
Nikolaos Nenadis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4609338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Role of the Carboxyl Group to the Protective Effect of o-dihydroxybenzoic Acids to Saccharomyces cerevisiae Cells upon Induced Oxidative Stress. Antioxidants, 2022, 11, 161.	2.2	3
2	Strategic Priorities of the Scientific Plan of the European Research Infrastructure METROFOOD-RI for Promoting Metrology in Food and Nutrition. Foods, 2022, 11, 599.	1.9	6
3	Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods, 2022, 11, 752.	1.9	16
4	FoodOmicsGR_RI: A Consortium for Comprehensive Molecular Characterisation of Food Products. Metabolites, 2021, 11, 74.	1.3	14
5	Suggestions on the Contribution of Methyl Eugenol and Eugenol to Bay Laurel (Laurus nobilis L.) Essential Oil Preservative Activity through Radical Scavenging. Molecules, 2021, 26, 2342.	1.7	8
6	Virgin olive oil metabolomics: A review. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2020, 1150, 122161.	1.2	31
7	Getting inside on virgin olive oil (VOO) photooxidation kinetics through combined generalized 2D correlation analysis and moving window 2D correlation analysis of ATR-FTIR spectra. Talanta, 2020, 215, 120917.	2.9	4
8	Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). The Pros of a Fit for the Purpose Ultra High Performance Liquid Chromatography (UHPLC) Procedure. Molecules, 2019, 24, 2429.	1.7	17
9	Real time monitoring of the combined effect of chlorophyll content and light filtering packaging on virgin olive oil photo-stability using mesh cell-FTIR spectroscopy. Food Chemistry, 2019, 295, 94-100.	4.2	17
10	In House Validated UHPLC Protocol for the Determination of the Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil Fit for the Purpose of the Health Claim Introduced by the EC Regulation 432/2012 for "Olive Oil Polyphenols― Molecules, 2019, 24, 1044.	1.7	21
11	Physicochemical Characteristics and Antioxidant Potential of the Greek PDO and PGI Virgin Olive Oils (VOOs). European Journal of Lipid Science and Technology, 2019, 121, 1800172.	1.0	19
12	Why Tyrosol Derivatives Have to Be Quantified in the Calculation of "Olive Oil Polyphenols―Content to Support the Health Claim Provisioned in the EC Reg. 432/2012. European Journal of Lipid Science and Technology, 2018, 120, 1800098.	1.0	26
13	Toward a Harmonized and Standardized Protocol for the Determination of Total Hydroxytyrosol and Tyrosol Content in Virgin Olive Oil (VOO). Extraction Solvent. European Journal of Lipid Science and Technology, 2018, 120, 1800099.	1.0	7
14	Perspective of vibrational spectroscopy analytical methods in onâ€field/official control of olives and virgin olive oil. European Journal of Lipid Science and Technology, 2017, 119, 1600148.	1.0	36
15	Effect of C _α –C _β Bond Type on the Radical Scavenging Activity of Hydroxy Stilbenes: Theoretical Insights in the Gas and Liquid Phase. Journal of Physical Chemistry A, 2017, 121, 2014-2021.	1.1	19
16	Functional Teas from the Leaves of Arbutus unedo: Phenolic Content, Antioxidant Activity, and Detection of Efficient Radical Scavengers. Plant Foods for Human Nutrition, 2017, 72, 176-183.	1.4	22
17	Browning susceptibility of commercial monovarietal white wines under accelerated oxidation conditions: correlation with compositional data and effect on total phenol content and radical scavenging activity. European Food Research and Technology, 2016, 242, 1821-1828.	1.6	3
18	Applicability of PTR-MS in the quality control of saffron. Food Chemistry, 2016, 196, 961-967.	4.2	38

Nikolaos Nenadis

#	Article	IF	CITATIONS
19	DFT study of radical scavenging activity of sesame oil lignans and selected in vivo metabolites of sesamin. Computational and Theoretical Chemistry, 2016, 1077, 125-132.	1.1	15
20	Radical scavenging activity characterization of synthetic isochroman-derivatives of hydroxytyrosol: A gas-phase DFT approach. Food Research International, 2015, 76, 506-510.	2.9	23
21	Interactive effects of UV radiation and reduced precipitation on the seasonal leaf phenolic content/composition and the antioxidant activity of naturally growing Arbutus unedo plants. Journal of Photochemistry and Photobiology B: Biology, 2015, 153, 435-444.	1.7	48
22	Assessing the response of plant flavonoids to UV radiation: an overview of appropriate techniques. Phytochemistry Reviews, 2015, 14, 273-297.	3.1	98
23	Valorization of the major agrifood industrial by-products and waste from Central Macedonia (Greece) for the recovery of compounds for food applications. Food Research International, 2014, 65, 350-358.	2.9	57
24	Phenolic composition and radical scavenging activity of commercial Greek white wines from Vitis vinifera L. cv. Malagousia. Journal of Food Composition and Analysis, 2014, 33, 166-174.	1.9	23
25	Rebuttal to the Comment on Addressing Analytical Requirements To Support Health Claims on "Olive Oil Polyphenols―(EC Regulation 432/212). Journal of Agricultural and Food Chemistry, 2014, 62, 10212-10213.	2.4	11
26	Pomegranate juice functional constituents after alcoholic and acetic acid fermentation. Journal of Functional Foods, 2014, 8, 161-168.	1.6	49
27	Addressing Analytical Requirements To Support Health Claims on "Olive Oil Polyphenols―(EC) Tj ETQq1 1	. 0.784314 i 2.4	rgBT (Overloci
28	Impact of alkaline or acid digestion to antioxidant activity, phenolic content and composition of rice hull extracts. LWT - Food Science and Technology, 2013, 54, 207-215.	2.5	28
29	Fourier transform mid-infrared spectroscopy evaluation of early stages of virgin olive oil autoxidation. European Journal of Lipid Science and Technology, 2013, 115, 526-534.	1.0	17
30	Effect of recovery methods on the oxidative and physical stability of oil body emulsions. Food Chemistry, 2013, 139, 640-648.	4.2	48
31	Contribution of DFT computed molecular descriptors in the study of radical scavenging activity trend of natural hydroxybenzaldehydes and corresponding acids. Food Research International, 2012, 48, 538-543.	2.9	49
32	A DFT study on the radical scavenging potential of selected natural 3′,4′-dihydroxy aurones. Food Research International, 2011, 44, 114-120.	2.9	37
33	Antioxidant and aldose reductase inhibition activity of <i>Ligustrum japonicum</i> and <i>Olea europaea</i> L. leaf extracts. European Journal of Lipid Science and Technology, 2011, 113, 876-885.	1.0	7
34	Structure-radical scavenging activity relationship of alkannin/shikonin derivatives. Food Chemistry, 2011, 124, 171-176.	4.2	41
35	Quality characteristics of olive leafâ€olive oil preparations. European Journal of Lipid Science and Technology, 2010, 112, 1337-1344.	1.0	12
36	Evaluation of Potential Genotoxicity of Virgin Olive Oil (VOO) Using the Drosophila Wing-Spot Test. Journal of Agricultural and Food Chemistry, 2009, 57, 7785-7789.	2.4	10

Nikolaos Nenadis

#	Article	IF	CITATIONS
37	Further Examination of Antiradical Properties of <i>Crocus sativus</i> Stigmas Extract Rich in Crocins. Journal of Agricultural and Food Chemistry, 2009, 57, 3080-3086.	2.4	66
38	A DFT Study on the Radical Scavenging Activity of Maritimetin and Related Aurones. Journal of Physical Chemistry A, 2008, 112, 12196-12202.	1.1	65
39	Use of Reference Compounds in Antioxidant Activity Assessment. Journal of Agricultural and Food Chemistry, 2007, 55, 5452-5460.	2.4	124
40	Syringa oblata Lindl var. alba as a source of oleuropein and related compounds. Journal of the Science of Food and Agriculture, 2007, 87, 160-166.	1.7	21
41	Changes in the catechin and epicatechin content of grape seeds on storage under different water activity (aw) conditions. Food Chemistry, 2007, 105, 1504-1511.	4.2	34
42	Radical Scavenging Potential of Phenolic Compounds Encountered inO. europaeaProducts as Indicated by Calculation of Bond Dissociation Enthalpy and Ionization Potential Values. Journal of Agricultural and Food Chemistry, 2005, 53, 295-299.	2.4	59
43	Estimation of Scavenging Activity of Phenolic Compounds Using the ABTS•+Assay. Journal of Agricultural and Food Chemistry, 2004, 52, 4669-4674.	2.4	328
44	An experimental approach to structure-activity relationships of caffeic and dihydrocaffeic acids and related monophenols. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 451-458.	0.8	57
45	A density functional theory study of structure-activity relationships in caffeic and dihydrocaffeic acids and related monophenols. JAOCS, Journal of the American Oil Chemists' Society, 2003, 80, 459-466.	0.8	32
46	Structureâ^'Antioxidant Activity Relationship of Ferulic Acid Derivatives:Â Effect of Carbon Side Chain Characteristic Groups. Journal of Agricultural and Food Chemistry, 2003, 51, 1874-1879.	2.4	154
47	Determination of squalene in olive oil using fractional crystallization for sample preparation. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 257-259.	0.8	54
48	Observations on the estimation of scavenging activity of phenolic compounds using rapid 1,1-diphenyl-2-picrylhydrazyl (DPPH•) tests. JAOCS, Journal of the American Oil Chemists' Society, 2002, 79, 1191.	0.8	137
49	DPPH (2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl) radical scavenging mixed-mode colorimetric assay(s). , 0, , 141-164.		1
50	Proposal for the Updating of the ISO 29841 Liquid Chromatographic Method for the Determination of Chlorophyll a and a′ Degradation Products in Virgin Olive Oil. European Journal of Lipid Science and Technology, 0, , 2100222.	1.0	0