
## **Bor-Cherng Hong**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4609010/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | A mild one-pot transformation of nitroalkanes to ketones or aldehydes <i>via</i> a visible-light<br>photocatalysis–hydrolysis sequence. Organic and Biomolecular Chemistry, 2022, 20, 3292-3302.                                                                                                                                                | 1.5 | 5         |
| 2  | Total Synthesis of Ulodione A via a Double-Alkylation and DABCO Promoted Ring-Expansion<br>Rearrangement Sequence. Organic Letters, 2022, 24, 3353-3357.                                                                                                                                                                                        | 2.4 | 4         |
| 3  | Stereoselective Cyclization Cascade of Dihydroquinoxalinones by Visible-Light Photocatalysis: Access to the Polycyclic Quinoxalin-2(1 <i>H</i> )-ones. Organic Letters, 2022, 24, 5155-5160.                                                                                                                                                    | 2.4 | 4         |
| 4  | Control of the Organocatalytic Enantioselective α-Alkylation of Vinylogous Carbonyl Enolates for the<br>Synthesis of Tetrahydropyran Derivatives and Beyond. Organic Letters, 2021, 23, 4688-4693.                                                                                                                                              | 2.4 | 10        |
| 5  | Catalytic 1,2-Rearrangements: Organocatalyzed Michael/Semi-Pinacol-like Rearrangement Cascade of 1,3-Diones and Nitroolefins. Organic Letters, 2020, 22, 62-67.                                                                                                                                                                                 | 2.4 | 7         |
| 6  | Oxidative trimerization of indoles <i>via</i> water-assisted visible-light photoredox catalysis and the study of their anti-cancer activities. Organic and Biomolecular Chemistry, 2020, 18, 6247-6252.                                                                                                                                         | 1.5 | 11        |
| 7  | Enantioselective synthesis enabled by visible light photocatalysis. Organic and Biomolecular<br>Chemistry, 2020, 18, 4298-4353.                                                                                                                                                                                                                 | 1.5 | 48        |
| 8  | Enantioselective Synthesis of Yohimbine Analogues by an Organocatalytic and Pot-Economic Strategy.<br>Journal of Organic Chemistry, 2019, 84, 12138-12147.                                                                                                                                                                                      | 1.7 | 7         |
| 9  | Direct Transformation of Nitroalkanes to Nitriles Enabled by Visible-Light Photoredox Catalysis and a<br>Domino Reaction Process. Organic Letters, 2019, 21, 7750-7754.                                                                                                                                                                         | 2.4 | 16        |
| 10 | Asymmetric Synthesis of Spirocyclopentane Oxindoles Containing Four Consecutive Stereocenters<br>and Quaternary α-Nitro Esters via Organocatalytic Enantioselective Michael–Michael Cascade<br>Reactions. ACS Omega, 2019, 4, 655-667.                                                                                                          | 1.6 | 12        |
| 11 | Catalyst- and Substituent-Controlled Switching of Chemoselectivity for the Enantioselective<br>Synthesis of Fully Substituted Cyclobutane Derivatives via 2 + 2 Annulation of Vinylogous Ketone<br>Enolates and Nitroalkene. Organic Letters, 2018, 20, 7835-7839.                                                                              | 2.4 | 44        |
| 12 | The azatryptophan-based fluorescent platform for in vitro rapid screening of inhibitors disrupting<br>IKKβ-NEMO interaction. Bioorganic Chemistry, 2018, 81, 504-511.                                                                                                                                                                           | 2.0 | 4         |
| 13 | Visible-light-induced C(sp3)–H activation for a C–C bond forming reaction of<br>3,4-dihydroquinoxalin-2(1H)-one with nucleophiles using oxygen with a photoredox catalyst or under<br>catalyst-free conditions. RSC Advances, 2018, 8, 19580-19584.                                                                                             | 1.7 | 25        |
| 14 | Organocatalytic Enantioselective Michael–Acetalization–Reduction–Nef Reaction for a One-Pot Entry<br>to the Functionalized Aflatoxin System. Total Synthesis of (â^')- Dihydroaflatoxin D <sub>2</sub> and<br>(â^')- and (+)-Microminutinin. Organic Letters, 2017, 19, 3494-3497.                                                              | 2.4 | 37        |
| 15 | Enantioselective total synthesis of (+)-arborescidine C and related tetracyclic indole alkaloids using organocatalysis. Organic and Biomolecular Chemistry, 2017, 15, 3408-3412.                                                                                                                                                                | 1.5 | 12        |
| 16 | Organocatalytic Enantioselective Michael–Acetalization–Henry Reaction Cascade of<br>2-Hydroxynitrostyrene and 5-Oxohexanal for the Entry to the<br>Hexahydro-6 <i>H</i> -benzo[ <i>c</i> ]chromenones with Four Consecutive Stereogenic Centers and an<br>Approach to Aflatoxin Analogues. Journal of Organic Chemistry, 2017, 82, 12840-12848. | 1.7 | 19        |
| 17 | Organocatalytic Enantioselective Michael–Michael–Michael–Aldol Condensation Reactions: Control of Six Stereocenters in a Quadruple-Cascade Asymmetric Synthesis of Polysubstituted Spirocyclic Oxindoles. Organic Letters, 2017, 19, 6112-6115.                                                                                                 | 2.4 | 33        |
| 18 | Synthesis Of Biologically Active Bis(Indolyl)Methane Derivatives by Bisindole Alkylation of<br>Tetrahydroisoquinolines with Visibleâ€Light Induced Ringâ€Opening Fragmentation Asian Journal of<br>Organic Chemistry, 2017, 6, 426-431.                                                                                                         | 1.3 | 26        |

| #  | Article                                                                                                                                                                                                                                                                                           | IF      | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|
| 19 | Constructing densely functionalized Hajos–Parrish-type ketones with six contiguous stereogenic<br>centers and two quaternary carbons in a formal [2 + 2 + 2] cycloaddition cascade. RSC Advances, 2016,<br>6, 95314-95319.                                                                        | 1.7     | 6         |
| 20 | Asymmetric synthesis of functionalized pyrrolizidines by an organocatalytic and pot-economy strategy. RSC Advances, 2016, 6, 8243-8247.                                                                                                                                                           | 1.7     | 11        |
| 21 | Organocatalytic Enantioselective Michael–Michael–Henry Reaction Cascade. An Entry to Highly<br>Functionalized Hajos–Parrish-Type Ketones with Five to Six Contiguous Stereogenic Centers and Two<br>Quaternary Carbons. Organic Letters, 2016, 18, 1760-1763.                                     | 2.4     | 23        |
| 22 | Asymmetric Synthesis of Natural Products and Medicinal Drugs through One-Pot-Reaction Strategies.<br>Synthesis, 2015, 47, 3257-3285.                                                                                                                                                              | 1.2     | 73        |
| 23 | A New Approach to Nitrones through Cascade Reaction of Nitro Compounds Enabled by Visible Light<br>Photoredox Catalysis. Organic Letters, 2015, 17, 2314-2317.                                                                                                                                    | 2.4     | 31        |
| 24 | One-Pot Dichotomous Construction of Inside-Azayohimban and Pro-Azayohimban Systems via an<br>Enantioselective Organocatalytic Cascade; Their Use as a Model to Probe the (Aza-)Indole Local<br>Solvent Environment. Organic Letters, 2015, 17, 5816-5819.                                         | 2.4     | 14        |
| 25 | One-Pot Organocatalytic Enantioselective Michael–Michael–Aldol–Henry Reaction Cascade. A Facile<br>Entry to the Steroid System with Six Contiguous Stereogenic Centers. Organic Letters, 2014, 16,<br>2724-2727.                                                                                  | 2.4     | 42        |
| 26 | Organocatalytic Enantioselective Michael–Michael–Michael–Aldol Condensation Reactions: Control<br>of Five Stereocenters in a Quadruple-Cascade Asymmetric Synthesis of Highly Functionalized<br>Hexahydrophenanthrenes. Organic Letters, 2014, 16, 5756-5759.                                     | 2.4     | 44        |
| 27 | One-pot biomimetic total synthesis of yuehchukene via the organocatalytic alkylation–cyclization process of a sterically encumbered α-alkyl enal. RSC Advances, 2014, 4, 59706-59715.                                                                                                             | 1.7     | 13        |
| 28 | Locked <i>ortho</i> - and <i>para</i> -Core Chromophores of Green Fluorescent Protein; Dramatic<br>Emission Enhancement via Structural Constraint. Journal of the American Chemical Society, 2014, 136,<br>11805-11812.                                                                           | 6.6     | 105       |
| 29 | One-Pot Asymmetric Synthesis of Seven-Membered Carbocycles Cyclohepta[ <i>b</i> ]indoles via a<br>Sequential Organocatalytic Michael/Double Friedel–Crafts Alkylation Reaction. Organic Letters, 2013,<br>15, 3914-3917.                                                                          | 2.4     | 37        |
| 30 | Sequential Asymmetric Catalysis in Michael–Michael–Michael–Aldol Reactions: Merging<br>Organocatalysis with Photoredox Catalysis in a One-Pot Enantioselective Synthesis of Highly<br>Functionalized Decalines Bearing a Quaternary Carbon Stereocenter. Organic Letters, 2013, 15,<br>6258-6261. | 2.4     | 41        |
| 31 | One-Pot Organocatalytic Enantioselective Domino Double-Michael Reaction and<br>Pictet-Spengler–Lactamization Reaction. A Facile Entry to the "Inside Yohimbane―System with Five<br>Contiguous Stereogenic Centers. Organic Letters, 2013, 15, 468-471.                                            | 2.4     | 49        |
| 32 | Organocatalytic Enantioselective Michael–Henry Acetalization of Glutaraldehyde and<br>3â€Arylâ€2â€nitropropâ€2â€enols: A Facile Entry to 3â€Oxabicyclo[3.3.1]nonanâ€2â€ones with Four Consecu<br>Stereogenic Centers. European Journal of Organic Chemistry, 2013, 2013, 2472-2478.               | tive1.2 | 27        |
| 33 | Organocatalyzed Michael–Henry reactions: enantioselective synthesis of cyclopentanecarbaldehydes<br>via the dienamine organocatalysis of a succinaldehyde surrogate. Chemical Communications, 2012, 48,<br>7790.                                                                                  | 2.2     | 26        |
| 34 | Organocatalytic Asymmetric <i>Anti</i> -Selective Michael Reactions of Aldehydes and the Sequential<br>Reduction/Lactonization/Pauson–Khand Reaction for the Enantioselective Synthesis of Highly<br>Functionalized Hydropentalenes. Organic Letters, 2012, 14, 5346-5349.                        | 2.4     | 24        |
| 35 | Enantioselective total synthesis of (+)-galbulinvia organocatalytic domino Michael–Michael–aldol<br>condensation. Chemical Communications, 2012, 48, 2385-2387.                                                                                                                                   | 2.2     | 38        |
| 36 | Organocatalytic Michael–Knoevenagel–Hetero-Diels–Alder Reactions: An Efficient Asymmetric<br>One-Pot Strategy to Isochromene Pyrimidinedione Derivatives. Organic Letters, 2012, 14, 448-451.                                                                                                     | 2.4     | 41        |

| #  | Article                                                                                                                                                                                                                                                                                      | IF     | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 37 | The First Synthesis of Natural Occurring Juncaceae Coumarin,<br>9â€Hydroxyâ€8â€methylâ€3 <i>H</i> â€benzo[ <i>f</i> ]chromenâ€3â€one, Featuring a Oneâ€pot Rearrangement<br>Aromatization Cascade. Journal of the Chinese Chemical Society, 2012, 59, 407-420.                               | t enal | 1         |
| 38 | Development of the Ireland–Claisen Rearrangement of Allylâ€2â€alkoxyacetate Bearing an Allylic Amine<br>and the Transformation to 3â€Hydroxyâ€4â€hydroxymethylpyrrolidine. Journal of the Chinese Chemical<br>Society, 2012, 59, 273-282.                                                    | 0.8    | 3         |
| 39 | Thank You, Yung-Son $\hat{a} \in $ . Journal of the Chinese Chemical Society, 2012, 59, n/a-n/a.                                                                                                                                                                                             | 0.8    | 0         |
| 40 | Dynamic Kinetic Asymmetric Synthesis of Five Contiguous Stereogenic Centers by Sequential<br>Organocatalytic Stetter and Michaelâ"Aldol Reaction: Enantioselective Synthesis of Fully Substituted<br>Cyclopentanols Bearing a Quaternary Stereocenter. Organic Letters, 2011, 13, 1338-1341. | 2.4    | 60        |
| 41 | Asymmetric Synthesis of 3,4-Dihydrocoumarin Motif with an All-Carbon Quaternary Stereocenter<br><i>via</i> a Michael–Acetalization Sequence with Bifunctional Amine-thiourea Organocatalysts.<br>Organic Letters, 2011, 13, 5758-5761.                                                       | 2.4    | 68        |
| 42 | Organocatalyzed Cycloadditions. , 2011, , 187-244.                                                                                                                                                                                                                                           |        | 10        |
| 43 | Enantioselective organocatalytic domino Michael–acetalization–Henry reactions of<br>2-hydroxynitrostyrene and aldehyde for the synthesis of tetrahydro-6H-benzo[c]chromenones.<br>Organic and Biomolecular Chemistry, 2011, 9, 382-386.                                                      | 1.5    | 72        |
| 44 | Enantioselective Organocatalytic Michaelâ^'Wittigâ^'Michaelâ^'Michael Reaction: Dichotomous<br>Construction of Pentasubstituted Cyclopentanecarbaldehydes and Pentasubstituted<br>Cyclohexanecarbaldehydes. Organic Letters, 2011, 13, 1278-1281.                                            | 2.4    | 46        |
| 45 | Organocatalytic Domino Double Michael Reaction of Ethyl (E)-7-Oxohept-2-enoate and α,β-Unsaturated<br>Aldehydes: Efficient Asymmetric Synthesis of Cyclohexanes with Four Contiguous Stereocenters.<br>Synthesis, 2011, 2011, 1887-1895.                                                     | 1.2    | 17        |
| 46 | Sequential Organocatalytic Stetter and Michael-Aldol Condensation Reaction: Asymmetric Synthesis<br>of Fully Substituted Cyclopentenes via a [1 + 2 + 2] Annulation Strategy. Organic Letters, 2010, 12,<br>4812-4815.                                                                       | 2.4    | 68        |
| 47 | Enantioselective Total Synthesis of (+)-Conicol via Cascade Three-Component Organocatalysis.<br>Organic Letters, 2010, 12, 776-779.                                                                                                                                                          | 2.4    | 169       |
| 48 | Enantioselective synthesis of the tetrahydro-6H-benzo[c]chromenes via Domino Michael–Aldol<br>condensation: control of five stereocenters in a quadruple-cascade organocatalytic<br>multi-component reaction. Tetrahedron Letters, 2009, 50, 704-707.                                        | 0.7    | 132       |
| 49 | Organocatalytic Enantioselective Cascade Michaelâ^'Michaelâ^'Wittig Reactions of Phosphorus Ylides:<br>One-Pot Synthesis of the <i>all</i> - <i>cis</i> Trisubstituted Cyclohexenecarboxylates via the [1 + 2 + 3]<br>Annulation. Organic Letters, 2009, 11, 5246-5249.                      | 2.4    | 57        |
| 50 | Enantioselective synthesis of highly functionalized<br>octahydro-6-oxo-1-phenylnaphthalene-2-carbaldehydes via organocatalytic domino reactions. Organic<br>and Biomolecular Chemistry, 2009, 7, 3095.                                                                                       | 1.5    | 32        |
| 51 | Organocatalytic Double Michael Reaction of 7â€Oxoheptâ€2â€enoates and Nitrostyrene – Formal Synthesis<br>of (–)â€Î±â€•and (–)â€Î²â€Lycorane. European Journal of Organic Chemistry, 2008, 2008, 1449-1457.                                                                                   | 1.2    | 46        |
| 52 | Proline-mediated dimerization of cinnamaldehydes via 1,3-dipolar cycloaddition reaction with<br>azomethine ylides. A rapid access to highly functionalized hexahydro-1H-pyrrolizine. Tetrahedron<br>Letters, 2008, 49, 5480-5483.                                                            | 0.7    | 20        |
| 53 | Organocatalytic Enantioselective Domino Michael-aldol Condensation of 5-Oxoalkanal and<br>α,β-Unsaturated Aldehydes. Efficient Assembly of Densely Functionalized Cyclohexenes. Organic Letters,<br>2008, 10, 2345-2348.                                                                     | 2.4    | 73        |
| 54 | Organocatalytic Asymmetric Robinson Annulation of α,β-Unsaturated Aldehydes: Applications to the<br>Total Synthesis of (+)-Palitantin. Journal of Organic Chemistry, 2007, 72, 8459-8471.                                                                                                    | 1.7    | 115       |

| #  | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis of aromatic aldehydes by organocatalytic [4+2] and [3+3] cycloaddition of α,β-unsaturated aldehydes. Tetrahedron, 2007, 63, 2840-2850.                                                                                                          | 1.0 | 80        |
| 56 | The organocatalytic direct self-trimerization of acrolein: application to the total synthesis of montiporyne F. Tetrahedron Letters, 2007, 48, 1121-1125.                                                                                                 | 0.7 | 18        |
| 57 | Hetero Diels–Alder Cycloaddition of Indene for the Formal Synthesis of Onychnine. Synthetic<br>Communications, 2006, 36, 1521-1528.                                                                                                                       | 1.1 | 12        |
| 58 | Enantioselective Organocatalytic Formal [3 + 3]-Cycloaddition of α,β-Unsaturated Aldehydes and<br>Application to the Asymmetric Synthesis of (â^')-Isopulegol Hydrate and (â^')-Cubebaolâ€. Organic Letters,<br>2006, 8, 2217-2220.                       | 2.4 | 138       |
| 59 | Regioselective electrophilic substitutions of fulvenes with ethyl glyoxylate and subsequent<br>Diels–Alder reactions. Tetrahedron, 2006, 62, 1425-1432.                                                                                                   | 1.0 | 8         |
| 60 | Synthesis and properties of several isomers of the cardioactive steroid ouabain. Tetrahedron Letters, 2006, 47, 2711-2715.                                                                                                                                | 0.7 | 22        |
| 61 | Catalytic C-C Bond Formation in Natural Products Synthesis: Highlights From The Years 2000 – 2005.<br>Current Organic Chemistry, 2006, 10, 2191-2225.                                                                                                     | 0.9 | 15        |
| 62 | Synthesis and Cytotoxicity Studies of Cyclohepta[b]indoles, Benzo[6,7]Cyclohepta[1,2-b]Indoles,<br>Indeno[1,2-b]Indoles, and Benzo[a]Carbazoles. Journal of the Chinese Chemical Society, 2006, 53,<br>647-662.                                           | 0.8 | 29        |
| 63 | Traceless Solid-Phase Synthesis of Cyclopenta[c]quinolines and Cyclopenta[c]chromenes via Hetero<br>[6+3] Cycloadditions of Fulvene. A Facile Approach to the 11-Heterosteroids Framework. Journal of the<br>Chinese Chemical Society, 2005, 52, 181-200. | 0.8 | 7         |
| 64 | Efficient synthesis of enantiomerically pure dihydropyrans. Tetrahedron Letters, 2005, 46, 1281-1285.                                                                                                                                                     | 0.7 | 14        |
| 65 | An unexpected inversion of enantioselectivity in the proline catalyzed intramolecular Baylis–Hillman<br>reaction. Tetrahedron Letters, 2005, 46, 8899-8903.                                                                                               | 0.7 | 126       |
| 66 | Azadiene Diels?Alder Cycloaddition of Fulvenes: A Facile Approach to the [1]Pyrindine System<br>ChemInform, 2005, 36, no.                                                                                                                                 | 0.1 | 0         |
| 67 | Efficient Synthesis of Enantiomerically Pure Dihydropyrans ChemInform, 2005, 36, no.                                                                                                                                                                      | 0.1 | Ο         |
| 68 | Efficient and stereodivergent synthesis of deoxyimino sugars. Carbohydrate Research, 2005, 340, 2457-2468.                                                                                                                                                | 1.1 | 14        |
| 69 | Intramolecular Dielsâ^'Alder Cycloadditions of Fulvenes. Application to the Kigelinol,<br>Neoamphilectane, and Kempane Skeletons. Organic Letters, 2005, 7, 557-560.                                                                                      | 2.4 | 51        |
| 70 | Formal [6 + 3] Cycloaddition of Fulvenes with 2H-Azirine: A Facile Approach to the [2]Pyrindines System ChemInform, 2004, 35, no.                                                                                                                         | 0.1 | 0         |
| 71 | Azadiene Dielsâ^'Alder Cycloaddition of Fulvenes:  A Facile Approach to the [1]Pyrindine System. Organic<br>Letters, 2004, 6, 3453-3456.                                                                                                                  | 2.4 | 39        |
| 72 | Formal [6+3] cycloaddition of fulvenes with 2H-azirine: a facile approach to the [2]pyrindines system.<br>Tetrahedron Letters, 2004, 45, 1663-1666.                                                                                                       | 0.7 | 29        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Hetero [6 + 3] Cycloaddition of Fulvenes with N-Alkylidene Glycine Esters: A Facile Synthesis of the<br>Delavayine and Incarvillateine Framework ChemInform, 2003, 34, no.                             | 0.1 | 0         |
| 74 | Hetero [6+3] Cycloaddition of Fulvenes withN-Alkylidene Glycine Esters: A Facile Synthesis of the Delavayine and Incarvillateine Framework. Organic Letters, 2003, 5, 1689-1692.                       | 2.4 | 47        |
| 75 | Intramolecular [2+2] Photocycloadditionâ€Fragmentation: Facile Entry to a Novel Tricyclic 5â€6â€7 Ring<br>System. Journal of the Chinese Chemical Society, 2003, 50, 917-926.                          | 0.8 | 6         |
| 76 | Unprecedented Microwave Effects on the Cycloaddition of Fulvenes. A New Approach to the Construction of Polycyclic Ring Systems. Organic Letters, 2002, 4, 663-666.                                    | 2.4 | 52        |
| 77 | Novel [6 + 2] Cycloaddition of Fulvenes with Alkenes:  A Facile Synthesis of the Anislactone and<br>Hirsutane Framework. Organic Letters, 2002, 4, 2249-2252.                                          | 2.4 | 66        |
| 78 | Unprecedented sequential oxidative dimerization and cycloaddition of 1,3-diketones to fulvenes. A facile synthesis of the cyclopenta[b]chromenes. Tetrahedron Letters, 2001, 42, 935-938.              | 0.7 | 23        |
| 79 | Microwave-assisted [6+4]-cycloaddition of fulvenes and α-pyrones to azulene–indoles: Facile syntheses of novel antineoplastic agents. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 1981-1984. | 1.0 | 53        |
| 80 | A novel oxidative alkylation–nitration of 1,3-dicarbonyl compounds to dicyclopentadiene and<br>norbornene â€. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 2939-2942.               | 1.3 | 6         |
| 81 | Traceless Solid-Phase Synthesis of Heterosteroid Framework. Organic Letters, 2000, 2, 2647-2649.                                                                                                       | 2.4 | 32        |
| 82 | Unprecedented and novel hetero [6+3] cycloadditions of fulvene: a facile synthesis of the 11-oxasteroid framework. Chemical Communications, 1999, , 2125-2126.                                         | 2.2 | 23        |
| 83 | Unprecedented oxidative addition of α-halo acyl halides to 6,6-dialkoxyfulvene. Journal of the Chemical<br>Society Perkin Transactions 1, 1999, , 1135-1138.                                           | 0.9 | 7         |
| 84 | RECENT ADVANCES IN THE SYNTHESIS OF INDAN SYSTEMS. A REVIEW. Organic Preparations and Procedures International, 1999, 31, 1-86.                                                                        | 0.6 | 47        |
| 85 | Bicyclo[3.2.1]octanes via McMurry Couplings. Synthetic Communications, 1999, 29, 3097-3106.                                                                                                            | 1.1 | 9         |
| 86 | Regio- and Enantioselective Prenyl Anion Transfer: Application to the Total Synthesis of (â^')-Rosiridol.<br>Angewandte Chemie - International Edition, 1998, 37, 468-470.                             | 7.2 | 30        |
| 87 | Lanthanide(III) Promoted Aldol Condensation of Enones and Aldehydes <sup>1</sup> . Synthetic<br>Communications, 1997, 27, 1191-1197.                                                                   | 1.1 | 7         |
| 88 | A Simple and Cost Effective Synthesis of 2-Cyclopentadienyliden-1,3-Dioxolane. Synthetic<br>Communications, 1997, 27, 3385-3394.                                                                       | 1.1 | 10        |
| 89 | Metal-Mediated [6Â+Â3] Cycloaddition Reactions of Fulvenes. A Novel Approach to Indan Systems. Journal of Organic Chemistry, 1997, 62, 7717-7725.                                                      | 1.7 | 40        |
| 90 | Sequential "double-Michael―additions of dienolates to fulvene: Rapid access to the<br>tricyclo[5.3.0.n2,5]alkane systems. Tetrahedron Letters, 1997, 38, 255-258.                                      | 0.7 | 16        |

| #   | Article                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Facile synthesis of azulenols: [6 + 4] cycloadditions of fulveneketene acetal. Chemical Communications, 1996, , 937.                                                                                                                                                         | 2.2 | 18        |
| 92  | [6+3] Cycloaddition of fulveneketene acetal. Tetrahedron Letters, 1996, 37, 659-662.                                                                                                                                                                                         | 0.7 | 17        |
| 93  | Transannular radical reactions in bicycloalkanes with â€~inside-outside' stereochemistry. An unusual<br>bridgehead hydroxylation. Tetrahedron Letters, 1995, 36, 683-686.                                                                                                    | 0.7 | 9         |
| 94  | On the Protein Kinase C Pharmacophore: Synthesis and Biological Activity of 4-Hydroxylated Analogs of Ingenol. Synlett, 1995, 1995, 533-535.                                                                                                                                 | 1.0 | 6         |
| 95  | Inside-outside stereoisomerism. VII. Methodology for the Synthesis of 3-Oxygenated Ingenanes. The<br>First Ingenol Analogs with High Affinity for Protein Kinase C. Journal of Organic Chemistry, 1995, 60,<br>1381-1390.                                                    | 1.7 | 20        |
| 96  | Chemical Emulation of the Biosynthetic Route to Glycinoeclepin from a Cycloartenol Derivative.<br>Journal of the American Chemical Society, 1994, 116, 3149-3150.                                                                                                            | 6.6 | 27        |
| 97  | Inside-Outside Stereoisomerism. 6.+ Synthesis of trans-Bicyclo[4.4.1]undecan-11-one and the First<br>Stereoselective Construction of the Tricyclic Nucleus of the Ring System of the Ingenane Diterpenes.<br>Journal of the American Chemical Society, 1994, 116, 4183-4188. | 6.6 | 23        |
| 98  | Synthesis of ingenol analogs wth affinity for protein kinase C. Bioorganic and Medicinal Chemistry Letters, 1993, 3, 577-580.                                                                                                                                                | 1.0 | 24        |
| 99  | Inside-outside stereoisomerism. 5. Synthesis and reactivity of trans-bicyclo[n.3.1] alkanones prepared via the intramolecular photocycloaddition of dioxenones. Journal of the American Chemical Society, 1991, 113, 8839-8846.                                              | 6.6 | 26        |
| 100 | Dichotomous regiochemistry of aldehyde and ketone in the reaction with dithio-substituted crotyllithium. Journal of Organic Chemistry, 1987, 52, 855-861.                                                                                                                    | 1.7 | 44        |
| 101 | Stereoselective reaction of dithio-substituted crotylmetal with .alphaoxy carbonyl compounds.<br>Journal of Organic Chemistry, 1987, 52, 3162-3165.                                                                                                                          | 1.7 | 13        |
| 102 | Regio- and diastereoselective reactions of dithio-substituted crotyllithium and aldehydes. Journal of<br>Organic Chemistry, 1986, 51, 2828-2829.                                                                                                                             | 1.7 | 20        |
| 103 | A Convergent Synthesis of (±)-Eldanolide Based on Reaction of Aldehyde with Dithio-Substituted<br>Crotyllithium Compound. Synthetic Communications, 1986, 16, 523-527.                                                                                                       | 1.1 | 7         |