
Michael G Organ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4610083/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium Complexes of N-Heterocyclic Carbenes as Catalysts for Cross-Coupling Reactions—A Synthetic Chemist's Perspective. Angewandte Chemie - International Edition, 2007, 46, 2768-2813.	7.2	1,510
2	The Development of Bulky Palladium NHC Complexes for the Mostâ€Challenging Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2012, 51, 3314-3332.	7.2	783
3	Easily Prepared Air- and Moisture-Stable Pd–NHC (NHC=N-Heterocyclic Carbene) Complexes: A Reliable, User-Friendly, Highly Active Palladium Precatalyst for the Suzuki–Miyaura Reaction. Chemistry - A European Journal, 2006, 12, 4743-4748.	1.7	734
4	A User-Friendly, All-Purpose Pd–NHC (NHC=N-Heterocyclic Carbene) Precatalyst for the Negishi Reaction: A Step Towards a Universal Cross-Coupling Catalyst. Chemistry - A European Journal, 2006, 12, 4749-4755.	1.7	430
5	Pdâ€PEPPSIâ€ŀPent: An Active, Sterically Demanding Crossâ€Coupling Catalyst and Its Application in the Synthesis of Tetraâ€ <i>Ortho</i> â€Substituted Biaryls. Angewandte Chemie - International Edition, 2009, 48, 2383-2387.	7.2	351
6	A Microreactor for Microwave-Assisted Capillary (Continuous Flow) Organic Synthesis. Journal of the American Chemical Society, 2005, 127, 8160-8167.	6.6	267
7	Biaryls Made Easy: PEPPSI and the Kumada-Tamao-Corriu Reaction. Chemistry - A European Journal, 2007, 13, 150-157.	1.7	230
8	Structure–Activity Relationship Analysis of Pd–PEPPSI Complexes in Crossâ€Couplings: A Close Inspection of the Catalytic Cycle and the Precatalyst Activation Model. Chemistry - A European Journal, 2010, 16, 10844-10853.	1.7	228
9	Pdâ€Catalyzed Aryl Amination Mediated by Well Defined, Nâ€Heterocyclic Carbene (NHC)–Pd Precatalysts, PEPPSI. Chemistry - A European Journal, 2008, 14, 2443-2452.	1.7	222
10	Pdâ€₽EPPSI Complexes and the Negishi Reaction. European Journal of Organic Chemistry, 2010, 2010, 4343-4354.	1.2	209
11	Carbon–Heteroatom Coupling Using Pd-PEPPSI Complexes. Organic Process Research and Development, 2014, 18, 180-190.	1.3	209
12	Pd-NHC (PEPPSI) Complexes: Synthetic Utility and Computational Studies into Their Reactivity. Synthesis, 2008, 2008, 2776-2797.	1.2	199
13	Designing Pd–N-Heterocyclic Carbene Complexes for High Reactivity <i>and</i> Selectivity for Cross-Coupling Applications. Accounts of Chemical Research, 2017, 50, 2244-2253.	7.6	196
14	Electronic Nature of N-Heterocyclic Carbene Ligands:  Effect on the Suzuki Reaction. Organic Letters, 2005, 7, 1991-1994.	2.4	171
15	Catalysis in Capillaries by Pd Thin Films Using Microwave-Assisted Continuous-Flow Organic Synthesis (MACOS). Angewandte Chemie - International Edition, 2006, 45, 2761-2766.	7.2	166
16	Pdâ€PEPPSIâ€IPent ^{Cl} : A Highly Effective Catalyst for the Selective Cross oupling of Secondary Organozinc Reagents. Angewandte Chemie - International Edition, 2012, 51, 11354-11357.	7.2	162
17	Pdâ€PEPPSIâ€IPent: Lowâ€Temperature Negishi Crossâ€Coupling for the Preparation of Highly Functionalized, Tetraâ€ <i>ortho</i> â€Substituted Biaryls. Angewandte Chemie - International Edition, 2010, 49, 2014-2017.	7.2	154
18	The First Negishi Cross-Coupling Reaction of Two Alkyl Centers Utilizing a Pdâ^'N-Heterocyclic Carbene (NHC) Catalystâ€. Organic Letters, 2005, 7, 3805-3807.	2.4	151

#	Article	IF	CITATIONS
19	Carbon–Sulfur Bond Formation of Challenging Substrates at Low Temperature by Using Pdâ€₽EPPSIâ€ŀPent. Chemistry - A European Journal, 2011, 17, 11719-11722.	1.7	134
20	Regioselective Cross-Coupling of Allylboronic Acid Pinacol Ester Derivatives with Aryl Halides via <i>Pd-PEPPSI-IPent</i> . Journal of the American Chemical Society, 2012, 134, 17470-17473.	6.6	127
21	Towards the rational design of palladium-N-heterocyclic carbene catalysts by a combined experimental and computational approach. Tetrahedron, 2005, 61, 9723-9735.	1.0	116
22	Negishi cross-coupling of secondary alkylzinc halides with aryl/heteroaryl halides using Pd–PEPPSI–IPent. Chemical Communications, 2011, 47, 5181.	2.2	116
23	Amination with Pd–NHC Complexes: Rate and Computational Studies on the Effects of the Oxidative Addition Partner. Chemistry - A European Journal, 2011, 17, 3086-3090.	1.7	116
24	Propargyl Amine Synthesis Catalysed by Gold and Copper Thin Films by Using Microwaveâ€Assisted Continuousâ€Flow Organic Synthesis (MACOS). Chemistry - A European Journal, 2010, 16, 126-133.	1.7	114
25	Multicomponent Reactions to Form Heterocycles by Microwave-Assisted Continuous Flow Organic Synthesis. ACS Combinatorial Science, 2007, 9, 14-16.	3.3	110
26	On the role of additives in alkyl–alkyl Negishi cross-couplings. Chemical Communications, 2010, 46, 4109.	2.2	106
27	Roomâ€Temperature Amination of Deactivated Aniline and Aryl Halide Partners with Carbonate Base Using a Pdâ€PEPPSIâ€IPent ^{Cl} ― <i>o</i> â€Picoline Catalyst. Angewandte Chemie - International Edition, 2014, 53, 3223-3226.	7.2	105
28	A Microcapillary System for Simultaneous, Parallel Microwave-Assisted Synthesis. Chemistry - A European Journal, 2005, 11, 7223-7227.	1.7	104
29	Room-Temperature Negishi Cross-Coupling of Unactivated Alkyl Bromides with Alkyl Organozinc Reagents Utilizing a Pd/N-Heterocyclic Carbene Catalyst. Journal of Organic Chemistry, 2005, 70, 8503-8507.	1.7	104
30	Pd PEPPSIâ€IPrâ€Mediated Reactions in Metalâ€Coated Capillaries Under MACOS: The Synthesis of Indoles by Sequential Aryl Amination/ Heck Coupling. Chemistry - A European Journal, 2008, 14, 1351-1356.	1.7	101
31	On The Remarkably Different Role of Salt in the Cross oupling of Arylzincs From That Seen With Alkylzincs. Angewandte Chemie - International Edition, 2014, 53, 4386-4389.	7.2	101
32	High yielding alkylations of unactivated sp ³ and sp ² centres with alkyl-9-BBN reagents using an NHC-based catalyst: Pd-PEPPSI-IPr. Chemical Communications, 2008, , 735-737.	2.2	99
33	An Efficient Lowâ€Temperature Stille–Migita Crossâ€Coupling Reaction for Heteroaromatic Compounds by Pd–PEPPSI–IPent. Chemistry - A European Journal, 2010, 16, 4279-4283.	1.7	97
34	Amination with Pdï£;NHC Complexes: Rate and Computational Studies Involving Substituted Aniline Substrates. Chemistry - A European Journal, 2012, 18, 145-151.	1.7	96
35	Higherâ€Order Zincates as Transmetalators in Alkyl–Alkyl Negishi Crossâ€Coupling. Angewandte Chemie - International Edition, 2012, 51, 7024-7027.	7.2	94
36	Density Functional Theory Investigation of the Alkyl–Alkyl Negishi Crossâ€Coupling Reaction Catalyzed by Nâ€Heterocyclic Carbene (NHC)–Pd Complexes. Chemistry - A European Journal, 2009, 15, 4281-4288.	1.7	91

#	Article	IF	CITATIONS
37	Selective Monoarylation of Primary Amines Using the Pdâ€PEPPSIâ€IPent ^{Cl} Precatalyst. Angewandte Chemie - International Edition, 2015, 54, 9507-9511.	7.2	88
38	The Selective Crossâ€Coupling of Secondary Alkyl Zinc Reagents to Fiveâ€Memberedâ€Ring Heterocycles Using Pdâ€PEPPSIâ€Hept ^{Cl} . Angewandte Chemie - International Edition, 2015, 54, 9502-9506.	7.2	73
39	Pdâ€PEPPSIâ€iPent ^{Cl} : An Effective Catalyst for the Preparation of Triarylamines. Chemistry - A European Journal, 2013, 19, 843-845.	1.7	69
40	Scaling Out by Microwaveâ€Assisted, Continuous Flow Organic Synthesis (MACOS): Multiâ€Gram Synthesis of Bromo―and Fluoroâ€benzofused Sultams Benzthiaoxazepineâ€1,1â€dioxides. Chemistry - A European Journal, 2010, 16, 10959-10962.	1.7	66
41	Sulfination by Using Pdâ€PEPPSI Complexes: Studies into Precatalyst Activation, Cationic and Solvent Effects and the Role of Butoxide Base. Chemistry - A European Journal, 2013, 19, 2749-2756.	1.7	66
42	[(IPent)PdCl ₂ (morpholine)]: A Readily Activated Precatalyst for Roomâ€Temperature, Additiveâ€Free Carbon–Sulfur Coupling. Chemistry - A European Journal, 2014, 20, 15790-15798.	1.7	65
43	Differentiating CBr and CCl Bond Activation by Using Solvent Polarity: Applications to Orthogonal Alkyl–Alkyl Negishi Reactions. Angewandte Chemie - International Edition, 2011, 50, 3896-3899.	7.2	64
44	Identification of a Higherâ€Order Organozincate Intermediate Involved in Negishi Crossâ€Coupling Reactions by Mass Spectrometry and NMR Spectroscopy. Chemistry - A European Journal, 2011, 17, 7845-7851.	1.7	63
45	Continuous flow Negishi cross-couplings employing silica-supported Pd-PEPPSI–IPr precatalyst. Catalysis Science and Technology, 2016, 6, 4733-4742.	2.1	63
46	Synthesis of Stereodefined Polysubstituted Olefins. 1. Sequential Intermolecular Reactions Involving Selective, Stepwise Insertion of Pd(0) into Allylic and Vinylic Halide Bonds. The Stereoselective Synthesis of Disubstituted Olefins1. Journal of Organic Chemistry, 2000, 65, 7959-7970.	1.7	61
47	Potassium Isopropoxide: For Sulfination It is the Only Base You Need!. Chemistry - A European Journal, 2013, 19, 16196-16199.	1.7	60
48	A Continuous-Flow Microwave Reactor for Conducting High-Temperature and High-Pressure Chemical Reactions. Organic Process Research and Development, 2014, 18, 1310-1314.	1.3	60
49	Discovery of an antivirulence compound that reverses β-lactam resistance in MRSA. Nature Chemical Biology, 2020, 16, 143-149.	3.9	57
50	Pdâ€PEPPSIâ€IPent‣iO ₂ : A Supported Catalyst for Challenging Negishi Coupling Reactions in Flow. Angewandte Chemie - International Edition, 2017, 56, 13347-13350.	7.2	56
51	Goldâ€Filmâ€Catalysed Hydrosilylation of Alkynes by Microwaveâ€Assisted, Continuousâ€Flow Organic Synthesis (MACOS). Chemistry - A European Journal, 2008, 14, 9641-9646.	1.7	52
52	Diels–Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS): the role of metal films in the flow tube. Chemical Communications, 2008, , 838-840.	2.2	52
53	Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fineâ€Chemical Manufacturing. Angewandte Chemie - International Edition, 2021, 60, 20606-20626.	7.2	49
54	Potassium 2,2,5,7,8â€Pentamethylchromanâ€6â€oxide: A Rationally Designed Base for Pdâ€Catalysed Amination. Chemistry - A European Journal, 2012, 18, 804-807.	· 1.7	48

#	Article	IF	CITATIONS
55	Pdâ€PEPPSIâ€IHept ^{Cl} : A Generalâ€Purpose, Highly Reactive Catalyst for the Selective Coupling of Secondary Alkyl Organozincs. Chemistry - A European Journal, 2016, 22, 14531-14534.	1.7	48
56	Mechanism of Nucleophilic Attack on 1- and 2-Bromo(Ï€-allyl)palladium Complexes1. Journal of the American Chemical Society, 1998, 120, 9283-9290.	6.6	46
57	Approach toward the Total Synthesis of Orevactaene. 2. Convergent and Stereoselective Synthesis of the C18â^'C31 Domain of Orevactaene. Evidence for the Relative Configuration of the Side Chain. Journal of Organic Chemistry, 2002, 67, 5176-5183.	1.7	46
58	Multicomponent, Flow Diazotization/Mizoroki–Heck Coupling Protocol: Dispelling Myths about Working with Diazonium Salts. Chemistry - A European Journal, 2014, 20, 6603-6607.	1.7	45
59	Handling Hazards Using Continuous Flow Chemistry: Synthesis of <i>N</i> ¹ -Aryl-[1,2,3]-triazoles from Anilines via Telescoped Three-Step Diazotization, Azidodediazotization, and [3 + 2] Dipolar Cycloaddition Processes. Organic Process Research and Development, 2016, 20, 1967-1973.	1.3	45
60	Synthesis of 4-(5-Iodo-3-Methylpyrazolyl) Phenylsulfonamide and Its Elaboration To a COX II Inhibitor Library by Solution-Phase Suzuki Coupling Using Pd/C as a Solid-Supported Catalyst. ACS Combinatorial Science, 2003, 5, 118-124.	3.3	44
61	Formation of Substituted Pyrroles via an Imine Condensation/Aza-Claisen Rearrangement/Imineâ^'Allene Cyclization Process by MAOS. ACS Combinatorial Science, 2008, 10, 142-147.	3.3	43
62	Selective Cross-Coupling of (Hetero)aryl Halides with Ammonia To Produce Primary Arylamines using Pd-NHC Complexes. Organometallics, 2017, 36, 251-254.	1.1	42
63	Process analytical tools for flow analysis: A perspective. Journal of Flow Chemistry, 2017, 7, 82-86.	1.2	42
64	Synthesis of a Unique Isoindoline/Tetrahydroisoquinoline-based Tricyclic Sultam Library Utilizing a Heck-aza-Michael Strategy. ACS Combinatorial Science, 2012, 14, 211-217.	3.8	40
65	The effect of vicinyl olefinic halogens on cross-coupling reactions using Pd(0) catalysis. Tetrahedron, 2004, 60, 9453-9461.	1.0	39
66	Metal-Catalyzed Coupling Reactions on an Olefin Template:Â The Total Synthesis of (13E,15E,18Z,20Z)-1-Hydroxypentacosa- 13,15,18,20-tetraen-11-yn-4-one 1-Acetate. Journal of Organic Chemistry, 2004, 69, 695-700.	1.7	38
67	Salt to Taste: The Critical Roles Played by Inorganic Salts in Organozinc Formation and in the Negishi Reaction. Angewandte Chemie - International Edition, 2021, 60, 12224-12241.	7.2	38
68	Controlling Chemoselectivity in Vinyl and Allylic Câ^'X Bond Activation with Palladium Catalysis:Â A pKa-Based Electronic Switch. Journal of the American Chemical Society, 2002, 124, 1288-1294.	6.6	37
69	Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS). Beilstein Journal of Organic Chemistry, 2009, 5, 35.	1.3	37
70	Studies on the Mechanism of B(C ₆ F ₅ 3 atalyzed Hydrostannylation of Propargylic Alcohol Derivatives. Angewandte Chemie - International Edition, 2012, 51, 9834-9837.	7.2	34
71	An Expedient and Facile One-Step Synthesis of a Biguanide Library by Microwave Irradiation Coupled with Simple Product Filtration. Inhibitors of Dihydrofolate Reductase. ACS Combinatorial Science, 2004, 6, 776-782.	3.3	32
72	The Development of a General Strategy for the Synthesis of Tyramineâ€Based Natural Products by Using Continuous Flow Techniques. Chemistry - A European Journal, 2010, 16, 12797-12800.	1.7	32

#	Article	IF	CITATIONS
73	Pdâ€PEPPSIâ€IPent ^{Cl} : A Useful Catalyst for the Coupling of 2â€Aminopyridine Derivatives. Chemistry - A European Journal, 2017, 23, 3206-3212.	1.7	32
74	Cross-Coupling of Primary Amides to Aryl and Heteroaryl Partners Using (DiMelHept ^{Cl})Pd Promoted by Trialkylboranes or B(C ₆ F ₅) ₃ . Journal of the American Chemical Society, 2017, 139, 18436-18439.	6.6	32
75	Use of Olefin Templates in Queued Chemical Transformations Using Late Transition Metal Catalysis. Total Synthesis ofcisandtransBupleurynol via a Single Multireaction Sequence. Organic Letters, 2004, 6, 2913-2916.	2.4	31
76	In Situ Generation and Intramolecular Schmidt Reaction of Keto Azides in a Microwaveâ€Assisted Flow Format. Chemistry - A European Journal, 2011, 17, 9595-9598.	1.7	29
77	2,2′â€Azobis(2â€methylpropionitrile)â€Mediated Alkyne Hydrostannylation: Reaction Mechanism. Angewandte Chemie - International Edition, 2013, 52, 11334-11338.	² 7.2	29
78	Combining the use of solid-supported transition metal catalysis with microwave irradiation in solution-phase parallel library synthesis. Molecular Diversity, 2003, 7, 211-227.	2.1	28
79	A General Protocol for the Broad-Spectrum Cross-Coupling of Nonactivated Sterically Hindered 1° and 2° Amines. Organometallics, 2017, 36, 3573-3577.	1.1	27
80	Nâ€Heteroarylation of Optically Pure αâ€Amino Esters using the Pdâ€PEPPSIâ€ŀPent ^{Cl} â€ <i>o</i> â€picoline Preâ€Catalyst. Chemistry - A European Journal, 2016, 22, 14860-14863.	1.7	26
81	Approach toward the total synthesis of orevactaene. Part 1: Assembly of the contiguous trisubstituted olefin component. Tetrahedron Letters, 2000, 41, 6945-6949.	0.7	25
82	The Synthesis of Deoxyfusapyrone. 2. Preparation of the Bis-Trisubstituted Olefin Fragment and Its Attachment to the Pyrone Moiety. Journal of Organic Chemistry, 2003, 68, 5568-5574.	1.7	25
83	Accessing Stereochemically Rich Sultams via Microwave-assisted, Continuous-flow Organic Synthesis (MACOS) Scale-out. Journal of Flow Chemistry, 2012, 1, 32-39.	1.2	25
84	New reactions involving palladacyclobutanes: The attack of phenoxide ion at the central carbon of both 1- and 2-bromo(İ€-allyl)palladium complexes. Tetrahedron Letters, 1997, 38, 8181-8184.	0.7	24
85	A Concise Synthesis of Silanediol-Based Transition-State Isostere Inhibitors of Proteases. Organic Letters, 2002, 4, 2683-2685.	2.4	24
86	Synthesis of an Isoindoline-Annulated, Tricyclic Sultam Library via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS). Synthesis, 2012, 44, 2547-2554.	1.2	24
87	Using Anilines as Masked Crossâ€Coupling Partners: Design of a Telescoped Three‣tep Flow Diazotization, lododediazotization, Crossâ€Coupling Process. Chemistry - A European Journal, 2016, 22, 17407-17415.	1.7	24
88	What Industrial Chemists Want—Are Academics Giving It to Them?. Organometallics, 2019, 38, 66-75.	1.1	23
89	A modular, general and enantiospecific strategy for the synthesis of CVS 1778 analogs: inhibitors of factor Xa. Tetrahedron Letters, 2002, 43, 8177-8180.	0.7	22
90	A Single-Stage, Continuous High-Efficiency Extraction Device (HEED) for Flow Synthesis. Organic Process Research and Development, 2016, 20, 1738-1743.	1.3	22

#	Article	IF	CITATIONS
91	Metal-catalyzed coupling reactions on an olefin template: the total synthesis of Bupleurynol. Tetrahedron Letters, 2003, 44, 6805-6808.	0.7	21
92	Facile (Triazolyl)methylation of MACOS-derived Benzofused Sultams Utilizing ROMP-derived OTP Reagents. ACS Combinatorial Science, 2012, 14, 268-272.	3.8	20
93	Murahashi Crossâ€Coupling at â^78 °C: A Oneâ€Pot Procedure for Sequential Câ^C/Câ^C, Câ^C/Câ^N, and Câ^C/Câ^S Crossâ€Coupling of Bromoâ€Chloroâ€Arenes. Chemistry - A European Journal, 2019, 25, 9180-9184.	1.7	19
94	Highly Stereo―and Regioselective Hydrostannylation of Internal Alkynes Promoted by Simple Boric Acid in Air. Chemistry - A European Journal, 2012, 18, 10821-10824.	1.7	18
95	lodolactonization: Synthesis, Stereocontrol, and Compatibility Studies. European Journal of Organic Chemistry, 2012, 2012, 175-182.	1.2	18
96	Solution Phase Synthesis of Libraries of Variably Substituted Olefin Scaffolds:Â A Library of Allylic Amines. ACS Combinatorial Science, 2001, 3, 64-67.	3.3	17
97	Pdâ€PEPPSIâ€IPentâ€SiO ₂ : A Supported Catalyst for Challenging Negishi Coupling Reactions in Flow. Angewandte Chemie, 2017, 129, 13532-13535.	1.6	17
98	Sterically demanding imidazolinium salts through the activation and cyclization of formamides. Chemical Communications, 2012, 48, 10352.	2.2	16
99	A Flow Reactor with Inline Analytics: Design and Implementation. Organic Process Research and Development, 2014, 18, 1315-1320.	1.3	16
100	Application of a Double Aza-Michael Reaction in a â€~Click, Click, Cy-Click' Strategy: From Bench to Flow. Synthesis, 2011, 2011, 2743-2750.	1.2	15
101	Kinetic versus Thermodynamic Stereoselectivity in the Hydrostannylation of Propargylic Alcohol Derivatives Using AIBN and Et ₃ B as Promotors. Chemistry - A European Journal, 2012, 18, 10817-10820.	1.7	15
102	Pronounced Solvent Effect on the Hydrostannylation of Propargylic Alcohol Derivatives with <i>n</i> Bu ₃ SnH/Et ₃ B at Room Temperature. Chemistry - A European Journal, 2013, 19, 2615-2618.	1.7	15
103	On the Hydrostannylation of Aryl Propargylic Alcohols and Their Derivatives: Remarkable Differences in Both Regio―and Stereoselectivity in Radical―and Nonradicalâ€Mediated Transformations. Chemistry - A European Journal, 2014, 20, 8579-8583.	1.7	15
104	The Role of LiBr and ZnBr ₂ on the Crossâ€Coupling of Aryl Bromides with Bu ₂ Zn or BuZnBr. Chemistry - A European Journal, 2019, 25, 15751-15754.	1.7	15
105	Differentiating allylic and vinylic leaving groups for Pd catalysis. The use of vinyl iodide to facilitate room temperature activation of a vinyl Cî—,X bond in the presence of allyl carbonate. Tetrahedron Letters, 2003, 44, 4403-4406.	0.7	14
106	Allylic Ionization versus Oxidative Addition into Vinyl Câ^'X Bonds by Pd with Polyfunctional Olefin Templates. Journal of the American Chemical Society, 2004, 126, 16087-16092.	6.6	14
107	Multicapillary Flow Reactor: Synthesis of 1,2,5-Thiadiazepane 1,1-Dioxide Library Utilizing One-Pot Elimination and Inter-/Intramolecular Double aza-Michael Addition Via Microwave-Assisted, Continuous-Flow Organic Synthesis (MACOS). Journal of Flow Chemistry, 2012, 2, 118-123.	1.2	14
108	Automated Synthesis of a Library of Triazolated 1,2,5-Thiadiazepane 1,1-Dioxides via a Double Aza-Michael Strategy. ACS Combinatorial Science, 2012, 14, 456-459.	3.8	14

#	Article	IF	CITATIONS
109	Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fineâ€Chemical Manufacturing. Angewandte Chemie, 2021, 133, 20774-20794.	1.6	14
110	On the Regiochemistry of Nucleophilic Attack on 2-Halo π-Allyl Complexes. 4. The Effect of Silver Acetate and Nucleophile Concentrations in Competitive Nucleophilic Attack with Malonate and Phenoxide Nucleophiles. Journal of Organic Chemistry, 2003, 68, 3918-3922.	1.7	13
111	Synthesis of Amino-Benzothiaoxazepine-1,1-dioxides Utilizing a Microwave-Assisted, S _N Ar Protocol. ACS Combinatorial Science, 2011, 13, 653-658.	3.8	13
112	The Use of a Supported Base and Strong Cation Exchange (SCX) Chromatography to Prepare a Variety of Structurally-Diverse Molecular Libraries Prepared by Solution-Phase Methods. Combinatorial Chemistry and High Throughput Screening, 2002, 5, 211-218.	0.6	13
113	Intelligent Continuous Collection Device for High-Pressure Flow Synthesis: Design and Implementation. Organic Process Research and Development, 2016, 20, 517-524.	1.3	11
114	Flow Chemistry as a Drug Discovery Tool: A Medicinal Chemistry Perspective. Topics in Heterocyclic Chemistry, 2018, , 319-341.	0.2	11
115	The preparation of amino-substituted biaryl libraries: The application of solid-supported reagents to streamline solution-phase synthesis. , 2000, 71, 71-77.		10
116	Assessing Synthetic Strategies: Total Syntheses of (±)â€Neodolabellaneâ€Type Diterpenoids. Chemistry - A European Journal, 2008, 14, 8239-8245.	1.7	10
117	Oneâ€Pot Sequential Kumada–Tamao–Corriu Couplings of (Hetero)Aryl Polyhalides in the Presence of Grignardâ€Sensitive Functional Groups Using Pdâ€PEPPSIâ€IPent ^{Cl} . Chemistry - A European Journal, 2019, 25, 6508-6512.	1.7	10
118	The Synthesis of Warfarin Using a Reconfigurableâ€Reactor Platform Integrated to a Multipleâ€Variable Optimization Tool. Chemistry - A European Journal, 2020, 26, 15505-15508.	1.7	10
119	In situ generation and Diels—Alder reaction of benzynes derivatives with 5-membered ring heterocycles using a microcapillary flow reactor. Journal of Flow Chemistry, 2016, 6, 293-296.	1.2	9
120	A Multiconfiguration Valve for Uninterrupted Sampling from Heterogeneous Slurries: An Application to Flow Chemistry. Organic Process Research and Development, 2017, 21, 1051-1058.	1.3	9
121	A Path to More Sustainable Catalysis: The Critical Role of LiBr in Avoiding Catalyst Death and its Impact on Crossâ€Coupling. Chemistry - A European Journal, 2020, 26, 4861-4865.	1.7	9
122	Salt to Taste: The Critical Roles Played by Inorganic Salts in Organozinc Formation and in the Negishi Reaction. Angewandte Chemie, 2021, 133, 12332-12349.	1.6	9
123	Solution-Phase Synthesis of an Aminomethyl-Substituted Biaryl Library via Sequential Amine N-Alkylation and Suzuki Cross-Coupling. ACS Combinatorial Science, 2001, 3, 473-476.	3.3	8
124	The Synthesis of Deoxyfusapyrone. 1. An Approach to the Pyrone Moiety. Journal of Organic Chemistry, 2002, 67, 7847-7851.	1.7	8
125	On the regiochemistry of nucleophilic attack on 2-halo ï€-allyl complexes. Part 3: The electronic effect of phenoxide ion and the ligand. Tetrahedron Letters, 2002, 43, 8989-8992.	0.7	8
126	The synthesis of ethanolamine libraries from olefin scaffolds. Tetrahedron Letters, 2000, 41, 8407-8411.	0.7	7

8

#	Article	IF	CITATIONS
127	Panning for gold in a hot flowing stream. Gold Bulletin, 2010, 43, 105-113.	3.2	7
128	Rate and Computational Studies for Pdâ€NHC atalyzed Amination with Primary Alkylamines and Secondary Anilines: Rationalizing Selectivity for Monoarylation versus Diarylation with NHC Ligands. Chemistry - A European Journal, 2019, 25, 14223-14229.	1.7	7
129	Sodium Butylated Hydroxytoluene: A Functional Group Tolerant, Ecoâ€Friendly Base for Solventâ€Free, Pdâ€Catalysed Amination. Chemistry - A European Journal, 2021, 27, 12535-12539.	1.7	7
130	Solvent Choice and Kinetic Isotope Effects (KIEs) Dramatically Alter Regioselectivity in the Directed <i>ortho</i> Metalation (DoM) of 1,5â€Dichloroâ€2,4â€dimethoxybenzene. Chemistry - A European Journal, 2015, 21, 1888-1893.	1.7	6
131	<i>Pdâ€PEPPSIâ€IPent^{Cl}</i> â€Catalyzed Amination Using Aminotriphenylsilane as an Ammonia Surrogate. European Journal of Organic Chemistry, 2017, 2017, 1510-1513.	1.2	6
132	Experimental and Computational Study on the Antiâ€Markovnikov Hydrofunctionalization of Olefins Using Glycineâ€Extended AQâ€Auxiliaries. Chemistry - A European Journal, 2021, 27, 3855-3860.	1.7	4
133	The Synthesis of Stereodefined Trisubstituted Olefins From Olefin Templates Using Pd Catalysis – Synthesis of the Antihypertensive Isbogrel. European Journal of Organic Chemistry, 2011, 2011, 5374-5382.	1.2	3
134	Obtaining Kinetics From Continuous Processes: Sampling Multiple Time Points Concurrently With a Single Valve Rotation. Chemistry Methods, 2021, 1, 131-134.	1.8	3
135	(DiMelHeptCl)Pd: A Low-Load Catalyst for Solvent-Free (Melt) Amination. Journal of Organic Chemistry, 2021, 86, 10343-10359.	1.7	3
136	Sodium Butylated Hydroxytoluene (NaBHT) as a New and Efficient Hydride Source for Pd atalysed Reduction Reactions. Chemistry - A European Journal, 2019, 25, 13099-13103.	1.7	2
137	Structural Insights into the Inhibition of Undecaprenyl Pyrophosphate Synthase from Gram-Positive Bacteria. Journal of Medicinal Chemistry, 2021, 64, 13540-13550.	2.9	2
138	Lithium aluminum hydride in flow: overcoming exotherms, solids, and gas evolution en route to chemoselective reductions. Journal of Flow Chemistry, 2022, 12, 131-140.	1.2	2
139	Inside Cover: Propargyl Amine Synthesis Catalysed by Gold and Copper Thin Films by Using Microwave-Assisted Continuous-Flow Organic Synthesis (MACOS) (Chem. Eur. J. 1/2010). Chemistry - A European Journal, 2010, 16, 2-2.	1.7	1
140	Intelligent Multidimensional Purity Analysis and Confirmation Tool for Multiple Attribute Analysis. Analytical Chemistry, 2021, 93, 3905-3913.	3.2	1
141	NaBHT Generated <i>In Situ</i> from BHT and NaO <i>t</i> Bu: Crystallographic Characterization and Applications in Buchwald–Hartwig Amination. Organometallics, 2021, 40, 3276-3290.	1.1	1
142	The Effect of Vicinyl Olefinic Halogens on Cross-Coupling Reactions Using Pd(0) Catalysis ChemInform, 2005, 36, no.	0.1	0
143	Catalysis and Multi-Component Reactions. Advances in Experimental Medicine and Biology, 2011, , 1-29.	0.8	0
144	Inside Cover: Identification of a Higherâ€Order Organozincate Intermediate Involved in Negishi Crossâ€Coupling Reactions by Mass Spectrometry and NMR Spectroscopy (Chem. Eur. J. 28/2011). Chemistry - A European Journal, 2011, 17, 7706-7706.	1.7	0

#	Article	IF	CITATIONS
145	Frontispiece: The Selective Cross-Coupling of Secondary Alkyl Zinc Reagents to Five-Membered-Ring Heterocycles Using Pd-PEPPSI-IHeptCl. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	7.2	Ο
146	Frontispiz: The Selective Cross-Coupling of Secondary Alkyl Zinc Reagents to Five-Membered-Ring Heterocycles Using Pd-PEPPSI-IHeptCl. Angewandte Chemie, 2015, 127, n/a-n/a.	1.6	0
147	Impact of Nâ€Aryl―and NHC Core‣ubstituents on the Coupling of Alkylzinc Nucleophiles: Is Bigger always Better?. Chemistry - A European Journal, 2022, , .	1.7	Ο