shaposhnikov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4610115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geroprotective effects of ×Sorbaronia mitschurinii fruit extract on Drosophila melanogaster. Journal of Berry Research, 2022, 12, 73-92.	1.4	4
2	Honeysuckle extract (Lonicera pallasii L.) exerts antioxidant properties and extends the lifespan and healthspan of Drosophila melanogaster. Biogerontology, 2022, 23, 215-235.	3.9	15
3	Deletions of the cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) genes, involved in the control of hydrogen sulfide biosynthesis, significantly affect lifespan and fitness components of Drosophila melanogaster. Mechanisms of Ageing and Development, 2022, 203, 111656.	4.6	10
4	Molecular mechanisms of exceptional lifespan increase of Drosophila melanogaster with different genotypes after combinations of pro-longevity interventions. Communications Biology, 2022, 5, .	4.4	10
5	Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology, 2021, 22, 197-214.	3.9	8
6	Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila melanogaster. International Journal of Molecular Sciences, 2021, 22, 2396.	4.1	5
7	Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Research Reviews, 2021, 67, 101262.	10.9	19
8	Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends in Food Science and Technology, 2021, 114, 570-584.	15.1	23
9	Chronobiotics KL001 and KS15 Extend Lifespan and Modify Circadian Rhythms of Drosophila melanogaster. Clocks & Sleep, 2021, 3, 429-441.	2.0	4
10	The role of DNA repair genes in radiation-induced adaptive response in Drosophila melanogaster is differential and conditional. Biogerontology, 2020, 21, 45-56.	3.9	13
11	Multi-omics approaches to human biological age estimation. Mechanisms of Ageing and Development, 2020, 185, 111192.	4.6	32
12	Amyloid-β peptides slightly affect lifespan or antimicrobial peptide gene expression in Drosophila melanogaster. BMC Genetics, 2020, 21, 65.	2.7	2
13	The Resistance of Drosophila melanogaster to Oxidative, Genotoxic, Proteotoxic, Osmotic Stress, Infection, and Starvation Depends on Age According to the Stress Factor. Antioxidants, 2020, 9, 1239.	5.1	14
14	Terpenoids as Potential Geroprotectors. Antioxidants, 2020, 9, 529.	5.1	52
15	Genome-Protecting Compounds as Potential Geroprotectors. International Journal of Molecular Sciences, 2020, 21, 4484.	4.1	20
16	Key Molecular Mechanisms of Aging, Biomarkers, and Potential Interventions. Molecular Biology, 2020, 54, 777-811.	1.3	13
17	Transcriptome Analysis of Long-lived Drosophila melanogaster E(z) Mutants Sheds Light on the Molecular Mechanisms of Longevity. Scientific Reports, 2019, 9, 9151.	3.3	31
18	The Neuronal Overexpression of Gclc in Drosophila melanogaster Induces Life Extension With Longevity-Associated Transcriptomic Changes in the Thorax. Frontiers in Genetics, 2019, 10, 149.	2.3	8

#	Article	IF	CITATIONS
19	Effects of unpaired 1 gene overexpression on the lifespan of Drosophila melanogaster. BMC Systems Biology, 2019, 13, 16.	3.0	4
20	Neuron-specific overexpression of core clock genes improves stress-resistance and extends lifespan of Drosophila melanogaster. Experimental Gerontology, 2019, 117, 61-71.	2.8	12
21	Circadian clock genes' overexpression in Drosophila alters diet impact on lifespan. Biogerontology, 2019, 20, 159-170.	3.9	12
22	Aging as a complex of typical pathophysiological processes. Medical News of North Caucasus, 2019, 14,	0.1	1
23	Drosophila melanogaster as a Model for Studying the Epigenetic Basis of Aging. , 2018, , 293-307.		7
24	Transcriptome analysis reveals mechanisms of geroprotective effects of fucoxanthin in Drosophila. BMC Genomics, 2018, 19, 77.	2.8	23
25	Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging, 2018, 10, 2428-2458.	3.1	29
26	Overexpression of CBS and CSE genes affects lifespan, stress resistance and locomotor activity in Drosophila melanogaster. Aging, 2018, 10, 3260-3272.	3.1	20
27	Genetic mechanisms of the influence of light and phototransduction on Drosophila melanogaster lifespan. Vavilovskii Zhurnal Genetiki I Selektsii, 2018, 22, 878-886.	1.1	1
28	De novo assembling and primary analysis of genome and transcriptome of gray whale Eschrichtius robustus. BMC Evolutionary Biology, 2017, 17, 258.	3.2	11
29	Geroprotectors: A Unified Concept and Screening Approaches. , 2017, 8, 354.		67
30	A review of the biomedical innovations for healthy longevity. Aging, 2017, 9, 7-25.	3.1	18
31	Studying the geroprotective effects of inhibitors suppressing aging -associated signaling cascades in model organisms. Medical News of North Caucasus, 2017, 12, .	0.1	4
32	Geroprotective and Radioprotective Activity of Quercetin, (-)-Epicatechin, and Ibuprofen in Drosophila melanogaster. Frontiers in Pharmacology, 2016, 7, 505.	3.5	51
33	Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell, 2016, 15, 407-415.	6.7	97
34	The influence of pro-longevity gene Gclc overexpression on the age-dependent changes in Drosophila transcriptome and biological functions. BMC Genomics, 2016, 17, 1046.	2.8	28
35	Aging Chart: a community resource for rapid exploratory pathway analysis of age-related processes. Nucleic Acids Research, 2016, 44, D894-D899.	14.5	9
36	Effects of <i>Abies sibirica</i> terpenes on cancer- and aging-associated pathways in human cells. Oncotarget, 2016, 7, 83744-83754.	1.8	10

#	Article	IF	CITATIONS
37	Lifespan and Stress Resistance in Drosophila with Overexpressed DNA Repair Genes. Scientific Reports, 2015, 5, 15299.	3.3	62
38	A comparison of the transcriptome of Drosophila melanogaster in response to entomopathogenic fungus, ionizing radiation, starvation and cold shock. BMC Genomics, 2015, 16, S8.	2.8	76
39	Effect of Low Doses (5-40 cGy) of Gamma-irradiation on Lifespan and Stress-related Genes Expression Profile in Drosophila melanogaster. PLoS ONE, 2015, 10, e0133840.	2.5	45
40	Influence of non-steroidal anti-inflammatory drugs on <i>Drosophila melanogaster</i> longevity. Oncotarget, 2015, 6, 19428-19444.	1.8	46
41	Drosophila nervous system as a target of aging and anti-aging interventions. Frontiers in Genetics, 2015, 6, 89.	2.3	11
42	Basic mechanisms of longevity: A case study of Drosophila pro-longevity genes. Ageing Research Reviews, 2015, 24, 218-231.	10.9	32
43	Gadd45 Proteins in Aging and Longevity of Mammals and Drosophila. Healthy Ageing and Longevity, 2015, , 39-65.	0.2	2
44	Gadd45 expression correlates with age dependent neurodegeneration in Drosophila melanogaster. Biogerontology, 2015, 16, 53-61.	3.9	9
45	Geroprotectors.org: a new, structured and curated database of current therapeutic interventions in aging and age-related disease. Aging, 2015, 7, 616-628.	3.1	93
46	Mining Gene Expression Data for Pollutants (Dioxin, Toluene, Formaldehyde) and Low Dose of Gamma-Irradiation. PLoS ONE, 2014, 9, e86051.	2.5	25
47	Enhanced Longevity by Ibuprofen, Conserved in Multiple Species, Occurs in Yeast through Inhibition of Tryptophan Import. PLoS Genetics, 2014, 10, e1004860.	3.5	80
48	The effects of pectins on life span and stress resistance in Drosophila melanogaster. Biogerontology, 2014, 15, 113-127.	3.9	19
49	Exhaustive data mining comparison of the effects of low doses of ionizing radiation, formaldehyde and dioxins. BMC Genomics, 2014, 15, S5.	2.8	5
50	The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Research Reviews, 2013, 12, 661-684.	10.9	290
51	Selective anticancer agents suppress aging inDrosophila. Oncotarget, 2013, 4, 1507-1526.	1.8	39
52	The role of D-GADD45 in oxidative, thermal and genotoxic stress resistance. Cell Cycle, 2012, 11, 4222-4241.	2.6	36
53	Gadd45 proteins: Relevance to aging, longevity and age-related pathologies. Ageing Research Reviews, 2012, 11, 51-66.	10.9	126
54	Pharmacological inhibition of NF-κB prolongs lifespan of Drosophila melanogaster. Aging, 2011, 3, 391-394.	3.1	55