Yukio Yoneda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4609403/publications.pdf Version: 2024-02-01

		30551	68831
372	11,176	56	81
papers	citations	h-index	g-index
391	391	391	11675
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	RUNX2 regulates leukemic cell metabolism and chemotaxis in high-risk T cell acute lymphoblastic leukemia. Journal of Clinical Investigation, 2021, 131, .	3.9	20
2	Core Binding Factors are essential for ovulation, luteinization, and female fertility in mice. Scientific Reports, 2020, 10, 9921.	1.6	10
3	Selective Upregulation by Theanine of Slc38a1 Expression in Neural Stem Cell for Brain Wellness. Molecules, 2020, 25, 347.	1.7	5
4	Protective Potential of Ginkgo biloba Against an ADHD-like Condition. Current Molecular Pharmacology, 2020, 14, 200-209.	0.7	6
5	Prophylactic Pharmacology for Preemptive Medicine. Current Molecular Pharmacology, 2020, 14, 113-114.	0.7	0
6	The role of glutamine in neurogenesis promoted by the green tea amino acid theanine in neural progenitor cells for brain health. Neurochemistry International, 2019, 129, 104505.	1.9	20
7	Inhibition of the glutamine transporter SNAT1 confers neuroprotection in mice by modulating the mTOR-autophagy system. Communications Biology, 2019, 2, 346.	2.0	26
8	Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochemistry International, 2019, 124, 162-170.	1.9	18
9	Theanine attenuates memory impairments induced by klotho gene depletion in mice. Food and Function, 2019, 10, 325-332.	2.1	15
10	Kazuhiro Ikenaka (1952–2018). Journal of Neurochemistry, 2019, 149, 158-159.	2.1	0
11	Protective potentials of far-infrared ray against neuropsychotoxic conditions. Neurochemistry International, 2019, 122, 144-148.	1.9	8
12	Alleviation by GABAB Receptors of Neurotoxicity Mediated by Mitochondrial Permeability Transition Pore in Cultured Murine Cortical Neurons Exposed to N-Methyl-d-aspartate. Neurochemical Research, 2018, 43, 79-88.	1.6	5
13	The MAPK Erk5 is necessary for proper skeletogenesis through a molecular axis that involves Smurfs-Smads-Sox9. Development (Cambridge), 2018, 145, .	1.2	29
14	Special Issue Dedicated to Dr. Kazuhiro Ikenaka. Neurochemical Research, 2018, 43, 1-2.	1.6	12
15	Core Binding Factor Î ² Expression in Ovarian Granulosa Cells Is Essential for Female Fertility. Endocrinology, 2018, 159, 2094-2109.	1.4	27
16	The transcriptional modulator Ifrd1 controls <scp>PGC</scp> ″α expression under shortâ€ŧerm adrenergic stimulation in brown adipocytes. FEBS Journal, 2017, 284, 784-795.	2.2	12
17	The role of system Xc â~' in methamphetamine-induced dopaminergic neurotoxicity in mice. Neurochemistry International, 2017, 108, 254-265.	1.9	16
18	Deletion of Runx2 in Articular Chondrocytes Decelerates the Progression of DMM-Induced Osteoarthritis in Adult Mice. Scientific Reports, 2017, 7, 2371.	1.6	74

#	Article	IF	CITATIONS
19	An l-Glutamine Transporter Isoform for Neurogenesis Facilitated by l-Theanine. Neurochemical Research, 2017, 42, 2686-2697.	1.6	14
20	Bone Resorption Is Regulated by Circadian Clock in Osteoblasts. Journal of Bone and Mineral Research, 2017, 32, 872-881.	3.1	81
21	Disruption of Bmal1 Impairs Blood–Brain Barrier Integrity via Pericyte Dysfunction. Journal of Neuroscience, 2017, 37, 10052-10062.	1.7	83
22	The intrinsic microglial clock system regulates interleukinâ€6 expression. Glia, 2017, 65, 198-208.	2.5	56
23	NMDA Receptor in Bone. , 2017, , 135-148.		2
24	Transcriptional Modulator Ifrd1 Regulates Osteoclast Differentiation through Enhancing the NF-κB/NFATc1 Pathway. Molecular and Cellular Biology, 2016, 36, 2451-2463.	1.1	21
25	The Transcriptional Modulator Interferon-Related Developmental Regulator 1 in Osteoblasts Suppresses Bone Formation and Promotes Bone Resorption. Journal of Bone and Mineral Research, 2016, 31, 573-584.	3.1	23
26	ATF3 deficiency in chondrocytes alleviates osteoarthritis development. Journal of Pathology, 2016, 239, 426-437.	2.1	40
27	ATF3 controls proliferation of osteoclast precursor and bone remodeling. Scientific Reports, 2016, 6, 30918.	1.6	27
28	Possible activation by the green tea amino acid theanine of mammalian target of rapamycin signaling in undifferentiated neural progenitor cells in vitro. Biochemistry and Biophysics Reports, 2016, 5, 89-95.	0.7	10
29	GDF1 is a novel mediator of macrophage infiltration in brown adipose tissue of obese mice. Biochemistry and Biophysics Reports, 2016, 5, 216-223.	0.7	4
30	Protective upregulation of activating transcription factorâ€3 against glutamate neurotoxicity in neuronal cells under ischemia. Journal of Neuroscience Research, 2016, 94, 378-388.	1.3	11
31	Upregulation of Slc38a1 Gene Along with Promotion of Neurosphere Growth and Subsequent Neuronal Specification in Undifferentiated Neural Progenitor Cells Exposed to Theanine. Neurochemical Research, 2016, 41, 5-15.	1.6	11
32	Upregulation of Runtâ€Related Transcription Factorâ€2 Through CCAAT Enhancer Binding Proteinâ€Î² Signaling Pathway in Microglial BVâ€2 Cells Exposed to ATP. Journal of Cellular Physiology, 2015, 230, 2510-2521.	2.0	9
33	Potential Interactions of Calcium-Sensitive Reagents with Zinc Ion in Different Cultured Cells. PLoS ONE, 2015, 10, e0127421.	1.1	8
34	Genetic analysis of Runx2 function during intramembranous ossification. Development (Cambridge), 2015, 143, 211-8.	1.2	74
35	Daily intake of β-cryptoxanthin prevents bone loss by preferential disturbance of osteoclastic activation in ovariectomized mice. Journal of Pharmacological Sciences, 2015, 129, 72-77.	1.1	32
36	Daily oral intake of theanine prevents the decline of 5-bromo-2â€ ² -deoxyuridine incorporation in hippocampal dentate gyrus with concomitant alleviation of behavioral abnormalities in adult mice with severe traumatic stress. Journal of Pharmacological Sciences, 2015, 127, 292-297.	1.1	13

#	Article	IF	CITATIONS
37	Growth Differentiation Factor-5 Promotes Brown Adipogenesis in Systemic Energy Expenditure. Diabetes, 2014, 63, 162-175.	0.3	60
38	Constitutive and functional expression of runt-related transcription factor-2 by microglial cells. Neurochemistry International, 2014, 74, 24-35.	1.9	9
39	Nuclear factor-κB is a common upstream signal for growth differentiation factor-5 expression in brown adipocytes exposed to pro-inflammatory cytokines and palmitate. Biochemical and Biophysical Research Communications, 2014, 452, 974-979.	1.0	9
40	PI3K/Akt is involved in brown adipogenesis mediated by growth differentiation factor-5 in association with activation of the Smad pathway. Biochemical and Biophysical Research Communications, 2014, 450, 255-260.	1.0	33
41	Insulin Sensitization by a Novel Partial Peroxisome Proliferator-Activated Receptor Î ³ Agonist With Protein Tyrosine Phosphatase 1B Inhibitory Activity in Experimental Osteoporotic Rats. Journal of Pharmacological Sciences, 2014, 124, 276-285.	1.1	13
42	Crosstalk between brain-derived neurotrophic factor and N-methyl-D-aspartate receptor signaling in neurons. Biomedical Reviews, 2014, 19, 17.	0.6	6
43	Repression of adipogenesis through promotion of Wnt/β-catenin signaling by TIS7 up-regulated in adipocytes under hypoxia. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1117-1128.	1.8	23
44	Neuropsychiatric systemic lupus erythematosus: pathophysiology and the future of treatment. International Journal of Clinical Rheumatology, 2013, 8, 585-595.	0.3	0
45	An analysis of skeletal development in osteoblast-specific and chondrocyte-specific runt-related transcription factor-2 (Runx2) knockout mice. Journal of Bone and Mineral Research, 2013, 28, 2064-2069.	3.1	145
46	Prevention of Bone Loss after Ovariectomy in Mice with Preferential Overexpression of the Transcription Factor Paired Box-5 in Osteoblasts. Biological and Pharmaceutical Bulletin, 2013, 36, 481-484.	0.6	5
47	In Vivo and In Vitro Treatment With Edaravone Promotes Proliferation of Neural Progenitor Cells Generated Following Neuronal Loss in the Mouse Dentate Gyrus. Journal of Pharmacological Sciences, 2013, 121, 74-83.	1.1	14
48	A Negative Correlation Between Per1 and Sox6 Expression During Chondrogenic Differentiation in Pre-chondrocytic ATDC5 Cells. Journal of Pharmacological Sciences, 2013, 122, 318-325.	1.1	11
49	Myosin VI Reduces Proliferation, but Not Differentiation, in Pluripotent P19 Cells. PLoS ONE, 2013, 8, e63947.	1.1	6
50	Selective Inhibition by Ethanol of Mitochondrial Calcium Influx Mediated by Uncoupling Protein-2 in Relation to N-Methyl-D-Aspartate Cytotoxicity in Cultured Neurons. PLoS ONE, 2013, 8, e69718.	1.1	14
51	Clock Genes Influence Gene Expression in Growth Plate and Endochondral Ossification in Mice. Journal of Biological Chemistry, 2012, 287, 36081-36095.	1.6	81
52	Positive Regulation by Î ³ -Aminobutyric Acid B Receptor Subunit-1 of Chondrogenesis through Acceleration of Nuclear Translocation of Activating Transcription Factor-4. Journal of Biological Chemistry, 2012, 287, 33293-33303.	1.6	14
53	Amelioration by the Natural Polyamine Spermine of Cartilage and Bone Destruction in Rats With Collagen-Induced Arthritis. Journal of Pharmacological Sciences, 2012, 119, 107-111.	1.1	14
54	Delayed Mitochondrial Membrane Potential Disruption by ATP in Cultured Rat Hippocampal Neurons Exposed to <i>N</i> -Methyl-D-Aspartate. Journal of Pharmacological Sciences, 2012, 119, 20-29.	1.1	5

#	Article	IF	CITATIONS
55	Possible Modulation of Process Extension by <i>N</i> -Methyl-D-aspartate Receptor Expressed in Osteocytic MLO-Y4 Cells. Journal of Pharmacological Sciences, 2012, 119, 112-116.	1.1	7
56	The transcription factor paired box-5 promotes osteoblastogenesis through direct induction of <i>Osterix</i> and <i>Osteocalcin</i> . Journal of Bone and Mineral Research, 2012, 27, 2526-2534.	3.1	15
57	The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice. British Journal of Pharmacology, 2012, 166, 1084-1096.	2.7	63
58	Transferrin receptor-1 suppresses neurite outgrowth in neuroblastoma Neuro2A cells. Neurochemistry International, 2012, 60, 448-457.	1.9	20
59	Possible involvement of mitochondrial uncoupling protein-2 in cytotoxicity mediated by acquired N-methyl-d-aspartate receptor channels. Neurochemistry International, 2012, 61, 498-505.	1.9	7
60	Pharmacological characterization of lysophosphatidic acidâ€induced pain with clinically relevant neuropathic pain drugs. European Journal of Pain, 2012, 16, 994-1004.	1.4	10
61	Extracellular Superoxide Dismutase in Cultured Astrocytes: Decrease in Cell-Surface Activity and Increase in Medium Activity by Lipopolysaccharide-Stimulation. Neurochemical Research, 2012, 37, 2108-2116.	1.6	9
62	Osteoclastogenesis is negatively regulated by <scp>D</scp> â€serine produced by osteoblasts. Journal of Cellular Physiology, 2012, 227, 3477-3487.	2.0	12
63	Possible neuroprotective property of nicotinic acetylcholine receptors in association with predominant upregulation of glial cell lineâ€derived neurotrophic factor in astrocytes. Journal of Neuroscience Research, 2012, 90, 2074-2085.	1.3	30
64	Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia. Journal of Bone and Mineral Research, 2012, 27, 938-949.	3.1	69
65	Protective potential of IL-6 against trimethyltin-induced neurotoxicity in vivo. Free Radical Biology and Medicine, 2012, 52, 1159-1174.	1.3	58
66	Promoted Neuronal Differentiation after Activation of Alpha4/Beta2 Nicotinic Acetylcholine Receptors in Undifferentiated Neural Progenitors. PLoS ONE, 2012, 7, e46177.	1.1	26
67	Promotion of Both Proliferation and Neuronal Differentiation in Pluripotent P19 Cells with Stable Overexpression of the Glutamine Transporter slc38a1. PLoS ONE, 2012, 7, e48270.	1.1	24
68	Artificial orchestration of functional NMDAR channels in HEK293 cells. Japanese Journal of Psychopharmacology, 2012, 32, 113-4.	0.3	0
69	Exacerbated vulnerability to oxidative stress in astrocytic C6 glioma cells with stable overexpression of the glutamine transporter slc38a1. Neurochemistry International, 2011, 58, 504-511.	1.9	21
70	Role of oxidative stress in epileptic seizures. Neurochemistry International, 2011, 59, 122-137.	1.9	335
71	A possible pivotal role of mitochondrial free calcium in neurotoxicity mediated by N-methyl-d-aspartate receptors in cultured rat hippocampal neurons. Neurochemistry International, 2011, 59, 10-20.	1.9	18
72	Characterization of YIPF3 and YIPF4, cis-Golgi Localizing Yip Domain Family Proteins. Cell Structure and Function, 2011, 36, 171-185.	0.5	26

#	Article	IF	CITATIONS
73	Positive Regulation by GABABR1 Subunit of Leptin Expression through Gene Transactivation in Adipocytes. PLoS ONE, 2011, 6, e20167.	1.1	15
74	Gradual Downregulation of Protein Expression of the Partner GABABR2 Subunit During Postnatal Brain Development in Mice Defective of GABABR1 Subunit. Journal of Pharmacological Sciences, 2011, 115, 45-55.	1.1	7
75	A Negative Correlation Between Expression Profiles of Runt-Related Transcription Factor-2 and Cystine/Glutamate Antiporter xCT Subunit in Ovariectomized Mouse Bone. Journal of Pharmacological Sciences, 2011, 115, 309-319.	1.1	17
76	Selective Upregulation of Per1 mRNA Expression by ATP Through Activation of P2X7 Purinergic Receptors Expressed in Microglial Cells. Journal of Pharmacological Sciences, 2011, 116, 350-361.	1.1	45
77	Possible Involvement of Glutamatergic Signaling Machineries in Pathophysiology of Rheumatoid Arthritis. Journal of Pharmacological Sciences, 2011, 116, 248-256.	1.1	22
78	Clutamate preferentially suppresses osteoblastogenesis than adipogenesis through the cystine/glutamate antiporter in mesenchymal stem cells. Journal of Cellular Physiology, 2011, 226, 652-665.	2.0	23
79	Negative regulation of osteoblastogenesis through downregulation of runtâ€related transcription factorâ€2 in osteoblastic MC3T3â€E1 cells with stable overexpression of the cystine/glutamate antiporter xCT subunit. Journal of Cellular Physiology, 2011, 226, 2953-2964.	2.0	11
80	NR2-reactive antibody decreases cell viability through augmentation of Ca2+ influx in systemic lupus erythematosus. Arthritis and Rheumatism, 2011, 63, 3952-3959.	6.7	27
81	Osteoblastic γ-Aminobutyric Acid, Type B Receptors Negatively Regulate Osteoblastogenesis toward Disturbance of Osteoclastogenesis Mediated by Receptor Activator of Nuclear Factor IºB Ligand in Mouse Bone. Journal of Biological Chemistry, 2011, 286, 32906-32917.	1.6	29
82	Selective downregulation of N-methyl-D-aspartate receptor (NMDAR) rather than non-NMDAR subunits in ipsilateral cerebral hemispheres in rats with middle cerebral artery occlusion. Japanese Journal of Psychopharmacology, 2011, 31, 187-94.	0.3	1
83	Inhibition by 2-Methoxy-4-ethylphenol of Ca2+ Influx Through Acquired and Native N-Methyl-D-aspartate–Receptor Channels. Journal of Pharmacological Sciences, 2010, 112, 273-281.	1.1	26
84	Cytokine Receptor-Like Factor 1 is Highly Expressed in Damaged Human Knee Osteoarthritic Cartilage and Involved in Osteoarthritis Downstream of TGF-1². Calcified Tissue International, 2010, 86, 47-57.	1.5	33
85	Induced tolerance to glutamate neurotoxicity through downâ€regulation of NR2 subunits of Nâ€methylâ€Dâ€aspartate receptors in cultured rat striatal neurons. Journal of Neuroscience Research, 2010, 88, 2177-2187.	1.3	13
86	Preferential inhibition by antidiarrheic 2â€methoxyâ€4â€methylphenol of Ca ²⁺ influx across acquired Nâ€methylâ€Dâ€aspartate receptor channels composed of NR1/NR2B subunit assembly. Journal of Neuroscience Research, 2010, 88, 2483-2493.	1.3	6
87	ITZ-1, a Client-Selective Hsp90 Inhibitor, Efficiently Induces Heat Shock Factor 1 Activation. Chemistry and Biology, 2010, 17, 18-27.	6.2	25
88	Chronic restraint stress impairs neurogenesis and hippocampusâ€dependent fear memory in mice: possible involvement of a brainâ€specific transcription factor Npas4. Journal of Neurochemistry, 2010, 114, 1840-1851.	2.1	121
89	Requirement of both NR3A and NR3B subunits for dominant negative properties on Ca2+ mobilization mediated by acquired N-methyl-d-aspartate receptor channels into mitochondria. Neurochemistry International, 2010, 57, 730-737.	1.9	12
90	Mapping of regional brain activation in response to fatigue-load and recovery in rats with c-Fos immunohistochemistry. Neuroscience Research, 2010, 66, 372-379.	1.0	28

#	Article	IF	CITATIONS
91	Analysis of properties of NR3 subunits in acquired NMDAR channels. Neuroscience Research, 2010, 68, e223.	1.0	0
92	Combined effect of neonatal immune activation and mutant DISC1 on phenotypic changes in adulthood. Behavioural Brain Research, 2010, 206, 32-37.	1.2	126
93	Clarithromycin Prevents Smoke-induced Emphysema in Mice. American Journal of Respiratory and Critical Care Medicine, 2009, 179, 271-278.	2.5	46
94	Tacrolimus (FK506) suppresses rt-PA-induced hemorrhagic transformation in a rat thrombotic ischemia stroke model. Brain Research, 2009, 1254, 99-108.	1.1	24
95	Transcriptional induction and translational inhibition of Arc and Cugbp2 in mice hippocampus after transient global ischemia under normothermic condition. Brain Research, 2009, 1287, 136-145.	1.1	10
96	Functional expression of β ₂ adrenergic receptors responsible for protection against oxidative stress through promotion of glutathione synthesis after Nrf2 upregulation in undifferentiated mesenchymal C3H10T1/2 stem cells. Journal of Cellular Physiology, 2009, 218, 268-275.	2.0	58
97	Interference with cellular differentiation by <scp>D</scp> â€serine through antagonism at <i>N</i> â€methylâ€ <scp>D</scp> â€aspartate receptors composed of NR1 and NR3A subunits in chondrocytes. Journal of Cellular Physiology, 2009, 220, 756-764.	2.0	28
98	Protection against kainate neurotoxicity by ginsenosides: Attenuation of convulsive behavior, mitochondrial dysfunction, and oxidative stress. Journal of Neuroscience Research, 2009, 87, 710-722.	1.3	35
99	Possible protection by notoginsenoside R1 against glutamate neurotoxicity mediated by Nâ€methylâ€ <scp>D</scp> â€aspartate receptors composed of an NR1/NR2B subunit assembly. Journal of Neuroscience Research, 2009, 87, 2145-2156.	1.3	55
100	Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism. Journal of Neuroscience Research, 2009, 87, 2406-2417.	1.3	24
101	A protein–protein interaction of stressâ€responsive myosin VI endowed to inhibit neural progenitor selfâ€replication with RNA binding protein, TLS, in murine hippocampus. Journal of Neurochemistry, 2009, 110, 1457-1468.	2.1	21
102	Interference by adrenaline with chondrogenic differentiation through suppression of gene transactivation mediated by Sox9 family members. Bone, 2009, 45, 568-578.	1.4	22
103	Behavioral abnormality and pharmacologic response in social isolation-reared mice. Behavioural Brain Research, 2009, 202, 114-121.	1.2	214
104	Transactivation by Runt related factor-2 of matrix metalloproteinase-13 in astrocytes. Neuroscience Letters, 2009, 451, 99-104.	1.0	21
105	Neonatal polyI:C treatment in mice results in schizophrenia-like behavioral and neurochemical abnormalities in adulthood. Neuroscience Research, 2009, 64, 297-305.	1.0	124
106	Predominant Promotion by Tacrolimus of Chondrogenic Differentiation to Proliferating Chondrocytes. Journal of Pharmacological Sciences, 2009, 109, 413-423.	1.1	26
107	Hypocholesterolemic Activity in Lactic Acid Bacteria Isolated from Funazushi. Journal of the Japanese Society for Food Science and Technology, 2009, 56, 177-183.	0.1	8
108	Neonatal Phencyclidine Treatment in Mice Induces Behavioral, Histological and Neurochemical Abnormalities in Adulthood. Biological and Pharmaceutical Bulletin, 2009, 32, 1576-1583.	0.6	61

#	Article	IF	CITATIONS
109	Neurogenesis Mediated by γ-Aminobutyric Acid and Glutamate Signaling. Journal of Pharmacological Sciences, 2009, 110, 133-149.	1.1	59
110	Glutamatergic Signaling In Neurogenesis. , 2009, , 269-288.		0
111	Differential regulation of cellular maturation in chondrocytes and osteoblasts by glycine. Cell and Tissue Research, 2008, 333, 91-103.	1.5	19
112	Theanine, an ingredient of green tea, inhibits [³ H]glutamine transport in neurons and astroglia in rat brain. Journal of Neuroscience Research, 2008, 86, 1846-1856.	1.3	63
113	Promotion of neuronal differentiation through activation of Nâ€methylâ€Dâ€aspartate receptors transiently expressed by undifferentiated neural progenitor cells in fetal rat neocortex. Journal of Neuroscience Research, 2008, 86, 2392-2402.	1.3	23
114	Upâ€regulation of ciliary neurotrophic factor receptor expression by GABA _A receptors in undifferentiated neural progenitors of fetal mouse brain. Journal of Neuroscience Research, 2008, 86, 2615-2623.	1.3	12
115	Serine racemase suppresses chondrogenic differentiation in cartilage in a Sox9â€dependent manner. Journal of Cellular Physiology, 2008, 215, 320-328.	2.0	21
116	Modulation of cellular proliferation and differentiation through GABA _B receptors expressed by undifferentiated neural progenitor cells isolated from fetal mouse brain. Journal of Cellular Physiology, 2008, 216, 507-519.	2.0	49
117	Social isolation rearingâ€induced impairment of the hippocampal neurogenesis is associated with deficits in spatial memory and emotionâ€related behaviors in juvenile mice. Journal of Neurochemistry, 2008, 105, 921-932.	2.1	213
118	Transient suppression of progenitor cell proliferation through NMDA receptors in hippocampal dentate gyrus of mice with traumatic stress experience. Journal of Neurochemistry, 2008, 105, 1642-1655.	2.1	29
119	Insensitivity to glutamate neurotoxicity mediated by NMDA receptors in association with delayed mitochondrial membrane potential disruption in cultured rat cortical neurons. Journal of Neurochemistry, 2008, 105, 1886-1900.	2.1	26
120	Group III metabotropic glutamate receptor activation suppresses selfâ€replication of undifferentiated neocortical progenitor cells. Journal of Neurochemistry, 2008, 105, 1996-2012.	2.1	28
121	A critical importance of polyamine site in NMDA receptors for neurite outgrowth and fasciculation at early stages of P19 neuronal differentiation. Experimental Cell Research, 2008, 314, 2603-2617.	1.2	23
122	Upregulation of Myo6 expression after traumatic stress in mouse hippocampus. Neuroscience Letters, 2008, 433, 183-187.	1.0	15
123	Acidic amino acid tag enhances response to enzyme replacement in mucopolysaccharidosis type VII mice. Molecular Genetics and Metabolism, 2008, 94, 178-189.	0.5	44
124	Pharmacological Topics of Bone Metabolism: Glutamate as a Signal Mediator in Bone. Journal of Pharmacological Sciences, 2008, 106, 536-541.	1.1	28
125	Methoxyflavones protect cells against endoplasmic reticulum stress and neurotoxin. American Journal of Physiology - Cell Physiology, 2007, 292, C353-C361.	2.1	59
126	Tex261 modulates the excitotoxic cell death induced by N-methyl-d-aspartate (NMDA) receptor activation. Biochemical and Biophysical Research Communications, 2007, 362, 1096-1100.	1.0	11

#	Article	IF	CITATIONS
127	Nuclear factor E2 p45-related factor 2 negatively regulates chondrogenesis. Bone, 2007, 40, 337-344.	1.4	56
128	Histone modifications in the brain. Neurochemistry International, 2007, 51, 85-91.	1.9	23
129	Activator protein-1 responsive to the group II metabotropic glutamate receptor subtype in association with intracellular calcium in cultured rat cortical neurons. Neurochemistry International, 2007, 51, 467-475.	1.9	12
130	Glutamate Suppresses Osteoclastogenesis through the Cystine/Glutamate Antiporter. American Journal of Pathology, 2007, 170, 1277-1290.	1.9	40
131	Neural Circuits Containing Pallidotegmental GABAergic Neurons are Involved in the Prepulse Inhibition of the Startle Reflex in Mice. Biological Psychiatry, 2007, 62, 148-157.	0.7	61
132	Upregulation of the glutamine transporter through transactivation mediated by camp/protein kinase a signals toward exacerbation of vulnerability to oxidative stress in rat neocortical astrocytes. Journal of Cellular Physiology, 2007, 212, 375-385.	2.0	19
133	Glutamate is a determinant of cellular proliferation through modulation of nuclear factor E2 p45-related factor-2 expression in osteoblastic MC3T3-E1 cells. Journal of Cellular Physiology, 2007, 213, 105-114.	2.0	14
134	Suppression by glutamate of proliferative activity through glutathione depletion mediated by the cystine/glutamate antiporter in mesenchymal C3H10T1/2 stem cells. Journal of Cellular Physiology, 2007, 213, 721-729.	2.0	24
135	Activation of GABAAreceptors facilitates astroglial differentiation induced by ciliary neurotrophic factor in neural progenitors isolated from fetal rat brain. Journal of Neurochemistry, 2007, 100, 070209222715063-???.	2.1	30
136	Oral administration of phenolic antidiarrheic ingredients prevents ovariectomy-induced bone loss. Biochemical Pharmacology, 2007, 73, 385-393.	2.0	11
137	Cytoprotective properties of phenolic antidiarrheic ingredients in cultured astrocytes and neurons of rat brains. European Journal of Pharmacology, 2007, 567, 59-66.	1.7	7
138	Osteoblast protects osteoclast devoid of sodium-dependent vitamin C transporters from oxidative cytotoxicity of ascorbic acid. European Journal of Pharmacology, 2007, 575, 1-11.	1.7	17
139	Decreased level of mitochondrial RNA by glutamate in cultured cortical neurons. NeuroReport, 2007, 18, 827-830.	0.6	3
140	A rat model of human FENIB (familial encephalopathy with neuroserpin inclusion bodies). Biochemical and Biophysical Research Communications, 2006, 346, 1040-1047.	1.0	7
141	Maturation-dependent reduced responsiveness of intracellular free Ca2+ ions to repeated stimulation by N-methyl-d-aspartate in cultured rat cortical neurons. Neurochemistry International, 2006, 49, 230-237.	1.9	6
142	The magnetism responsive gene Ntan1 in mouse brain. Neurochemistry International, 2006, 49, 334-341.	1.9	8
143	Increased GABA Transport Activity in Rat Calvarial Osteoblasts Cultured under Hyperglycemic Conditions. Biological and Pharmaceutical Bulletin, 2006, 29, 297-301.	0.6	3
144	Histone modifications in kainate-induced status epilepticus. European Journal of Neuroscience, 2006, 23, 1269-1282.	1.2	94

#	Article	IF	CITATIONS
145	Stimulation of ubiquitin?proteasome pathway through the expression of amidohydrolase for N-terminal asparagine (Ntan1) in cultured rat hippocampal neurons exposed to static magnetism. Journal of Neurochemistry, 2006, 96, 1519-1530.	2.1	19
146	Possible expression of a particular gamma-aminobutyric acid transporter isoform responsive to upregulation by hyperosmolarity in rat calvarial osteoblasts. European Journal of Pharmacology, 2006, 550, 24-32.	1.7	4
147	Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. Journal of Neuroscience Research, 2006, 83, 1179-1189.	1.3	126
148	Functional expression of A glutamine transporter responsive to down-regulation by lipopolysaccharide through reduced promoter activity in cultured rat neocortical astrocytes. Journal of Neuroscience Research, 2006, 83, 1447-1460.	1.3	20
149	Evolutional Divergence of the Metabotropic Glutamate Receptor Genes: A New Receptor Belonging to the Metabotropic Glutamate Receptor Family in Dictyostelium discoideum. Current Genomics, 2006, 7, 245-252.	0.7	2
150	A Metabotropic Glutamate Receptor Family Gene in Dictyostelium discoideum. Journal of Biological Chemistry, 2006, 281, 12336-12343.	1.6	26
151	A Molecular Mechanism of Pyruvate Protection against Cytotoxicity of Reactive Oxygen Species in Osteoblasts. Molecular Pharmacology, 2006, 70, 925-935.	1.0	48
152	Up-regulation of per mRNA Expression by Parathyroid Hormone through a Protein Kinase A-CREB-dependent Mechanism in Chondrocytes. Journal of Biological Chemistry, 2006, 281, 23632-23642.	1.6	62
153	Nrf2 Negatively Regulates Osteoblast Differentiation via Interfering with Runx2-dependent Transcriptional Activation. Journal of Biological Chemistry, 2006, 281, 18015-18024.	1.6	140
154	Glutamate Inhibits Chondral Mineralization through Apoptotic Cell Death Mediated by Retrograde Operation of the Cystine/Glutamate Antiporter. Journal of Biological Chemistry, 2006, 281, 24553-24565.	1.6	43
155	Functional Proteins Involved in Regulation of Intracellular Ca2+ for Drug Development: Desensitization of N-Methyl-D-aspartate Receptor Channels. Journal of Pharmacological Sciences, 2005, 97, 348-350.	1.1	11
156	Release of Endogenous Glutamate by AMPA Receptors Expressed in Cultured Rat Costal Chondrocytes. Biological and Pharmaceutical Bulletin, 2005, 28, 990-993.	0.6	27
157	Functional Proteins Involved in Regulation of Intracellular Ca2+ for Drug Development: Preface. Journal of Pharmacological Sciences, 2005, 97, 337-338.	1.1	0
158	Transcriptional Regulation of Neuronal Genes and Its Effect on Neural Functions: Gene Expression in Response to Static Magnetism in Cultured Rat Hippocampal Neurons. Journal of Pharmacological Sciences, 2005, 98, 219-224.	1.1	11
159	Protection by exogenous pyruvate through a mechanism related to monocarboxylate transporters against cell death induced by hydrogen peroxide in cultured rat cortical neurons. Journal of Neurochemistry, 2005, 93, 84-93.	2.1	50
160	Apparent presence of Ser133-phosphorylated cyclic AMP response element binding protein (pCREB) in brain mitochondria is due to cross-reactivity of pCREB antibodies with pyruvate dehydrogenase. Journal of Neurochemistry, 2005, 95, 1446-1460.	2.1	18
161	Abolition of chondral mineralization by group III metabotropic glutamate receptors expressed in rodent cartilage. British Journal of Pharmacology, 2005, 146, 732-743.	2.7	36
162	Functional expression of particular isoforms of excitatory amino acid transporters by rodent cartilage. Biochemical Pharmacology, 2005, 70, 70-81.	2.0	26

#	Article	IF	CITATIONS
163	Excitatory amino acid transporters expressed by synovial fibroblasts in rats with collagen-induced arthritis. Biochemical Pharmacology, 2005, 70, 1744-1755.	2.0	29
164	An increase in intracellular free calcium ions by nicotinic acetylcholine receptors in a single cultured rat cortical astrocyte. Journal of Neuroscience Research, 2005, 79, 535-544.	1.3	53
165	Counteraction by repetitive daily exposure to static magnetism against sustained blockade of N-methyl-D-aspartate receptor channels in cultured rat hippocampal neurons. Journal of Neuroscience Research, 2005, 80, 491-500.	1.3	22
166	Nuclear condensation of cyclic adenosine monophosphate responsive element-binding protein in discrete murine brain structures. Journal of Neuroscience Research, 2005, 80, 667-676.	1.3	3
167	Regeneration of granule neurons after lesioning of hippocampal dentate gyrus: Evaluation using adult mice treated with trimethyltin chloride as a model. Journal of Neuroscience Research, 2005, 82, 609-621.	1.3	77
168	Neuronal and Glial Responses to Polyamines in the Ischemic Brain. Current Neurovascular Research, 2005, 2, 213-223.	0.4	37
169	Glutamate Transporters as Drug Targets. CNS and Neurological Disorders, 2005, 4, 211-220.	4.3	34
170	Inhibition of histone deacetylation by trichostatin A intensifies the transcriptions of neuronal c-fos and c-jun genes after kainate stimulation. Neuroscience Letters, 2005, 386, 150-155.	1.0	30
171	Increase of AMPA receptor glutamate receptor 1 subunit and B-cell receptor-associated protein 31 gene expression in hippocampus of fatigued mice. Neuroscience Letters, 2005, 387, 1-4.	1.0	6
172	In vivo treatment with the K+ channel blocker 4-aminopyridine protects against kainate-induced neuronal cell death through activation of NMDA receptors in murine hippocampus. Neuropharmacology, 2005, 48, 810-821.	2.0	26
173	Oxidative metabolites are involved in polyamine-induced microglial cell death. Neuroscience, 2005, 134, 1123-1131.	1.1	41
174	nrf2 Expressed by Bone. Journal of Hard Tissue Biology, 2005, 14, 280-281.	0.2	0
175	Possible expression of functional glutamate transporters in the rat testis. Journal of Endocrinology, 2004, 181, 233-244.	1.2	46
176	Accumulation of [3H]glutamate in cultured rat calvarial osteoblasts. Biochemical Pharmacology, 2004, 68, 177-184.	2.0	26
177	Functional alterations in immature cultured rat hippocampal neurons after sustained exposure to static magnetic fields. Journal of Neuroscience Research, 2004, 75, 230-240.	1.3	32
178	Regulation of neuronal differentiation byN-methyl-D-aspartate receptors expressed in neural progenitor cells isolated from adult mouse hippocampus. Journal of Neuroscience Research, 2004, 76, 599-612.	1.3	62
179	Enhanced binding activity of nuclear antioxidant-response element through possible formation of Nrf2/Fos-B complex after in vivo treatment with kainate in murine hippocampus. Neuropharmacology, 2004, 46, 580-589.	2.0	15
180	In vivo activation of c-Jun N-terminal kinase signaling cascade prior to granule cell death induced by trimethyltin in the dentate gyrus of mice. Neuropharmacology, 2004, 47, 619-630.	2.0	45

#	Article	IF	CITATIONS
181	Immunohistochemical detection by immersion fixation with Carnoy solution of particular non-N-methyl-d-aspartate receptor subunits in murine hippocampus. Neurochemistry International, 2004, 44, 413-422.	1.9	9
182	Glutamate Signaling System in Bone. Journal of Pharmacological Sciences, 2004, 94, 215-220.	1.1	57
183	A Tale of Early Response Genes. Biological and Pharmaceutical Bulletin, 2004, 27, 606-612.	0.6	61
184	Relevant Modulation by Ferrous Ions of N-Methyl-D-Aspartate Receptors in Ischemic Brain Injuries. Current Neurovascular Research, 2004, 1, 429-440.	0.4	18
185	Involvement of protein kinase C in glutamate release from cultured microglia. Brain Research, 2003, 962, 122-128.	1.1	24
186	Modulation of DNA binding of nuclear transcription factors with leucine-zipper motifs by particular endogenous polyamines in murine central and peripheral excitable tissues. Brain Research, 2003, 967, 170-180.	1.1	12
187	A possible novel mechanism underlying temperature-dependent uptake of [3H]spermidine in nuclear fractions of murine brain. Brain Research, 2003, 981, 78-84.	1.1	7
188	Uptake of [3H]l-serine in rat brain synaptosomal fractions. Brain Research, 2003, 983, 36-47.	1.1	17
189	Possible correlation between abilities of a variety of polyamines to increase activator protein-1 DNA binding and to inhibit [3H]spermidine transport in nuclear fractions of murine brain. Brain Research, 2003, 987, 126-130.	1.1	1
190	Immersion fixation with Carnoy solution for conventional immunohistochemical detection of particularN-methyl-D-aspartate receptor subunits in murine hippocampus. Journal of Neuroscience Research, 2003, 73, 416-426.	1.3	7
191	Transcription factor activator protein-1 expressed by kainate treatment can bind to the non-coding region of mitochondrial genome in murine hippocampus. Journal of Neuroscience Research, 2003, 73, 794-802.	1.3	21
192	Fos-B expression is required for polyamine-induced increase in nuclear activator protein-1 DNA binding in discrete structures of murine brain. Journal of Neuroscience Research, 2003, 74, 199-209.	1.3	3
193	Glutamate signaling in peripheral tissues. FEBS Journal, 2003, 271, 1-13.	0.2	171
194	Possible regulation by N-methyl-d-aspartate receptors of proliferative progenitor cells expressed in adult mouse hippocampal dentate gyrus. Journal of Neurochemistry, 2003, 84, 767-780.	2.1	63
195	Xenobiotic response element binding enriched in both nuclear and microsomal fractions of rat cerebellum. Journal of Neurochemistry, 2003, 85, 264-273.	2.1	20
196	In vivo neuroprotective role of NMDA receptors against kainate-induced excitotoxicity in murine hippocampal pyramidal neurons. Journal of Neurochemistry, 2003, 85, 1336-1346.	2.1	71
197	AKAP150 signaling complex promotes suppression of the M-current by muscarinic agonists. Nature Neuroscience, 2003, 6, 564-571.	7.1	219
198	Potentiation by ATP of lipopolysaccharide-stimulated nitric oxide production in cultured astrocytes. Neuroscience, 2003, 117, 37-42.	1.1	58

#	Article	IF	CITATIONS
199	Microglial cell death induced by a low concentration of polyamines. Neuroscience, 2003, 120, 961-967.	1.1	25
200	Modulation of cellular differentiation by N â€methyl―d â€aspartate receptors in osteoblasts. FASEB Journal, 2003, 17, 1-23.	0.2	95
201	Transcription Factors and Drugs in the Brain. The Japanese Journal of Pharmacology, 2002, 89, 337-348.	1.2	4
202	Activator Protein-1 Complex Expressed by Magnetism in Cultured Rat Hippocampal Neurons. Biochemical and Biophysical Research Communications, 2002, 292, 200-207.	1.0	36
203	Functional GABAB receptors expressed in cultured calvarial osteoblasts. Biochemical and Biophysical Research Communications, 2002, 293, 1445-1452.	1.0	36
204	Cell death by pyruvate deficiency in proliferative cultured calvarial osteoblasts. Biochemical and Biophysical Research Communications, 2002, 294, 1177-1183.	1.0	35
205	Facilitation of glutamate release by ionotropic glutamate receptors in osteoblasts. Biochemical and Biophysical Research Communications, 2002, 297, 452-458.	1.0	55
206	Differences between D- and L-aspartate binding to the Na+-dependent binding sites on glutamate transporters in frozen sections of rat brain. Life Sciences, 2002, 70, 991-1001.	2.0	10
207	Nuclear transcription factors in the hippocampus. Progress in Neurobiology, 2002, 68, 145-165.	2.8	19
208	Localization of Activator Protein-1 Complex with DNA Binding Activity in Mitochondria of Murine Brain after <i>In Vivo</i> Treatment with Kainate. Journal of Neuroscience, 2002, 22, 2561-2570.	1.7	43
209	Existence of xenobiotic response element binding in Dictyostelium. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2002, 1578, 1-11.	2.4	6
210	Demonstration of expression of mRNA for particular AMPA and kainate receptor subunits in immature and mature cultured rat calvarial osteoblasts. Brain Research, 2002, 943, 112-116.	1.1	44
211	In vitro and in vivo antagonistic activities of SM-31900 for the NMDA receptor glycine-binding site. Brain Research, 2002, 944, 165-173.	1.1	18
212	Dual mechanisms of Ca2+ increases elicited byN-methyl-D-aspartate in immature and mature cultured cortical neurons. Journal of Neuroscience Research, 2002, 67, 275-283.	1.3	28
213	Potentiation of nuclear activator protein-1 DNA binding following brief exposure to N-methyl-D-aspartate in immature cultured rat hippocampal neurons. Journal of Neuroscience Research, 2002, 67, 523-532.	1.3	8
214	Constitutive expression of heterologous N-methyl-D-aspartate receptor subunits in rat adrenal medulla. Journal of Neuroscience Research, 2002, 68, 36-45.	1.3	20
215	Blockade by N-methyl-D-aspartate of elevation of activator protein-1 binding after stress in rat adrenal gland. Journal of Neuroscience Research, 2002, 70, 161-171.	1.3	7
216	Blockade by ferrous iron of Ca2+ influx through N-methyl-d-aspartate receptor channels in immature cultured rat cortical neurons. Journal of Neurochemistry, 2002, 83, 1-11.	2.1	53

#	Article	IF	CITATIONS
217	Preferential Induction by Stress of the N-Methyl-d-Aspartate Recognition Domain in Discrete Structures of Rat Brain. Journal of Neurochemistry, 2002, 63, 1863-1871.	2.1	12
218	Detection of DNA Binding Activities of Transcription Factors with Different Protein Motifs in Nuclear Extracts of Murine Brain by Using Gel-Retardation Electrophoresis. Journal of Neurochemistry, 2002, 64, 1431-1439.	2.1	12
219	Nuclear degradation of particular Fos family members expressed following injections of NMDA and kainate in murine hippocampus. Neurochemical Research, 2002, 27, 131-138.	1.6	3
220	Group III Metabotropic Glutamate Receptors in Rat Cultured Calvarial Osteoblasts. Biochemical and Biophysical Research Communications, 2001, 281, 341-346.	1.0	75
221	Characterization with [3H]quisqualate of group I metabotropic glutamate receptor subtype in rat central and peripheral excitable tissues. Neurochemistry International, 2001, 38, 277-285.	1.9	27
222	Expression of GluR6/7 subunits of kainate receptors in rat adenohypophysis. Neurochemistry International, 2001, 38, 539-547.	1.9	27
223	Consolidation of transient ionotropic glutamate signals through nuclear transcription factors in the brain. Progress in Neurobiology, 2001, 63, 697-719.	2.8	59
224	Decrease in level of APG-2, a member of the heat shock protein 110 family, in murine brain following systemic administration of kainic acid. Neuropharmacology, 2001, 41, 285-293.	2.0	3
225	Effects of glutathione depletion by 2-cyclohexen-1-one on excitatory amino acids-induced enhancement of activator protein-1 DNA binding in murine hippocampus. Journal of Neurochemistry, 2001, 76, 1905-1915.	2.1	10
226	Clutathione and Signal Transduction in the Mammalian CNS. Journal of Neurochemistry, 2001, 73, 889-902.	2.1	172
227	Differential in vitro degradation of particular Fos family members expressed by kainic acid in nuclear and cytosolic fractions of murine hippocampus. Journal of Neuroscience Research, 2001, 64, 34-42.	1.3	20
228	Degradation of c-Fos protein expressed by N-methyl-d-aspartic acid in nuclear fractions of murine hippocampus. Brain Research, 2001, 905, 34-43.	1.1	11
229	Neurochemistry of L-Glutamate Transport in the CNS: A Review of Thirty Years of Progress. Collection of Czechoslovak Chemical Communications, 2001, 66, 1315-1340.	1.0	11
230	Direct radiolabeling by [3H]quisqualic acid of group I metabotropic glutamate receptor in rat brain synaptic membranes. Brain Research, 2000, 881, 199-203.	1.1	4
231	Differential expression and phosphorylation of particular Fos family members by kainate in nuclear and cytosolic fractions of murine hippocampus. Neuroscience, 2000, 100, 453-463.	1.1	17
232	Molecular mechanisms associated with long-term consolidation of the NMDA signals. Life Sciences, 2000, 67, 335-364.	2.0	157
233	Differential inhibition by ferrous ions of [3H]MK-801 binding to native N-methyl-d-aspartate channel in neonatal and adult rat brains. Brain Research, 1999, 818, 548-552.	1.1	4
234	Ferrous iron modulates quinolinate-mediated [3H]MK-801 binding to rat brain synaptic membranes in the presence of glycine and spermidine. Neuroscience Letters, 1999, 262, 105-108.	1.0	19

#	Article	IF	CITATIONS
235	Sensitization by prolonged glutathione depletion of kainic acid to potentiate DNA binding of the nuclear transcription factor activator protein-1 in murine hippocampus. Neuroscience Letters, 1999, 269, 157-160.	1.0	9
236	N-methyl-d-aspartate signaling to nuclear activator protein-1 through mechanisms different from those for kainate acid signaling in murine brain. Neuroscience, 1999, 90, 519-533.	1.1	23
237	Constitutive expression of cytoplasmic activator protein-1 with DNA binding activity and responsiveness to ionotropic glutamate signals in the murine hippocampus. Neuroscience, 1999, 92, 1295-1308.	1.1	23
238	Predominant expression of nuclear activator protein-1 complex with DNA binding activity following systemic administration of N-methyl-d-aspartate in dentate granule cells of murine hippocampus. Neuroscience, 1999, 93, 19-31.	1.1	47
239	Preventive effects of exogenous phospholipases on inhibition by ferrous ions of [3H]MK-801 binding in rat brain synaptic membranes. Neurochemistry International, 1999, 34, 193-201.	1.9	6
240	Sustained potentiation of AP1 DNA binding is not always associated with neuronal death following systemic administration of kainic acid in murine hippocampus. Neurochemistry International, 1999, 35, 453-462.	1.9	29
241	High-Level Expression of the Mnb/Dyrk1A Gene in Brain and Heart during Rat Early Development. Genomics, 1999, 62, 165-171.	1.3	84
242	Gene Transcription Through Myc Family Members in Eukaryotic Cells. The Japanese Journal of Pharmacology, 1999, 80, 103-110.	1.2	15
243	[21] Signal transduction through ion channels associated with excitatory amino acid receptors. Methods in Enzymology, 1999, 294, 385-410.	0.4	8
244	Correlation between potentiation of AP1 DNA binding and expression of c-Fos in association with phosphorylation of CREB at serine133 in thalamus of gerbils with ischemia. Brain Research, 1998, 806, 152-164.	1.1	10
245	Prolongation by bifemelane of potentiation of AP1 DNA binding in hippocampal CA1 subfield of gerbils with transient forebrain ischemia. , 1998, 51, 574-582.		8
246	Nitric oxide-independent inhibition by sodium nitroprusside of the native N-methyl-d-aspartate recognition domain in a manner different from that by potassium ferrocyanide. Neurochemistry International, 1998, 33, 1-9.	1.9	11
247	Possible in vivo crosstalk between transcription factors with zinc-finger and leucine-zipper motifs in murine peripheral but not central excitable tissues. Neurochemistry International, 1998, 32, 325-336.	1.9	9
248	Possible involvement of activator protein-1 DNA binding in mechanisms underlying ischemic tolerance in the CA1 subfield of gerbil hippocampus. Neuroscience, 1998, 86, 79-97.	1.1	20
249	MODULATION BY BOTH DIPHENYLIODONIUM AND DIPHENYLENEIODONIUM OF [3 H]MK-801 BINDING TO RAT BRAIN SYNAPTIC MEMBRANES. Neurochemistry International, 1997, 31, 73-82.	1.9	8
250	Protection by diphenyliodonium against glutamate neurotoxicity due to blocking ofN-methyl-d-aspartate receptors. Neuroscience, 1997, 76, 459-466.	1.1	12
251	Positive correlation between prolonged potentiation of binding of double-stranded oligonucleotide probe for the transcription factor AP1 and resistance to transient forebrain ischemia in gerbil hippocampus. Neuroscience, 1997, 79, 1023-1037.	1.1	28
252	Inhibition of [³ H]MKâ€801 Binding by Ferrous (II) but Not Ferric (III) Ions in a Manner Different from That by Sodium Nitroprusside (II) in Rat Brain Synaptic Membranes. Journal of Neurochemistry, 1997, 69, 744-752.	2.1	10

#	Article	IF	CITATIONS
253	923 Possible presence of nuclear proteins with affinity for consensus core nucleotide element for c-Myc with Z-conformation in murine brain. Neuroscience Research, 1996, 25, S105.	1.0	0
254	BINDING OF DOUBLE STRANDED OLIGONUCLEOTIDE PROBES FOR PARTICULAR TRANSCRIPTION FACTORS WITH LEUCINE-ZIPPER MOTIFS IN DISCRETE BRAIN STRUCTURES OF MICE WITH ACQUIRED AND INHERENT SPONTANEOUS SEIZURES. Neurochemistry International, 1996, 29, 323-333.	1.9	14
255	PARTICULAR NUCLEAR TRANSCRIPTION FACTORS RESPONSIVE TO SYSTEMIC ADMINISTRATION OF KAINIC ACID IN MURINE BRAIN. Neurochemistry International, 1996, 29, 289-299.	1.9	46
256	Simultaneous determination of binding of a variety of radioligands related to ionotropic excitatory amino acid receptors in fetal and neonatal rat brains. Brain Research, 1996, 723, 100-109.	1.1	7
257	Ischemic neuronal damage. Molecular and Chemical Neuropathology, 1996, 28, 191-195.	1.0	7
258	Differentiation by magnesium ions of affinities of nuclear proteins for consensus core nucleotide element of the transcription factor c-Myc in murine brain. Neurochemical Research, 1996, 21, 201-209.	1.6	18
259	Behavioral studies on FR115427, a novel selective N-methyl-D-aspartate antagonist. Psychopharmacology, 1995, 117, 172-177.	1.5	8
260	Search for novel ligands selective at a polyamine recognition domain on theN-methyl-d-aspartate receptor complex using membrane binding techniques. Brain Research, 1995, 679, 15-24.	1.1	17
261	Distinction between binding of [3H]triamcinolone acetonide to a ligand binding domain on the glucocorticoid receptor complex in cytosol fractions of brain and liver from the rat with intact adrenals. Brain Research, 1995, 685, 105-116.	1.1	13
262	Potentiation by calcium ions of [3H]MK-801 binding to an ion channel associated with the N-methyl-d-aspartate receptor complex in rat brain. Neurochemistry International, 1995, 26, 59-68.	1.9	1
263	Risperidone prevents the development of supersensitivity, but not tolerance, to phencyclidine in rats treated with subacute phencyclidine. Life Sciences, 1995, 56, 531-543.	2.0	20
264	A Possible Role of Glutathione as an Endogenous Agonist at the <i>N</i> â€Methylâ€ <scp>d</scp> â€Aspartate Recognition Domain in Rat Brain. Journal of Neurochemistry, 1995, 64, 1088-1096.	2.1	64
265	Rapid potentiation of DNA binding activities of particular transcription factors with leucine-zipper motifs in discrete brain structures of the gerbil with transient forebrain ischemia. Brain Research, 1994, 667, 54-66.	1.1	41
266	Tricyclic Quinoxalinediones: 5,6-Dihydro-1H-pyrrolo[1,2,3-de]quinoxaline-2,3-diones and 6,7-Dihydro-1H,5H-pyrido[1,2,3-de]quinoxaline-2,3-diones as Potent Antagonists for the Glycine Binding Site of the NMDA Receptor. Journal of Medicinal Chemistry, 1994, 37, 3956-3968.	2.9	73
267	Rapid and selective enhancement of DNA binding activity of the transcription factor AP1 by systemic administration of N-methyl-d-aspartate in murine hippocampus. Neurochemistry International, 1994, 25, 263-271.	1.9	43
268	Supporting evidence for negative modulation by protons of an ion channel associated with theN-methyl-D-aspartate receptor complex in rat brain using ligand binding techniques. Brain Research, 1994, 636, 298-307.	1.1	8
269	Possible dysfunction of ionotropic glutamate receptors in cerebellum of epileptic E1 mouse brain. Neurochemistry International, 1994, 25, 273-285.	1.9	4
270	Partial purification of [3H]glutamate-associating-proteins with sensitivity to displacement by from rat brain. Neurochemistry International, 1994, 25, 111-121.	1.9	1

#	Article	IF	CITATIONS
271	Discrimination by added ions of ligands at ionotropic excitatory amino acid receptors insensitive to N-methyl-d-aspartate in rat brain using membrane binding techniques. Neurochemistry International, 1994, 24, 379-388.	1.9	11
272	Binding of [3H]triamcinolone acetonide to glucocorticoid receptors in brain cytosol fractions of rats with intact adrenals. Neurochemistry International, 1994, 24, 339-348.	1.9	6
273	Selective Potentiation of DNA Binding Activities of Both Activator Protein 1 and Cyclic AMP Response Element Binding Protein Through In Vivo Activation of <i>N</i> â€Methylâ€ <scp>d</scp> â€Aspartate Receptor Complex in Mouse Brain. Journal of Neurochemistry, 1994, 63, 525-534.	2.1	66
274	Differential Profiles of Binding of a Radiolabeled Agonist and Antagonist at a Glycine Recognition Domain on the <i>N</i> ―Methylâ€Dâ€Aspartate Receptor lonophore Complex in Rat Brain. Journal of Neurochemistry, 1994, 62, 102-112.	2.1	21
275	Support for Radiolabeling of a Glycine Recognition Domain on the N-Methyl-d-Aspartate Receptor Ionophore Complex by 5,7-[3H]Dichlorokynurenate in Rat Brain. Journal of Neurochemistry, 1993, 60, 634-645.	2.1	53
276	Further Evidence for Multiple Forms of an N-Methyl-d-Aspartate Recognition Domain in Rat Brain Using Membrane Binding Techniques. Journal of Neurochemistry, 1993, 61, 1865-1873.	2.1	16
277	Excitatory amino acid receptor binding in hippocampus of gerbils with transient global brain ischemia. Brain Research, 1993, 613, 21-31.	1.1	6
278	Comparative studies on binding of 3 different ligands to theN-methyl-d-aspartate recognition domain in brain synaptic membranes treated with Triton X-100. Brain Research, 1993, 609, 253-261.	1.1	18
279	Potentiation by polyamines of an interaction of noncompetitive antagonists at the N-methyl-d-aspartate receptor ionophore complex with phosphatidylserine. Neurochemistry International, 1993, 23, 427-440.	1.9	9
280	Selectively high expression of the transcription factor AP1 in telencephalic structures of epileptic E1 mice. Neuroscience Letters, 1993, 161, 161-164.	1.0	31
281	Differential potentiation by spermidine of abilities of a variety of displacers for [3H]MK-801 binding in hippocampal synaptic membranes. Neuroscience Research, 1993, 16, 217-224.	1.0	7
282	Binding of [3H]MK-801, NMDA-displaceable [3H]glutamate, [3H]glycine, [3H]spermidine, [3H]kainate and [3H]AMPA to regionally discrete brain membranes of the gerbil: A biochemical study. Neurochemistry International, 1993, 22, 37-43.	1.9	12
283	708 Search for nuclear proteins recognizing the cacgtg sequence. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1993, 18, S82.	0.0	0
284	Multiplicity of (3H)1,3-Di-o-tolylguanidine Binding Sites with Low Affinity for Haloperidol in Rat Brain Biological and Pharmaceutical Bulletin, 1993, 16, 989-996.	0.6	4
285	Effects of ifenprodil on the N-methyl-d-aspartate receptor ionophore complex in rat brain. Neurochemistry International, 1992, 21, 135-147.	1.9	12
286	Excitatory amino acid receptors in brains of rats with methylazoxymethanol-induced microencephaly. Neuroscience Research, 1992, 14, 13-25.	1.0	13
287	Presence of the binding of a variety of ligands related to ionotropic excitatory amino acid receptors in rat retina. Brain Research, 1992, 576, 168-172.	1.1	6
288	lonotropic excitatory amino acid receptors in discrete brain regions of kindled rats. Brain Research, 1992, 587, 73-82.	1.1	23

#	Article	IF	CITATIONS
289	Inhibition by Calmodulin Antagonists of [3H]MK-801 Binding in Brain Synaptic Membranes. Journal of Neurochemistry, 1992, 59, 1008-1016.	2.1	12
290	Differential Modulation by Divalent Cations of [3H]MK-801 Binding in Brain Synaptic Membranes. Journal of Neurochemistry, 1992, 59, 473-481.	2.1	25
291	Topographical Dissociation of Calcium Accumulation Following Hypoxic-Hypoglycemic Glutamate Release, NMDA Receptor Concentration and Delayed Neuronal Death in Gerbil Hippocampus. , 1992, , 57-61.		0
292	Purification of [3H] glutamate binding proteins sensitive and insensitive to N-methyl-D-aspartate. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1991, 16, 12.	0.0	0
293	Differential effects of SH-reactive agents on [3H](±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonate and [3H]glutamate binding in brain synaptic membranes treated with triton X-100. Neurochemistry International, 1991, 18, 55-62.	1.9	14
294	Age-related decreases of the N-methyl-d-aspartate receptor complex in the rat cerebral cortex and hippocampus. Brain Research, 1991, 542, 83-90.	1.1	203
295	Identification and characterization of specific binding sites of [3H]spermidine in synaptic membranes of rat brain. Brain Research, 1991, 563, 17-27.	1.1	20
296	Neurochemical aspects of the receptor complex. Neuroscience Research, 1991, 10, 1-33.	1.0	68
297	Inhibitory Modulation by Sodium Ions of the N-Methyl-D-Aspartate Recognition Site in Brain Synaptic Membranes. Journal of Neurochemistry, 1991, 57, 2036-2046.	2.1	10
298	Studies on [3H]Glutamate Binding in Nervous Tissues. What are the Pitfalls?. , 1991, , 227-253.		1
299	Novel Fourth Binding Sites of [3H]Spermidine within the NMDA Receptor Complex. Advances in Experimental Medicine and Biology, 1991, 287, 455-475.	0.8	9
300	Solubilization of the NMDA Receptor Ion Channel Complex from Rat Brain. Advances in Experimental Medicine and Biology, 1991, 287, 477-481.	0.8	1
301	6,7-Dichloroquinoxaline-2,3-Dione is a Competitive Antagonist Specific to Strychnine-Insensitive [3H]Glycine Binding Sites on the N-Methyl-D-Aspartate Receptor Complex. Journal of Neurochemistry, 1990, 54, 699-702.	2.1	25
302	Solubilization of Spermidine-Sensitive (+)-[3H]5-Methyl-10,11 -Dihydro-5H-Dibenzo[a,d]cyclohepten-5,10-Imine ([3H]MK-801) Binding Activity from Rat Brain. Journal of Neurochemistry, 1990, 55, 1515-1520.	2.1	17
303	[3H]Thienylcyclohexylpiperidine Binding Activity in Brain Synaptic Membranes Treated with Triton X-100. Journal of Neurochemistry, 1990, 55, 1639-1646.	2.1	15
304	Interaction of Strychnine-Insensitive Glycine Binding with MK-801 Binding in Brain Synaptic Membranes. Journal of Neurochemistry, 1990, 55, 237-244.	2.1	29
305	[3H]Spermidine binding in rat brain synaptic membranes. The Japanese Journal of Pharmacology, 1990, 52, 121.	1.2	0
306	Profiles of binding in brain synaptic membranes treated with Triton X-100. Neuroscience Research, 1990, 9, 35-47.	1.0	4

#	Article	IF	CITATIONS
307	Importance of glycine on the NMDA receptor mechanism. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1990, 11, S117.	0.0	0
308	Competitive inhibition of NMDA-mediated responses by guanine nucleotides in brain synaptic membranes treated with Triton X-100. Neuroscience Research, 1990, 9, 114-125.	1.0	10
309	[3H]spermidine binding sites within the NMDA receptor complex in rat brain. European Journal of Pharmacology, 1990, 183, 1664-1665.	1.7	6
310	Selective loss of the NMDA receptor complex in aged rat twain. European Journal of Pharmacology, 1990, 183, 955-956.	1.7	1
311	Radioligand labeling of N-methyl-d-aspartic acid (NMDA) receptors by [3H](±)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid in brain synaptic membranes treated with Triton X-100. Biochemical Pharmacology, 1990, 39, 225-228.	2.0	14
312	Temperature-independent binding of[3H](±)-3-(2-carâ~ypiperazin-4-yl)propyl-1-phosphonic acid in brain synaptic membranes treated by Triton X-100. Brain Research, 1990, 515, 51-56.	1.1	27
313	Enhancement by glutamate and glycine of [3H]TCP binding activity. The Japanese Journal of Pharmacology, 1989, 49, 307.	1.2	0
314	Microbial methodological artifacts in [3H]glutamate receptor binding assays. Analytical Biochemistry, 1989, 177, 250-255.	1.1	83
315	Solubilization of Quisqualate-Sensitive [3H]Glutamate Binding Activity from Rat Retina. Journal of Neurochemistry, 1989, 52, 1501-1507.	2.1	10
316	High concentrations of calmodulin antagonists inhibit accumulation and binding activities of [3H]glutamate in rat brain. Neurochemistry International, 1989, 15, 17-23.	1.9	4
317	N-Methyl-d-aspartate-sensitive [3H]glutamate binding sites in brain synaptic membranes treated with Triton X-100. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1012, 74-80.	1.9	26
318	Solubilization of stereospecific and quisqualate-sensitive activity of [3H]glutamate binding in the pituitary of the rat. Neuropharmacology, 1989, 28, 611-616.	2.0	15
319	Strychnine-insensitive binding of [3H]glycine to synaptic membranes in rat brain, treated with triton X-100. Neuropharmacology, 1989, 28, 1263-1270.	2.0	61
320	Abolition of the NMDA-mediated responses by a specific glycine antagonist, 6,7-dichloroquinoxaline-2,3-dione (DCQX). Biochemical and Biophysical Research Communications, 1989, 164, 841-849.	1.0	24
321	Selective potentiation by l-cysteine of apparent binding activity of [3H]glutathione in synaptic membranes of rat brain. Biochemical Pharmacology, 1989, 38, 1499-1505.	2.0	14
322	Labeling of NMDA receptor channels by [3H]MK-801 in brain synaptic membranes treated with Triton X-100. Brain Research, 1989, 499, 305-314.	1.1	59
323	Characterization of quisqualate-sensitive [3H]glutamate binding activity solubilized from rat adrenal. Neurochemistry International, 1989, 15, 137-143.	1.9	11
324	Temperature-dependent and -independent apparent binding activities of [3H]glutathione in brain synaptic membranes. Brain Research, 1988, 463, 37-46.	1.1	33

#	Article	IF	CITATIONS
325	Preventive action of quisqualic acid against grayanotoxin-induced suppression of locomotor activity in mice. Neuropharmacology, 1988, 27, 1045-1053.	2.0	5
326	Disclosure by triton X-100 of NMDA-sensitive [3H]glutamate binding sites in brain synaptic membranes. Biochemical and Biophysical Research Communications, 1988, 153, 510-517.	1.0	83
327	Apparent binding activity of [3H]glutathione in rat central and peripheral tissues. Neurochemistry International, 1988, 13, 493-497.	1.9	14
328	Comparative study of [3H]glutamate binding sites in rat retina and cerebral cortex. Biochemical Pharmacology, 1987, 36, 772-774.	2.0	8
329	Tetrodotoxin-insensitive central depression by grayanotoxin-III in mice. Brain Research, 1987, 425, 364-368.	1.1	7
330	Are Ca2+-dependent proteases really responsible for Clâ^'-dependent and Ca2+-stimulated binding of [3H]glutamate in rat brain?. Brain Research, 1987, 400, 70-79.	1.1	19
331	Enhancement of [3H]glutamate binding by N-methyl-d-aspartic acid in rat adrenal. Brain Research, 1987, 406, 24-31.	1.1	26
332	Solubilization of novel binding sites for [3H]Glutamate in rat adrenal. Biochemical and Biophysical Research Communications, 1987, 142, 609-616.	1.0	25
333	Possible presence of [3H]glutathione (CSH) binding sites in synaptic membranes from rat brain. Neuroscience Research, 1987, 4, 486-496.	1.0	40
334	Possible presence of [3H]glutathione (CSH) binding sites in synaptic membranes from rat brain. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1987, 4, 486-496.	0.0	0
335	Characterization of [3H]glutamate binding sites on frozen sections from rat adrenal. Neurochemistry International, 1987, 10, 565-570.	1.9	3
336	Characterization of Na+-dependent binding sites of [3H]glutamate in synaptic membranes from rat brain. Brain Research, 1986, 397, 137-144.	1.1	55
337	Clutathione-induced inhibition of Na+-independent and -dependent bindings of L-[3H] glutamate in rat brain. Life Sciences, 1986, 39, 2411-2418.	2.0	83
338	Differentiation of the Ca2+-stimulated binding from the Clâ^'-dependent binding of [3H]glutamate in synaptic membranes from rat brain. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1986, 4, 129-142.	0.0	0
339	Possible interaction of [3H]glutamate binding sites with anion channels in rat neural tissues. Neurochemistry International, 1986, 9, 521-531.	1.9	18
340	Differentiation of the Ca2+-stimulated binding from the Clâ^'-dependent binding of [3H]glutamate in synaptic membranes from rat brain. Neuroscience Research, 1986, 4, 129-142.	1.0	17
341	[3H]Clutamate binding sites in the rat pituitary. Neuroscience Research, 1986, 3, 430-435.	1.0	49
342	Localization of [3H]glutamate binding sites in rat adrenal medulla. Brain Research, 1986, 383, 387-391.	1.1	77

#	Article	IF	CITATIONS
343	Pharmacological studies on grayanoids. (I). Central depressant action of grayanotoxin (III). The Japanese Journal of Pharmacology, 1986, 40, 192.	1.2	2
344	Modulation of synaptic GABA receptor binding by membrane phospholipids: Possible role of active oxygen radicals. Brain Research, 1985, 333, 111-122.	1.1	42
345	Stress-Induced Enhancement of Suppression of [3H]GABA Release from Striatal Slices by Presynaptic Autoreceptor. Journal of Neurochemistry, 1984, 42, 943-950.	2.1	72
346	Preferential release of newly synthesized [3H]GABA from striatal slices to preloaded [3H]GABA. Neurochemistry International, 1984, 6, 641-649.	1.9	11
347	Preventive effect of alcohol against stress-induced alteration in content of monoamines in brain and adrenal gland. Neuropharmacology, 1984, 23, 649-654.	2.0	33
348	Properties of purified γ-aminobutyric acid (GABA) receptor and modulation of GABA receptor binding by membrane phospholipids. Neuropharmacology, 1984, 23, 839-840.	2.0	9
349	Enhancement of γ-aminobutyric acid (GABA) receptor binding by lipophilic antioxidants. Brain Research, 1984, 296, 164-167.	1.1	12
350	Stress-Induced Alterations in Metabolism of ?-Aminobutyric Acid in Rat Brain. Journal of Neurochemistry, 1983, 40, 350-356.	2.1	80
351	Streptozotocin-induced elevation of a pancreatic taurine content and suppressive effect of taurine on insulin secretion. European Journal of Pharmacology, 1983, 87, 237-243.	1.7	40
352	Biosynthesis and synaptic release of GABA and its regulation by presynaptic autoreceptor. The Japanese Journal of Pharmacology, 1983, 33, 37.	1.2	0
353	Roles of Synaptic Membranous Phospholipids in the Modulation of Cerebral GABA and Benzodiazepine Receptor Bindings. , 1983, , 241-257.		3
354	A new synaptosomal biosynthetic pathway of proline from ornithine and its negative feedback inhibition by proline. Brain Research, 1982, 239, 479-488.	1.1	39
355	Negative feedback mechanism in a new synaptosomal biosynthetic pathway of GABA from ornithine. The Japanese Journal of Pharmacology, 1982, 32, 216.	1.2	0
356	A New Synaptosomal Biosynthetic Pathway of Clutamate and GABA from Ornithine and Its Negative Feedback Inhibition by GABA. Journal of Neurochemistry, 1982, 38, 1686-1694.	2.1	67
357	Biochemical Properties of γ-Aminobutyric Acid(GABA) Receptor. The Japanese Journal of Pharmacology, 1981, 31, 51.	1.2	0
358	Presence of a low molecular weight endogenous inhibitor on 3H-muscimol binding in synaptic membranes. Nature, 1980, 285, 670-673.	13.7	71
359	Increase in Striatal [3H]Muscimol Binding Following Intrastriatal Injection of Kainic Acid: A Denervation Supersensitivity Phenomenon. Journal of Neurochemistry, 1980, 35, 343-348.	2.1	33
360	Some characteristics of [3H]muscimol binding to synaptic membrane from rat brain. Brain Research, 1980, 197, 554-560.	1.1	21

#	Article	IF	CITATIONS
361	Interconnection of GABA-ergic neurons in rat extrapyramidal tract: Analysis using intracerebral microinjection of kainic acid. Experimental Neurology, 1980, 68, 12-26.	2.0	13
362	Acute motor effects of N-methyl-d-aspartic acid and kainic acid applied focally to mesencephalic dopamine cell body regions in the rat. Neuroscience Letters, 1980, 18, 85-90.	1.0	40
363	Neurochemical studies on GABA receptor: I.3H-Muscimol binding in rat brain. The Japanese Journal of Pharmacology, 1979, 29, 46.	1.2	0
364	Protective actions of taurine against streptozotocin-induced hyperglycemia. Biochemical Pharmacology, 1979, 28, 2807-2811.	2.0	56
365	A COMPARISON OF MICRODISTRIBUTIONS OF TAURINE AND CYSTEINE SULPHINATE DECARBOXYLASE ACTIVITY WITH THOSE OF GABA AND I-GLUTAMATE DECARBOXYLASE ACTIVITY IN RAT SPINAL CORD AND THALAMUS. Journal of Neurochemistry, 1978, 30, 821-825.	2.1	36
366	Morphine induced alterations of γ-aminobutyric acid and taurine contents and l-glutamate decarâ~ylase activity in rat spinal cord and thalamus: Possible correlates with analgesic action of morphine. Brain Research, 1978, 148, 163-179.	1.1	82
367	MICROASSAY METHODS FOR TAURINE AND CYSTEINE SULFINATE DECARBOXYLASE ACTIVITY. The Japanese Journal of Pharmacology, 1977, 27, 881-888.	1.2	27
368	Morphine alters distribution of GABA in thalamus. Brain Research, 1977, 124, 373-378.	1.1	25
369	Possible involvement of GABA in morphine analgesia. Biochemical Pharmacology, 1976, 25, 2669-2670.	2.0	63
370	Alterations in distribution and metabolism of γ-aminobutyric acid(GABA) in the central nervous system following morphine administration. The Japanese Journal of Pharmacology, 1976, 26, 18.	1.2	6
371	EFFECT OF TAURINE ON RESPONSES TO NORADRENALINE, ACETYLCHOLINE AND OUABAIN IN ISOLATED AURICLES FROM DIGITALIZED GUINEA PIGS. The Japanese Journal of Pharmacology, 1976, 26, 105-110.	1.2	8
372	Delayed Expression of Both GABABR1 and GABABR2 Subunits in Murine Hippocampal Dentate Gyrus After a Single Systemic Injection of Trimethyltin. Neurochemical Research, 0, , .	1.6	0