Shotaro Akaho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608980/publications.pdf

Version: 2024-02-01

85 1,020 11 27
papers citations h-index g-index

89 89 89 741 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Detecting cell assemblies by NMF-based clustering from calcium imaging data. Neural Networks, 2022, 149, 29-39.	3.3	7
2	Principal Component Analysis for Gaussian Process Posteriors. Neural Computation, 2022, 34, 1189-1219.	1.3	5
3	Full-Span Log-Linear Model and Fast Learning Algorithm. Neural Computation, 2022, 34, 1-27.	1.3	O
4	Spectrum adapted expectation-conditional maximization algorithm for extending high–throughput peak separation method in XPS analysis. Science and Technology of Advanced Materials Methods, 2021, 1, 45-55.	0.4	4
5	Pathological Spectra of the Fisher Information Metric and Its Variants in Deep Neural Networks. Neural Computation, 2021, 33, 2274-2307.	1.3	4
6	Nano-scale Surface and Interface Analysis Using X-ray Spectromicroscopy Assisted by Measurement Informatics. Vacuum and Surface Science, 2021, 64, 382-389.	0.0	1
7	Gaze prediction for first-person videos based on inverse non-negative sparse coding with determinant sparse measure. Journal of Visual Communication and Image Representation, 2021, 81, 103367.	1.7	4
8	Sparse isocon analysis: A data-driven approach for material transfer estimation. Chemical Geology, 2020, 532, 119345.	1.4	9
9	Thermodynamic modeling of hydrous-melt–olivine equilibrium using exhaustive variable selection. Physics of the Earth and Planetary Interiors, 2020, 300, 106430.	0.7	10
10	Information geometry of modal linear regression. Information Geometry, 2019, 2, 43-75.	0.8	4
11	Spectrum adapted expectation-maximization algorithm for high-throughput peak shift analysis. Science and Technology of Advanced Materials, 2019, 20, 733-745.	2.8	13
12	Retrieved Image Refinement by Bootstrap Outlier Test. Lecture Notes in Computer Science, 2019, , 505-517.	1.0	1
13	Sleep State Analysis Using Calcium Imaging Data by Non-negative Matrix Factorization. Lecture Notes in Computer Science, 2019, , 102-113.	1.0	3
14	On a Convergence Property of a Geometrical Algorithm for Statistical Manifolds. Communications in Computer and Information Science, 2019, , 262-272.	0.4	3
15	Model-based and actual independence for fairness-aware classification. Data Mining and Knowledge Discovery, 2018, 32, 258-286.	2.4	12
16	Progressive evolution of wholeâ€rock composition during metamorphism revealed by multivariate statistical analyses. Journal of Metamorphic Geology, 2018, 36, 41-54.	1.6	14
17	Information Geometric Perspective of Modal Linear Regression. Lecture Notes in Computer Science, 2018, , 535-545.	1.0	2
18	Estimation of neural connections from partially observed neural spikes. Neural Networks, 2018, 108, 172-191.	3.3	3

#	Article	IF	Citations
19	Geometrical Formulation of the Nonnegative Matrix Factorization. Lecture Notes in Computer Science, 2018, , 525-534.	1.0	2
20	Local Intrinsic Dimension Estimation by Generalized Linear Modeling. Neural Computation, 2017, 29, 1838-1878.	1.3	2
21	Time-Varying Transition Probability Matrix Estimation and Its Application to Brand Share Analysis. PLoS ONE, 2017, 12, e0169981.	1.1	6
22	Model-Based Approaches for Independence-Enhanced Recommendation. , 2016, , .		13
23	Nonparametric <i>e</i> -Mixture Estimation. Neural Computation, 2016, 28, 2687-2725.	1.3	9
24	Graph structure modeling for multi-neuronal spike data. Journal of Physics: Conference Series, 2016, 699, 012012.	0.3	0
25	Non-parametric e-mixture of Density Functions. Lecture Notes in Computer Science, 2016, , 3-10.	1.0	1
26	An Entropy Estimator Based on Polynomial Regression with Poisson Error Structure. Lecture Notes in Computer Science, 2016, , 11-19.	1.0	1
27	Automatic Categorization of Health Indices for Risk Quantification. Procedia Computer Science, 2015, 63, 325-331.	1.2	2
28	An efficient sampling algorithm with adaptations for Bayesian variable selection. Neural Networks, 2015, 61, 22-31.	3.3	5
29	Intrinsic Graph Structure Estimation Using Graph Laplacian. Neural Computation, 2014, 26, 1455-1483.	1.3	4
30	The Independence of Fairness-Aware Classifiers. , 2013, , .		11
31	Flexible Hypersurface Fitting with RBF Kernels. Lecture Notes in Computer Science, 2013, , 286-293.	1.0	1
32	Pairwise Similarity for Line Extraction from Distorted Images. Lecture Notes in Computer Science, 2013, , 250-257.	1.0	0
33	Considerations on Fairness-Aware Data Mining. , 2012, , .		11
34	Fairness-Aware Classifier with Prejudice Remover Regularizer. Lecture Notes in Computer Science, 2012, , 35-50.	1.0	325
35	Robust Hypersurface Fitting Based on Random Sampling Approximations. Lecture Notes in Computer Science, 2012, , 520-527.	1.0	1
36	Calibration of radially symmetric distortion based on linearity in the calibrated image. , 2011, , .		0

3

#	Article	IF	CITATIONS
37	Global convergence of independent component analysis based on semidefinite programming relaxation. , $2011, \ldots$		O
38	Improved methods for dewarping images in convex mirrors in fine art: applications to van Eyck and Parmigianino. , $2011, \ldots$		2
39	Robust Hyperplane Fitting Based on k-th Power Deviation and α-Quantile. Lecture Notes in Computer Science, 2011, , 278-285.	1.0	1
40	Hypersurface Fitting via Jacobian Nonlinear PCA on Riemannian Space. Lecture Notes in Computer Science, 2011, , 236-243.	1.0	2
41	Gaussian Process Regression with Measurement Error. IEICE Transactions on Information and Systems, 2010, E93-D, 2680-2689.	0.4	8
42	Visualization of multi-neuron activity by simultaneous optimization of clustering and dimension reduction. Neural Networks, 2010, 23, 743-751.	3.3	4
43	A Survey and Empirical Comparison of Object Ranking Methods. , 2010, , 181-201.		28
44	Behaviorally Founded Recommendation Algorithm for Browsing Assistance Systems. Annals of Information Systems, 2010, , 317-334.	0.5	1
45	Simultaneous Clustering and Dimensionality Reduction Using Variational Bayesian Mixture Model. Studies in Classification, Data Analysis, and Knowledge Organization, 2010, , 81-89.	0.1	1
46	Human–Web Interactions. Advanced Information and Knowledge Processing, 2010, , 199-232.	0.2	0
47	Dimension Reduction for Object Ranking. , 2010, , 203-215.		0
48	Variational Bayesian Mixture Model on a Subspace of Exponential Family Distributions. IEEE Transactions on Neural Networks, 2009, 20, 1783-1796.	4.8	14
49	TrBagg: A Simple Transfer Learning Method and its Application to Personalization in Collaborative Tagging. , 2009, , .		58
50	Curve fitting by Spherical Least Squares on two-dimensional sphere. , 2009, , .		2
51	Efficient Clustering for Orders. Studies in Computational Intelligence, 2009, , 261-279.	0.7	20
52	Analytics and Management of Collaborative Intranets. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2009, , 623-631.	0.2	1
53	Dimension Reduction for Mixtures of Exponential Families. Lecture Notes in Computer Science, 2008, , $1\text{-}10$.	1.0	2
54	Web Behaviormetric User Profiling Concept. Lecture Notes in Computer Science, 2008, , 134-143.	1.0	0

#	Article	IF	CITATIONS
55	Natural Conjugate Gradient on Complex Flag Manifolds for Complex Independent Subspace Analysis. Lecture Notes in Computer Science, 2008, , 165-174.	1.0	10
56	Enterprise Web Services and Elements of Human Interactions. Lecture Notes in Business Information Processing, 2008, , 263-272.	0.8	1
57	Browsing Assistance Service for Intranet Information Systems. Lecture Notes in Computer Science, 2008, , 256-267.	1.0	1
58	Human-Centric Design of Percipient Knowledge Distribution Service. Lecture Notes in Computer Science, 2008, , 31-40.	1.0	0
59	Active Learning for Network Estimation. , 2007, , .		0
60	Knowledge worker intranet behaviour and usability. International Journal of Business Intelligence and Data Mining, 2007, 2, 447.	0.2	10
61	Flag Manifolds for Subspace ICA Problems. , 2007, , .		7
62	Intranet Browsing Behavior Analysis and Efficient Support System., 2007,,.		0
63	Navigation Space Based Intranet Usability Analysis. , 2007, , .		3
64	Epipolar Geometry Via Rectification of Spherical Images. , 2007, , 461-471.		16
65	Long Tails and Analysis of Knowledge Worker Intranet Browsing Behavior. , 2007, , 584-597.		0
66	Usability Analysis Framework Based on Behavioral Segmentation. Lecture Notes in Computer Science, 2007, , 35-45.	1.0	1
67	Efficient Clustering for Orders. , 2006, , .		8
68	Supervised ordering by regression combined with Thurstone's model. Artificial Intelligence Review, 2006, 25, 231-246.	9.7	8
69	Riemannian Optimization Method on Generalized Flag Manifolds for Complex and Subspace ICA. AIP Conference Proceedings, 2006, , .	0.3	3
70	Dimension Reduction for Supervised Ordering. IEEE International Conference on Data Mining, 2006, , .	0.0	7
71	Learning algorithms utilizing quasi-geodesic flows on the Stiefel manifold. Neurocomputing, 2005, 67, 106-135.	3.5	119
72	Nonlinear PCA/ICA for the Structure from Motion Problem. Lecture Notes in Computer Science, 2004, , 750-757.	1.0	0

#	Article	IF	CITATIONS
73	Asymptotic Properties of the Fisher Kernel. Neural Computation, 2004, 16, 115-137.	1.3	25
74	SVM that maximizes the margin in the input space. Systems and Computers in Japan, 2004, 35, 78-86.	0.2	1
75	Learning from Cluster Examples-Employing Attributes of Clusters Transactions of the Japanese Society for Artificial Intelligence, 2003, 18, 86-95.	0.1	10
76	Conditionally independent component analysis for supervised feature extraction. Neurocomputing, 2002, 49, 139-150.	3.5	16
77	Multimodal independent component analysis?A method of feature extraction from multiple information sources. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 2001, 84, 21-28.	0.1	1
78	Conditionally Independent Component Extraction for Naive Bayes Inference. Lecture Notes in Computer Science, 2001, , 535-540.	1.0	1
79	Nonmonotonic Generalization Bias of Gaussian Mixture Models. Neural Computation, 2000, 12, 1411-1427.	1.3	36
80	10.1162/153244304322765649. Applied Physics Letters, 2000, 1, .	1.5	26
81	Curve fitting that minimizes the mean square of perpendicular distances from sample points. , 1993, , .		4
82	Learning from order examples. , 0, , .		7
83	Filling-in Missing Objects in Orders. , 0, , .		4
84	The e-PCA and m-PCA: dimension reduction of parameters by information geometry. , 0, , .		7
85	Supervised Ordering & Supervised & Supervised Ordering & Supervised Ordering & Supervised Ordering & Supervised Ordering & Supervised		12