
Rafael Lucena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4609924/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Woodenâ€based materials: Ecoâ€friendly materials for direct mass spectrometric analysis and microextraction. Journal of Separation Science, 2022, 45, 223-232.	2.5	9
2	Portable stirring device for the on-site extraction of environmental waters using magnetic hydrophilic-lipophilic balance tape. Analytica Chimica Acta, 2022, 1189, 339186.	5.4	11
3	Polymeric nanocomposites as sorbents in environmental water analysis, a close view to the synthesis and potential applications. Current Opinion in Environmental Science and Health, 2022, 25, 100320.	4.1	3
4	Pre-cleaned bare wooden toothpicks for the determination of drugs in oral fluid by mass spectrometry. Analytical and Bioanalytical Chemistry, 2022, 414, 5287-5296.	3.7	10
5	Mechanochemically designed bismuth-based halide perovskites for efficient photocatalytic oxidation of vanillyl alcohol. Journal of Materials Chemistry A, 2022, 10, 11298-11305.	10.3	16
6	Potential of hydrophobic paper-based sorptive phase prepared by in-situ thermal imidization for the extraction of methadone from oral fluid samples. Journal of Chromatography A, 2022, 1675, 463166.	3.7	4
7	Fluorescent Sensors in Food Industry. , 2022, , .		0
8	Polydopamine inner wall-coated hypodermic needle as microextraction device and electrospray emitter for the direct analysis of illicit drugs in oral fluid by ambient mass spectrometry. Talanta, 2022, 249, 123693.	5.5	7
9	Dual-template molecularly imprinted paper for the determination of drugs of abuse in saliva samples by direct infusion mass spectrometry. Microchemical Journal, 2021, 160, 105686.	4.5	27
10	Polyamide-coated wooden tips coupled to direct infusion mass spectrometry, a high throughput alternative for the determination of methadone, cocaine and methamphetamine in oral fluid. Microchemical Journal, 2021, 162, 105843.	4.5	20
11	Polydopamine coated hypodermic needles as a microextraction device for the determination of tricyclic antidepressants in oral fluid by direct infusion MS/MS. RSC Advances, 2021, 11, 22683-22690.	3.6	8
12	Photocatalytic Cellulose-Paper: Deepening in the Sustainable and Synergic Combination of Sorption and Photodegradation. ACS Omega, 2021, 6, 9577-9586.	3.5	11
13	Magnetic paper-based sorptive phase for enhanced mass transference in stir membrane environmental samplers. Talanta, 2021, 228, 122217.	5.5	23
14	Synergistic combination of polyamide-coated paper-based sorptive phase for the extraction of antibiotics in saliva. Analytica Chimica Acta, 2021, 1164, 338512.	5.4	14
15	Unmodified cellulose filter paper, a sustainable and affordable sorbent for the isolation of biogenic amines from beer samples. Journal of Chromatography A, 2021, 1651, 462297.	3.7	20
16	Fan-based device for integrated air sampling and microextraction. Talanta, 2021, 230, 122290.	5.5	5
17	Carbon fibers as green and sustainable sorbent for the extraction of isoflavones from environmental waters. Talanta, 2021, 233, 122582.	5.5	8
18	Direct coupling of MEPS to ESI-QqTOF-MS for the simultaneous analysis of tricyclic antidepressants and benzodiazepines in postmortem blood. Microchemical Journal, 2021, 171, 106797.	4.5	14

#	Article	IF	CITATIONS
19	A paper-based polystyrene/nylon Janus platform for the microextraction of UV filters in water samples as proof-of-concept. Mikrochimica Acta, 2021, 188, 391.	5.0	10
20	Miniaturized solid-phase extraction. , 2021, , 13-31.		1
21	Selectivity-enhanced sorbents. , 2021, , 229-252.		1
22	Switchable solvents. , 2021, , 453-470.		1
23	Membrane sorptive phases. , 2021, , 199-228.		2
24	Ionic liquids. , 2021, , 427-451.		5
25	Polymeric nanocomposites. , 2021, , 377-392.		0
26	Unconfined liquid-phase microextraction. , 2021, , 79-96.		0
27	Direct coupling of microextraction with instrumental techniques. , 2021, , 159-198.		1
28	Analytical sample treatment: basics and trends. , 2021, , 1-11.		0
29	Solid-phase microextraction. , 2021, , 33-77.		0
30	Polymeric ionic liquid immobilized onto paper as sorptive phase in microextraction. Analytica Chimica Acta, 2020, 1094, 47-56.	5.4	42
31	Particle loaded membranes. , 2020, , 341-354.		1
32	Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles—The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET. Applied Catalysis B: Environmental, 2020, 260, 118110.	20.2	94
33	Microextraction approaches for bioanalytical applications: An overview. Journal of Chromatography A, 2020, 1616, 460790.	3.7	58
34	Heracleum Persicum based biosorbent for the removal of paraquat and diquat from waters. Journal of Environmental Chemical Engineering, 2020, 8, 104481.	6.7	15
35	Paper-based sorptive phases for microextraction and sensing. Analytical Methods, 2020, 12, 3074-3091.	2.7	21
36	Silver nanoflower-coated paper as dual substrate for surface-enhanced Raman spectroscopy and ambient pressure mass spectrometry analysis. Analytical and Bioanalytical Chemistry, 2020, 412, 3547-3557.	3.7	35

#	Article	IF	CITATIONS
37	Cotton fibers functionalized with β-cyclodextrins as selectivity enhancer for the direct infusion mass spectrometric determination of cocaine and methamphetamine in saliva samples. Analytica Chimica Acta, 2020, 1126, 133-143.	5.4	14
38	Returning to Nature for the Design of Sorptive Phases in Solid-Phase Microextraction. Separations, 2020, 7, 2.	2.4	39
39	Effervescence-Assisted Microextraction—One Decade of Developments. Molecules, 2020, 25, 6053.	3.8	23
40	Portable stir membrane device for on-site environmental sampling and extraction. Journal of Chromatography A, 2019, 1606, 360359.	3.7	15
41	Ultra-trace tellurium preconcentration and speciation analysis in environmental samples with a novel magnetic polymeric ionic liquid nanocomposite and magnetic dispersive micro-solid phase extraction with flow-injection hydride generation atomic fluorescence spectrometry detection. Spectrochimica Acta. Part B: Atomic Spectroscopy. 2019. 162. 105705.	2.9	27
42	Recycled polystyrene-cotton composites, giving a second life to plastic residues for environmental remediation. Journal of Environmental Chemical Engineering, 2019, 7, 103424.	6.7	15
43	Magnetic Polyamide Nanocomposites for the Microextraction of Benzophenones from Water Samples. Molecules, 2019, 24, 953.	3.8	6
44	Molecularly imprinted paper-based analytical device obtained by a polymerization-free synthesis. Sensors and Actuators B: Chemical, 2019, 287, 138-146.	7.8	38
45	A high thermally stable oligomer-based supramolecular solvent for universal headspace Gas Chromatography: Proof-of-principle determination of residual solvents in drugs. Analytica Chimica Acta, 2019, 1046, 132-139.	5.4	17
46	Dispersive micro-solid phase extraction. TrAC - Trends in Analytical Chemistry, 2019, 112, 226-233.	11.4	242
47	Lab-on-a-Valve Mesofluidic Platform for On-Chip Handling of Carbon-Coated Titanium Dioxide Nanotubes in a Disposable Microsolid Phase-Extraction Mode. Analytical Chemistry, 2018, 90, 4783-4791.	6.5	6
48	Melamine Sponge Functionalized with Urea-Formaldehyde Co-Oligomers as a Sorbent for the Solid-Phase Extraction of Hydrophobic Analytes. Molecules, 2018, 23, 2595.	3.8	13
49	Efficient combined sorption/photobleaching of dyes promoted by cellulose/titania-based nanocomposite films. Journal of Cleaner Production, 2018, 194, 167-173.	9.3	32
50	Carbon Nanohorn Suprastructures on a Paper Support as a Sorptive Phase. Molecules, 2018, 23, 1252.	3.8	35
51	Tunable Polarity Carbon Fibers, a Holistic Approach to Environmental Protection. Molecules, 2018, 23, 1026.	3.8	9
52	Silica nanoparticles–nylon 6 composites: synthesis, characterization and potential use as sorbent. RSC Advances, 2017, 7, 2308-2314.	3.6	32
53	Integrated sampling and analysis unit for the determination of sexual pheromones in environmental air using fabric phase sorptive extraction and headspace-gas chromatography–mass spectrometry. Journal of Chromatography A, 2017, 1488, 17-25.	3.7	27
54	Recycling polymer residues to synthesize magnetic nanocomposites for dispersive micro-solid phase extraction. Talanta, 2017, 170, 451-456.	5.5	19

#	Article	IF	CITATIONS
55	Paper supported polystyrene membranes for thin film microextraction. Microchemical Journal, 2017, 133, 90-95.	4.5	60
56	Synthesis of magnetic polymeric ionic liquid nanocomposites by the Radziszewski reaction. RSC Advances, 2017, 7, 42979-42985.	3.6	23
57	Determination of the Three Main Components of the Grapevine Moth Pest Pheromone in Grape-Related Samples by Headspace-Gas Chromatography-Mass Spectrometry. Separations, 2017, 4, 31.	2.4	3
58	Ionic Liquids in Sample Preparation. Comprehensive Analytical Chemistry, 2017, , 203-224.	1.3	6
59	Recent Advances in Extraction and Stirring Integrated Techniques. Separations, 2017, 4, 6.	2.4	42
60	Magnetic nanoparticles coated with ionic liquid for the extraction of endocrine disrupting compounds from waters. Microchemical Journal, 2016, 128, 347-353.	4.5	60
61	Electrospun nanofibers as sorptive phases in microextraction. TrAC - Trends in Analytical Chemistry, 2016, 84, 3-11.	11.4	39
62	Determination of propranolol and carvedilol in urine samples using a magnetic polyamide composite and LC–MS/MS. Bioanalysis, 2016, 8, 2115-2123.	1.5	11
63	In-syringe dispersive micro-solid phase extraction using carbon fibres for the determination of chlorophenols in human urine by gas chromatography/mass spectrometry. Journal of Chromatography A, 2016, 1464, 42-49.	3.7	37
64	Selective extraction of Bactrocera oleae sexual pheromone from olive oil by dispersive magnetic microsolid phase extraction using a molecularly imprinted nanocomposite. Journal of Chromatography A, 2016, 1455, 57-64.	3.7	26
65	Dispersive micro-solid phase extraction of bisphenol A from milk using magnetic nylon 6 composite and its final determination by HPLC-UV. Microchemical Journal, 2016, 124, 751-756.	4.5	75
66	Use of switchable hydrophilicity solvents for the homogeneous liquid–liquid microextraction of triazine herbicides from environmental water samples. Journal of Separation Science, 2015, 38, 990-995.	2.5	79
67	Octadecyl functionalized core–shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites. Journal of Chromatography A, 2015, 1393, 18-25.	3.7	23
68	Green detection of the olive fruit fly pest by the direct determination of its sexual pheromone. Analytical Methods, 2015, 7, 7228-7233.	2.7	4
69	Polymer–nanoparticles composites in bioanalytical sample preparation. Bioanalysis, 2015, 7, 1723-1730.	1.5	28
70	Determination of urinary 5-hydroxyindoleacetic acid by combining Dμ-SPE using carbon coated TiO ₂ nanotubes and LC–MS/MS. Bioanalysis, 2015, 7, 2857-2867.	1.5	4
71	Stir fabric phase sorptive extraction for the determination of triazine herbicides in environmental waters by liquid chromatography. Journal of Chromatography A, 2015, 1376, 35-45.	3.7	81
72	Use of switchable solvents in the microextraction context. Talanta, 2015, 131, 645-649.	5.5	114

#	Article	IF	CITATIONS
73	Determination of Tuta absoluta pheromones in water and tomato samples by headspace–gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry, 2015, 407, 795-802.	3.7	3
74	Making biosamples compatible with instrumental analysis. Journal of Applied Bioanalysis, 2015, 1, 72-75.	0.2	7
75	Carbon coated titanium dioxide nanotubes: Synthesis, characterization and potential application as sorbents in dispersive micro solid phase extraction. Journal of Chromatography A, 2014, 1343, 26-32.	3.7	35
76	Effervescence assisted dispersive liquid–liquid microextraction with extractant removal by magnetic nanoparticles. Analytica Chimica Acta, 2014, 807, 61-66.	5.4	95
77	Magnetic nanoparticles-nylon 6 composite for the dispersive micro solid phase extraction of selected polycyclic aromatic hydrocarbons from water samples. Journal of Chromatography A, 2014, 1345, 43-49.	3.7	66
78	A quantitative model to assess Social Responsibility in Environmental Science and Technology. Science of the Total Environment, 2014, 466-467, 40-46.	8.0	5
79	Microextraction techniques. Analytical and Bioanalytical Chemistry, 2014, 406, 1999-2000.	3.7	14
80	UV-polymerized butyl methacrylate monoliths with embedded carboxylic single-walled carbon nanotubes for CEC applications. Analytical and Bioanalytical Chemistry, 2014, 406, 6329-6336.	3.7	19
81	Titanium-dioxide nanotubes as sorbents in (micro)extraction techniques. TrAC - Trends in Analytical Chemistry, 2014, 62, 37-45.	11.4	39
82	Micro-solid phase extraction based on oxidized single-walled carbon nanohorns immobilized on a stir borosilicate disk: Application to the preconcentration of the endocrine disruptor benzophenone-3. Microchemical Journal, 2014, 115, 87-94.	4.5	33
83	Stir-membrane solid–liquid–liquid microextraction for the determination of parabens in human breast milk samples by ultra high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A, 2014, 1354, 26-33.	3.7	39
84	Stir octadecyl-modified borosilicate disk for the liquid phase microextraction of triazine herbicides from environmental waters. Journal of Chromatography A, 2013, 1307, 58-65.	3.7	23
85	Synergistic relationships between Analytical Chemistry and written standards. Analytica Chimica Acta, 2013, 788, 1-7.	5.4	10
86	Effervescence-assisted carbon nanotubes dispersion for the micro-solid-phase extraction of triazine herbicides from environmental waters. Analytical and Bioanalytical Chemistry, 2013, 405, 3269-3277.	3.7	66
87	Determination of parabens in waters by magnetically confined hydrophobic nanoparticle microextraction coupled to gas chromatography/mass spectrometry. Microchemical Journal, 2013, 110, 643-648.	4.5	43
88	Hybridization of commercial polymeric microparticles and magnetic nanoparticles for the dispersive micro-solid phase extraction of nitroaromatic hydrocarbons from water. Journal of Chromatography A, 2013, 1271, 50-55.	3.7	48
89	Teaching Social Responsibility in Analytical Chemistry. Analytical Chemistry, 2013, 85, 6152-6161.	6.5	14
90	lonic liquid coated magnetic nanoparticles for the gas chromatography/mass spectrometric determination of polycyclic aromatic hydrocarbons in waters. Journal of Chromatography A, 2013, 1300, 134-140.	3.7	80

#	Article	IF	CITATIONS
91	Magnetically confined hydrophobic nanoparticles for the microextraction of endocrine-disrupting phenols from environmental waters. Analytical and Bioanalytical Chemistry, 2013, 405, 2729-2734.	3.7	13
92	Dispersive micro-solid phase extraction with ionic liquid-modified silica for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchemical Journal, 2013, 106, 311-317.	4.5	91
93	Stir-membrane liquid microextraction for the determination of paracetamol in human saliva samples. Bioanalysis, 2013, 5, 307-315.	1.5	16
94	Stir frit microextraction: An approach for the determination of volatile compounds in water by headspace-gas chromatography/mass spectrometry. Journal of Chromatography A, 2012, 1251, 10-15.	3.7	10
95	Extraction and stirring integrated techniques: examples and recent advances. Analytical and Bioanalytical Chemistry, 2012, 403, 2213-2223.	3.7	67
96	Determination of non-steroidal anti-inflammatory drugs in urine by the combination of stir membrane liquid–liquid–liquid microextraction and liquid chromatography. Analytical and Bioanalytical Chemistry, 2012, 403, 2583-2589.	3.7	35
97	Ionic liquid based in situ solvent formation microextraction coupled to thermal desorption for chlorophenols determination in waters by gas chromatography/mass spectrometry. Journal of Chromatography A, 2012, 1229, 48-54.	3.7	53
98	Direct coupling of dispersive micro-solid phase extraction and thermal desorption for sensitive gas chromatographic analysis. Analytical Methods, 2011, 3, 991.	2.7	21
99	Nanoparticle-based microextraction techniques in bioanalysis. Bioanalysis, 2011, 3, 2533-2548.	1.5	32
100	Sample treatments based on dispersive (micro)extraction. Analytical Methods, 2011, 3, 1719.	2.7	75
101	Sample Treatments Based on Ionic Liquids. , 2011, , .		0
102	Effervescence-assisted dispersive micro-solid phase extraction. Journal of Chromatography A, 2011, 1218, 9128-9134.	3.7	68
103	Stir membrane liquid–liquid microextraction. Journal of Chromatography A, 2011, 1218, 869-874.	3.7	45
104	Potential of nanoparticles in sample preparation. Journal of Chromatography A, 2011, 1218, 620-637.	3.7	199
105	Determination of phenols in waters by stir membrane liquid–liquid–liquid microextraction coupled to liquid chromatography with ultraviolet detection. Journal of Chromatography A, 2011, 1218, 2176-2181.	3.7	76
106	Sensitive determination of polycyclic aromatic hydrocarbons in water samples using monolithic capillary solid-phase extraction and on-line thermal desorption prior to gas chromatography–mass spectrometry. Journal of Chromatography A, 2011, 1218, 1802-1807.	3.7	24
107	Highly selective and non-conventional sorbents for the determination of biomarkers in urine by liquid chromatography. Analytical and Bioanalytical Chemistry, 2010, 397, 1029-1038.	3.7	11
108	Sensitive in-surface infrared monitoring coupled to stir membrane extraction for the selective determination of total hydrocarbon index in waters. Analytical and Bioanalytical Chemistry, 2010, 398, 1427-1433.	3.7	20

#	Article	IF	CITATIONS
109	The roles of ionic liquids in sorptive microextraction techniques. TrAC - Trends in Analytical Chemistry, 2010, 29, 602-616.	11.4	159
110	Surfactant-coated carbon nanotubes for the liquid–liquid extraction of phthalates and other migrants in virgin olive oils. Analytical and Bioanalytical Chemistry, 2009, 395, 737-746.	3.7	26
111	Sorptive microextraction for liquid-chromatographic determination of drugs in urine. TrAC - Trends in Analytical Chemistry, 2009, 28, 1164-1173.	11.4	43
112	Determination of phenothiazine derivatives in human urine by using ionic liquid-based dynamic liquid-phase microextraction coupled with liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 37-42.	2.3	62
113	Ionic liquid-based single drop microextraction and room-temperature gas chromatography for on-site ion mobility spectrometric analysis. Journal of Chromatography A, 2009, 1216, 5580-5587.	3.7	67
114	One-step in-syringe ionic liquid-based dispersive liquid–liquid microextraction. Journal of Chromatography A, 2009, 1216, 6459-6465.	3.7	147
115	Stir Membrane Extraction: A Useful Approach for Liquid Sample Pretreatment. Analytical Chemistry, 2009, 81, 8957-8961.	6.5	66
116	Liquid-phase microextraction in bioanalytical sample preparation. Bioanalysis, 2009, 1, 135-149.	1.5	53
117	Dispersive Solid Phase Extraction for In-Sorbent Surface Attenuated Total Reflection Infrared Detection. Analytical Chemistry, 2009, 81, 1184-1190.	6.5	36
118	Combined use of carbon nanotubes and ionic liquid to improve the determination of antidepressants in urine samples by liquid chromatography. Analytical and Bioanalytical Chemistry, 2008, 391, 1139-1145.	3.7	69
119	Determination of trihalomethanes in waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometry. Journal of Chromatography A, 2008, 1209, 76-82.	3.7	71
120	Carbon nanostructures as sorbent materials in analytical processes. TrAC - Trends in Analytical Chemistry, 2008, 27, 34-43.	11.4	287
121	Ionic liquid-based single-drop microextraction/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene and xylene isomers in waters. Journal of Chromatography A, 2008, 1201, 106-111.	3.7	125
122	Ionic liquid-based dynamic liquid-phase microextraction: Application to the determination of anti-inflammatory drugs in urine samples. Journal of Chromatography A, 2008, 1202, 1-7.	3.7	71
123	Direct Coupling of Ionic Liquid Based Single-Drop Microextraction and GC/MS. Analytical Chemistry, 2008, 80, 793-800.	6.5	144
124	Characterization of an Attenuated Total Reflection-Based Sensor for Integrated Solid-Phase Extraction and Infrared Detection. Analytical Chemistry, 2008, 80, 1146-1151.	6.5	21
125	Surfactant-coated carbon nanotubes as pseudophases in liquid–liquid extraction. Analyst, The, 2007, 132, 551-559.	3.5	45
126	Continuous flow configuration for total hydrocarbons index determination in soils by evaporative light scattering detection. Journal of Chromatography A, 2007, 1141, 302-307.	3.7	7

#	Article	IF	CITATIONS
127	Liquid–liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene, (0-, m- and p-)xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant. Journal of Chromatography A, 2007, 1171, 1-7.	3.7	46
128	Fast urinary screening for imipramine and desipramine using on-line solid-phase extraction and selective derivatization. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 857, 275-280.	2.3	12
129	Evaporative light scattering detection: trends in its analytical uses. Analytical and Bioanalytical Chemistry, 2007, 388, 1663-1672.	3.7	54
130	ATR-FTIR membrane-based sensor for the simultaneous determination of surfactant and oil total indices in industrial degreasing baths. Analyst, The, 2006, 131, 415-421.	3.5	17
131	Continuous flow configuration for total grease and surfactant determination in industrial degreasing baths. Analytica Chimica Acta, 2006, 561, 78-82.	5.4	6
132	Statistical intervals to validate an autoanalyzer for monitoring the exhaustion of alkaline degreasing baths. Analytica Chimica Acta, 2006, 569, 260-266.	5.4	2
133	Continuous autoanalyzer for the evaluation of the exhaustion of industrial degreasing baths based on the determination of total grease and surfactant contents. Journal of Chromatography A, 2006, 1104, 18-22.	3.7	7
134	Robustness in qualitative analysis: a practical approach. TrAC - Trends in Analytical Chemistry, 2006, 25, 621-627.	11.4	20
135	Continuous flow autoanalyzer for the sequential determination of total sugars, colorant and caffeine contents in soft drinks. Analytica Chimica Acta, 2005, 530, 283-289.	5.4	20
136	Autoanalyzer for continuous fractionation and quantitation of the polyphenols content in wines. Journal of Chromatography A, 2005, 1081, 127-131.	3.7	10
137	ATR-FT-IR Membrane-Based Sensor for Integrated Microliquidâ^'Liquid Extraction and Detection. Analytical Chemistry, 2005, 77, 7472-7477.	6.5	10
138	Multipurpose chamber for the implementation of gas diffusion, dialysis, solid-phase extraction and precipitation/dissolution in continuous flow analyzers. Analytica Chimica Acta, 2004, 509, 47-54.	5.4	5
139	Autoanalyzer for Milk Quality Control Based on the Lactose, Fat, and Total Protein Contents. Analytical Chemistry, 2003, 75, 1425-1429.	6.5	19
140	Solid Phase (Micro)extraction Tools Based on Carbon Nanotubes and Related Nanostructures. , 0, , .		1
141	Flow Processing Devices Coupled to Discrete Sample Introduction Instruments. , 0, , 265-290.		0