List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608953/publications.pdf Version: 2024-02-01

FENC HUANC

#	Article	IF	CITATIONS
1	Raman tensor of graphite: Symmetry of G, D and D′ phonons. Science China Materials, 2022, 65, 268-272.	3.5	2
2	Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. Journal of Energy Chemistry, 2022, 65, 304-311.	7.1	26
3	Pt/ZnGa ₂ O ₄ /p-Si Back-to-Back Heterojunction for Deep UV Sensitive Photovoltaic Photodetection with Ultralow Dark Current and High Spectral Selectivity. ACS Applied Materials & Interfaces, 2022, 14, 5653-5660.	4.0	19
4	Anomalous Blue Shift of Exciton Luminescence in Diamond. Nano Letters, 2022, 22, 1604-1608.	4.5	12
5	C-Doped KNbO ₃ single crystals for enhanced piezocatalytic intermediate water splitting. Environmental Science: Nano, 2022, 9, 1952-1960.	2.2	13
6	Ultra-Hard (41 GPa) Isotopic Pure ¹⁰ BP Semiconductor Microwires for Flexible Photodetection and Pressure Sensing. ACS Nano, 2022, 16, 4004-4013.	7.3	5
7	Vacuum Ultraviolet (120–200 nm) Avalanche Photodetectors. Advanced Optical Materials, 2022, 10, .	3.6	27
8	Ultrafast (600Âps) α-ray scintillators. PhotoniX, 2022, 3, .	5.5	38
9	Turn-up Luminescent Sensing of Ultraviolet Radiation by Lanthanide Metal–Organic Frameworks. Inorganic Chemistry, 2022, 61, 4561-4565.	1.9	10
10	Ultrahigh EQE (38.1%) Deepâ€UV Photodiode with Chemicallyâ€Doped Graphene as Hole Transport Layer. Advanced Optical Materials, 2022, 10, .	3.6	5
11	Robust route to photocatalytic nitrogen fixation mediated by capitalizing on defect-tailored InVO ₄ nanosheets. Environmental Science: Nano, 2022, 9, 1996-2005.	2.2	13
12	Bifunctional RbBiNb2O7/poly(tetrafluoroethylene) for high-efficiency piezocatalytic hydrogen and hydrogen peroxide production from pure water. Chemical Engineering Journal, 2022, 446, 136958.	6.6	16
13	Extremely High Photovoltage (3.16 V) Achieved in Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics. ACS Photonics, 2022, 9, 2101-2108.	3.2	12
14	2D van der Waals Molecular Crystal βâ€HgI ₂ : Economical, Rapid, and Substrateâ€Free Liquidâ€Phase Synthesis and Strong Inâ€Plane Optical Anisotropy. Small, 2021, 17, e2005368.	5.2	6
15	ZnGa2O4 deep-ultraviolet photodetector based on Si substrate. Materials Letters, 2021, 283, 128805.	1.3	18
16	Efficient sky-blue radioluminescence of microcrystalline Cs ₃ Cu ₂ I ₅ based large-scale eco-friendly composite scintillators for high-sensitive ionizing radiation detection. Materials Chemistry Frontiers, 2021, 5, 4739-4745.	3.2	13
17	A Rapid and Robust Light-and-Solution-Triggered In Situ Crafting of Organic Passivating Membrane over Metal Halide Perovskites for Markedly Improved Stability and Photocatalysis. Nano Letters, 2021, 21, 1643-1650.	4.5	40
18	High-Pressure O2 Annealing Enhances the Crystallinity of Ultrawide-Band-Gap Sesquioxides Combined with Graphene for Vacuum-Ultraviolet Photovoltaic Detection. ACS Applied Materials & Interfaces, 2021, 13, 16660-16668.	4.0	5

#	Article	IF	CITATIONS
19	Laser Tuning in Layered <i>h</i> -BN Crystals. Journal of Physical Chemistry Letters, 2021, 12, 3795-3801.	2.1	6
20	Identification of TO and LO phonons in cubic natBP, 10BP and 11BP crystals. Applied Physics Letters, 2021, 118, .	1.5	9
21	Self-assembled eco-friendly metal halide heterostructures for bright and color-tunable white radioluminescence. Cell Reports Physical Science, 2021, 2, 100437.	2.8	16
22	Lu2O3: A promising ultrawide bandgap semiconductor for deep UV photodetector. Applied Physics Letters, 2021, 118, .	1.5	18
23	Laser tuning in AlN single crystals. Science China Materials, 2021, 64, 2877-2882.	3.5	3
24	Linear Classification Function Emulated by Pectinâ€Based Polysaccharideâ€Gated Multiterminal Neuron Transistors. Advanced Functional Materials, 2021, 31, 2102015.	7.8	19
25	High-Efficiency Down-Conversion Radiation Fluorescence and Ultrafast Photoluminescence (1.2 ns) at the Interface of Hybrid Cs ₄ PbBr ₆ –Csl Nanocrystals. Journal of Physical Chemistry Letters, 2021, 12, 7342-7349.	2.1	16
26	Ultrawide-bandgap (6.14 eV) (AlGa)2O3/Ga2O3 heterostructure designed by lattice matching strategy for highly sensitive vacuum ultraviolet photodetection. Science China Materials, 2021, 64, 3027-3036.	3.5	20
27	Amorphous (LuGa)2O3 film for deep-ultraviolet photovoltaic detector. Materials Letters, 2021, 297, 129980.	1.3	4
28	Micron-Thick Hexagonal Boron Nitride Crystalline Film for Vacuum Ultraviolet Photodetection with Improved Sensitivity and Spectral Response. ACS Applied Electronic Materials, 2021, 3, 3774-3780.	2.0	4
29	Narrow band emission from layered α-HgI2 micro-/nano-sheets with high Huang-Rhys factor. Journal of Luminescence, 2021, 237, 118161.	1.5	2
30	Temperature-dependent optical phonon shifts and splitting in cubic ¹⁰ BP, ^{nat} BP, and ¹¹ BP crystals. Optics Letters, 2021, 46, 4844.	1.7	7
31	Extraction of carrier concentration and mobility of ZnO by mid-infrared reflectance spectroscopy. Journal of Luminescence, 2021, 239, 118365.	1.5	8
32	Photophysics in Cs ₃ Cu ₂ I ₅ and CsCu ₂ I ₃ . Materials Chemistry Frontiers, 2021, 5, 7088-7107.	3.2	39
33	Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis. Journal of Materials Chemistry A, 2021, 9, 17143-17172.	5.2	66
34	Observation of negative differential resistance in SiO2/Si heterostructures. Cell Reports Physical Science, 2021, 2, 100622.	2.8	2
35	Fermi-Surface Modulation of Graphene Synergistically Enhances the Open-Circuit Voltage and Quantum Efficiency of Photovoltaic Solar-Blind Ultraviolet Detectors. Journal of Physical Chemistry Letters, 2021, 12, 11106-11113.	2.1	5
36	Ti ₃ C ₂ : An Ideal Coâ€catalyst?. Angewandte Chemie - International Edition, 2020, 59, 1914-1918.	7.2	104

#	Article	IF	CITATIONS
37	Ti ₃ C ₂ : An Ideal Coâ€catalyst?. Angewandte Chemie, 2020, 132, 1930-1934.	1.6	21
38	Ultrawide Band Gap Oxide Nanodots (<i>E</i> _g > 4.8 eV) for a High-Performance Deep Ultraviolet Photovoltaic Detector. ACS Applied Materials & Interfaces, 2020, 12, 6030-6036.	4.0	39
39	In-plane enhanced epitaxy for step-flow AlN yielding a high-performance vacuum-ultraviolet photovoltaic detector. CrystEngComm, 2020, 22, 654-659.	1.3	19
40	Amorphous boron nitride for vacuum-ultraviolet photodetection. Applied Physics Letters, 2020, 117, .	1.5	24
41	Reversible photochromism for the enhancement of carrier separation in Zn1-Cu S. Journal of Alloys and Compounds, 2020, 844, 155880.	2.8	4
42	Raman Tensor of Layered SnS ₂ . Journal of Physical Chemistry Letters, 2020, 11, 10094-10099.	2.1	14
43	Silicon Nitride Deep-Ultraviolet Photoconductive Detector. IEEE Electron Device Letters, 2020, 41, 1316-1319.	2.2	9
44	Experimental Evidence on Stability of N Substitution for O in ZnO Lattice. Journal of Physical Chemistry Letters, 2020, 11, 8901-8907.	2.1	17
45	Quasiphonon polaritons. Heliyon, 2020, 6, e05277.	1.4	8
46	Bienenstock–Cooper–Munro Learning Rule Realized in Polysaccharide-Gated Synaptic Transistors with Tunable Threshold. ACS Applied Materials & Interfaces, 2020, 12, 50061-50067.	4.0	25
47	Ultra‣ong Van Der Waals CdBr ₂ Micro/Nanobelts. Small Methods, 2020, 4, 2000501.	4.6	8
48	X-ray radiation excited ultralong (>20,000 seconds) intrinsic phosphorescence in aluminum nitride single-crystal scintillators. Nature Communications, 2020, 11, 4351.	5.8	31
49	Room-Temperature Sputtered Aluminum-Doped Zinc Oxide for Semitransparent Perovskite Solar Cells. ACS Applied Energy Materials, 2020, 3, 9610-9617.	2.5	19
50	Dual Self-Trapped Exciton Emission with Ultrahigh Photoluminescence Quantum Yield in CsCu ₂ I ₃ and Cs ₃ Cu ₂ I ₅ Perovskite Single Crystals. Journal of Physical Chemistry C, 2020, 124, 20469-20476.	1.5	108
51	Data-driven computational prediction and experimental realization of exotic perovskite-related polar magnets. Npj Quantum Materials, 2020, 5, .	1.8	14
52	Raman Tensor of van der Waals MoSe ₂ . Journal of Physical Chemistry Letters, 2020, 11, 4311-4316.	2.1	28
53	Rocksalt-Zincblende–Wurtzite Mixed-Phase ZnO Crystals With High Activity as Photocatalysts for Visible-Light-Driven Water Splitting. Frontiers in Chemistry, 2020, 8, 351.	1.8	7
54	Raman tensor of layered WS2. Science China Materials, 2020, 63, 1848-1854.	3.5	17

#	Article	IF	CITATIONS
55	Vacuum-Ultraviolet Photon Detections. IScience, 2020, 23, 101145.	1.9	98
56	Hydrogen Impurities in ZnO: Shallow Donors in ZnO Semiconductors and Active Sites for Hydrogenation of Carbon Species. Journal of Physical Chemistry Letters, 2020, 11, 2402-2407.	2.1	22
57	Raman tensor of layered black arsenic. Journal of Raman Spectroscopy, 2020, 51, 1324-1330.	1.2	19
58	Raman Tensor of Layered Td-WTe ₂ . Journal of Physical Chemistry C, 2020, 124, 16596-16603.	1.5	16
59	Multistep Thermodynamics Yielding Deep Ultraviolet Transparent Conductive Ga ₂ O ₃ Films. Journal of Physical Chemistry C, 2020, 124, 16722-16727.	1.5	9
60	Near vacuum-ultraviolet aperiodic oscillation emission of AlN films. Science Bulletin, 2020, 65, 827-831.	4.3	21
61	Sensitive and Fast Direct Conversion Xâ€Ray Detectors Based on Singleâ€Crystalline HgI ₂ Photoconductor and ZnO Nanowire Vacuum Diode. Advanced Materials Technologies, 2020, 5, 1901108.	3.0	15
62	Thermodynamic descriptions of the light rareâ€earth elements in silicon carbide ceramics. Journal of the American Ceramic Society, 2020, 103, 3812-3825.	1.9	16
63	Sulfate modified g-C ₃ N ₄ with enhanced photocatalytic activity towards hydrogen evolution: the role of sulfate in photocatalysis. Physical Chemistry Chemical Physics, 2020, 22, 10116-10122.	1.3	13
64	Ligand Tailoring Oxide Colloidal Quantum Dots for Siliconâ€Integrated Ultraviolet Photodiode. Advanced Electronic Materials, 2020, 6, 1901238.	2.6	7
65	Ultra-high Photovoltage (2.45 V) Forming in Graphene Heterojunction via Quasi-Fermi Level Splitting Enhanced Effect. IScience, 2020, 23, 100818.	1.9	33
66	All-silicon photovoltaic detectors with deep ultraviolet selectivity. PhotoniX, 2020, 1, .	5.5	71
67	Raman tensor of layered black phosphorus. PhotoniX, 2020, 1, .	5.5	29
68	Vacuum-ultraviolet photodetectors. PhotoniX, 2020, 1, .	5.5	126
69	Raman tensor of layered MoS ₂ . Optics Letters, 2020, 45, 1313.	1.7	29
70	Deep-ultraviolet aperiodic-oscillation emission of AlGaN films. Optics Letters, 2020, 45, 1719.	1.7	8
71	Recent advances in exfoliation techniques of layered and non-layered materials for energy conversion and storage. Journal of Materials Chemistry A, 2019, 7, 23512-23536.	5.2	89
72	Electronic and optical properties of CsPb ₂ Br ₅ : A first-principles study. Modern Physics Letters B, 2019, 33, 1950266.	1.0	4

#	Article	IF	CITATIONS
73	High-Performance Solar Blind Ultraviolet Photodetector Based on Single Crystal Orientation Mg-Alloyed Ga ₂ O ₃ Film Grown by a Nonequilibrium MOCVD Scheme. ACS Applied Electronic Materials, 2019, 1, 1653-1659.	2.0	31
74	Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics. ACS Photonics, 2019, 6, 1869-1875.	3.2	49
75	Effect of interfacial recombination, bulk recombination and carrier mobility on the <i>J</i> – <i>V</i> hysteresis behaviors of perovskite solar cells: a drift-diffusion simulation study. Physical Chemistry Chemical Physics, 2019, 21, 17836-17845.	1.3	37
76	Effect of Cr/Al Atomic Ratio on the Oxidation Resistance in 1200°C Steam for the CrAlSiN Coatings Deposited on Zr Alloy Substrates. Jom, 2019, 71, 4839-4847.	0.9	7
77	Suppressing Sponge-Like Li Deposition via AlN-Modified Substrate for Stable Li Metal Anode. ACS Applied Materials & Interfaces, 2019, 11, 42261-42270.	4.0	9
78	Allâ€Inorganic CsCu ₂ I ₃ Single Crystal with Highâ€PLQY (â‰^15.7%) Intrinsic Whiteâ€Light Emission via Strongly Localized 1D Excitonic Recombination. Advanced Materials, 2019, 31, e1905079.	11.1	229
79	Predicted polymorph manipulation in an exotic double perovskite oxide. Journal of Materials Chemistry C, 2019, 7, 12306-12311.	2.7	7
80	Brushed Crystallized Ultrathin Oxides: Recrystallization and Deep-Ultraviolet Imaging Application. ACS Applied Electronic Materials, 2019, 1, 2166-2173.	2.0	15
81	Gallium oxide solar-blind ultraviolet photodetectors: a review. Journal of Materials Chemistry C, 2019, 7, 8753-8770.	2.7	353
82	The dependence of fluorescent decay time of ZnO:Ga crystal on instantaneous non-equilibrium carriers induced by charged particles. Journal of Luminescence, 2019, 214, 116520.	1.5	8
83	Inverted hysteresis in MAPbI3 perovskite solar cells induced by presetting bias voltage. Journal Physics D: Applied Physics, 2019, 52, 315103.	1.3	3
84	Balanced Photodetection in Mixed-Dimensional Phototransistors Consisting of CsPbBr3 Quantum Dots and Few-Layer MoS2. ACS Applied Nano Materials, 2019, 2, 2599-2605.	2.4	30
85	Ultrahigh EQE (15%) Solarâ€Blind UV Photovoltaic Detector with Organic–Inorganic Heterojunction via Dual Builtâ€n Fields Enhanced Photogenerated Carrier Separation Efficiency Mechanism. Advanced Functional Materials, 2019, 29, 1900935.	7.8	106
86	Onâ€Demand Preparation of αâ€Phaseâ€Dominated Tungsten Films for Highly Qualified Thermal Reflectors. Advanced Materials Interfaces, 2019, 6, 1900031.	1.9	6
87	Gamma-Bi ₄ V ₂ O ₁₁ – a layered oxide material for ion exchange in aqueous media. RSC Advances, 2019, 9, 8650-8653.	1.7	9
88	Oxides/graphene heterostructure for deep-ultraviolet photovoltaic photodetector. Carbon, 2019, 147, 427-433.	5.4	37
89	Ultrafast Photovoltaic-Type Deep Ultraviolet Photodetectors Using Hybrid Zero-/Two-Dimensional Heterojunctions. ACS Applied Materials & Interfaces, 2019, 11, 8412-8418.	4.0	53
90	Correction to "Vacuum-Ultraviolet-Oriented van der Waals Photovoltaics― ACS Photonics, 2019, 6, 3338-3338.	3.2	0

#	Article	IF	CITATIONS
91	Raman Tensor of WSe ₂ via Angle-Resolved Polarized Raman Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 29337-29342.	1.5	23
92	Ultra-Robust Deep-UV Photovoltaic Detector Based on Graphene/(AlGa)2O3/GaN with High-Performance in Temperature Fluctuations. ACS Applied Materials & Interfaces, 2019, 11, 48071-48078.	4.0	36
93	Controllable phase transformation of titanium dioxide for the high performance polymer solar cells. Solar Energy Materials and Solar Cells, 2019, 192, 88-93.	3.0	2
94	Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angewandte Chemie - International Edition, 2019, 58, 7526-7536.	7.2	234
95	Enabling PIEZOpotential in PIEZOelectric Semiconductors for Enhanced Catalytic Activities. Angewandte Chemie, 2019, 131, 7606-7616.	1.6	28
96	Ultrawideâ€8andgap Amorphous MgGaO: Nonequilibrium Growth and Vacuum Ultraviolet Application. Advanced Optical Materials, 2019, 7, 1801272.	3.6	36
97	Graphene Interdigital Electrodes for Improving Sensitivity in a Ga ₂ O ₃ :Zn Deep-Ultraviolet Photoconductive Detector. ACS Applied Materials & Interfaces, 2019, 11, 1013-1020.	4.0	86
98	Enhanced performance of solar-blind ultraviolet photodetector based on Mg-doped amorphous gallium oxide film. Vacuum, 2019, 159, 204-208.	1.6	38
99	Vacuum ultraviolet photovoltaic arrays. Photonics Research, 2019, 7, 98.	3.4	57
100	Laser Tuning in van der Waals Crystals. ACS Nano, 2018, 12, 2001-2007.	7.3	31
101	Anisotropic temperatureâ€dependence of optical phonons in layered <scp>PbI₂</scp> . Journal of Raman Spectroscopy, 2018, 49, 775-779.	1.2	23
102	Crystal Imperfection Modulation Engineering for Functionalization of Wide Band Gap Semiconductor Radiation Detector. Advanced Electronic Materials, 2018, 4, 1700307.	2.6	8
103	Balanced Photodetection in One-Step Liquid-Phase-Synthesized CsPbBr ₃ Micro-/Nanoflake Single Crystals. ACS Applied Materials & Interfaces, 2018, 10, 1865-1870.	4.0	60
104	Vacuum-Ultraviolet Photovoltaic Detector. ACS Nano, 2018, 12, 425-431.	7.3	193
105	High Wear Resistance of Magnetron Sputtered Cr80Si20N Nanocomposite Coatings: Almost Independent of Hardness. Tribology Letters, 2018, 66, 1.	1.2	4
106	Transient Radiation Imaging Based on a ZnO:Ga Single-Crystal Image Converter. Scientific Reports, 2018, 8, 4178.	1.6	11
107	Growth, characterization and optoelectronic applications of pure-phase large-area CsPb ₂ Br ₅ flake single crystals. Journal of Materials Chemistry C, 2018, 6, 446-451.	2.7	88
108	Unintentionally doped hydrogen removal mechanism in Li doped ZnO. AIP Advances, 2018, 8, .	0.6	6

#	Article	IF	CITATIONS
109	Amorphous-MgGaO Film Combined with Graphene for Vacuum-Ultraviolet Photovoltaic Detector. ACS Applied Materials & Interfaces, 2018, 10, 42681-42687.	4.0	33
110	Improving the stability of methylammonium lead iodide perovskite solar cells by cesium doping. Thin Solid Films, 2018, 667, 40-47.	0.8	24
111	Aqueous Solution Growth of Millimeter-Sized Nongreen-Luminescent Wide Bandgap Cs ₄ PbBr ₆ Bulk Crystal. Crystal Growth and Design, 2018, 18, 6393-6398.	1.4	59
112	High-sensitive and fast response to 255 nm deep-UV light of CH 3 NH 3 PbX 3 (X = Cl, Br, I) bulk crystals. Royal Society Open Science, 2018, 5, 180905.	1.1	25
113	Critical conditions for the formation of p-type ZnO with Li doping. RSC Advances, 2018, 8, 30868-30874.	1.7	18
114	Vacuum Ultraviolet Photodetection in Two-Dimensional Oxides. ACS Applied Materials & Interfaces, 2018, 10, 20696-20702.	4.0	68
115	Elucidation of "phase difference―in Raman tensor formalism. Photonics Research, 2018, 6, 709.	3.4	28
116	Vacuum-Ultraviolet Photodetection in Few-Layered h-BN. ACS Applied Materials & Interfaces, 2018, 10, 27116-27123.	4.0	106
117	One-step on-chip synthesis of highly-luminescent Cs4PbBr6 microcrystal. Materials Letters, 2018, 232, 118-121.	1.3	23
118	Vacuumâ€Ultraviolet Photovoltaic Detector with Improved Response Speed and Responsivity via Heating Annihilation Trap State Mechanism. Advanced Optical Materials, 2018, 6, 1800697.	3.6	102
119	High-Performance Graphene/β-Ga ₂ O ₃ Heterojunction Deep-Ultraviolet Photodetector with Hot-Electron Excited Carrier Multiplication. ACS Applied Materials & Interfaces, 2018, 10, 22419-22426.	4.0	162
120	Sevenâ€Photonâ€Excited Upconversion Lasing at Room Temperature. Advanced Optical Materials, 2018, 6, 1800518.	3.6	14
121	Effects of photonic crystal structures on the imaging properties of a ZnO:Ga image converter. Optics Letters, 2018, 43, 5647.	1.7	8
122	Raman spectroscopy regulation in van der Waals crystals. Photonics Research, 2018, 6, 991.	3.4	25
123	Templateâ€Free Growth of Wellâ€Ordered Silver Nano Forest/Ceramic Metamaterial Films with Tunable Optical Responses. Advanced Materials, 2017, 29, 1605324.	11.1	42
124	Stable 6%-efficient Sb2Se3 solar cells with a ZnO buffer layer. Nature Energy, 2017, 2, .	19.8	441
125	Optimizing ultrathin Ag films for high performance oxide-metal-oxide flexible transparent electrodes through surface energy modulation and template-stripping procedures. Scientific Reports, 2017, 7, 44576.	1.6	59
126	An ultrafast-temporally-responsive flexible photodetector with high sensitivity based on high-crystallinity organic–inorganic perovskite nanoflake. Nanoscale, 2017, 9, 12718-12726.	2.8	83

#	Article	IF	CITATIONS
127	A self-powered deep-ultraviolet photodetector based on an epitaxial Ga ₂ O ₃ /Ga:ZnO heterojunction. Journal of Materials Chemistry C, 2017, 5, 8688-8693.	2.7	167
128	Enhanced visible light photocatalytic H 2 evolution of metal-free g-C 3 N 4 /SiC heterostructured photocatalysts. Applied Surface Science, 2017, 391, 449-456.	3.1	140
129	Band alignment of MAPb(I1– <i>x</i> Br <i>x</i>)3 thin films by vacuum deposition. Applied Physics Letters, 2016, 109, .	1.5	9
130	A possible high-mobility signal in bulk MoTe2: Temperature independent weak phonon decay. AIP Advances, 2016, 6, .	0.6	13
131	Interface electronic properties of co-evaporated MAPbI3 on ZnO(0001): <i>In situ</i> X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study. Applied Physics Letters, 2016, 108, .	1.5	37
132	Solar-blind-ultraviolet extraordinary transmission for ultrasensitive photoconductive detector based on plasmonic subwavelength interdigital electrodes. Journal Physics D: Applied Physics, 2016, 49, 505106.	1.3	0
133	Glycopeptide Antibiotics Potently Inhibit Cathepsin L in the Late Endosome/Lysosome and Block the Entry of Ebola Virus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV). Journal of Biological Chemistry, 2016, 291, 9218-9232.	1.6	230
134	A Strategy of Transparent Conductive Oxide for UV Focal Plane Array Detector: Two tep Thermodynamic Process. Advanced Electronic Materials, 2016, 2, 1600320.	2.6	25
135	Highâ€Crystalline 2D Layered PbI ₂ with Ultrasmooth Surface: Liquidâ€Phase Synthesis and Application of Highâ€Speed Photon Detection. Advanced Electronic Materials, 2016, 2, 1600291.	2.6	98
136	Mechanism of adsorption affinity and capacity of Mg(OH) ₂ to uranyl revealed by molecular dynamics simulation. RSC Advances, 2016, 6, 31507-31513.	1.7	10
137	2D Materials: High-Crystalline 2D Layered PbI2 with Ultrasmooth Surface: Liquid-Phase Synthesis and Application of High-Speed Photon Detection (Adv. Electron. Mater. 11/2016). Advanced Electronic Materials, 2016, 2, .	2.6	3
138	In Situ Characterization of the Local Work Function along Individual Free Standing Nanowire by Electrostatic Deflection. Scientific Reports, 2016, 6, 21270.	1.6	7
139	Photodetectors: Lowâ€Dimensional Structure Vacuumâ€Ultravioletâ€Sensitive (<i>λ</i> < 200 nm) Photodetector with Fastâ€Response Speed Based on Highâ€Quality AlN Micro/Nanowire (Adv. Mater.) Tj ETQq1 1	0.17.84314	1 6g ΒΤ /Ονe
140	Lowâ€Dimensional Structure Vacuumâ€Ultravioletâ€Sensitive (<i>λ</i> < 200 nm) Photodetector with Fastâ€Response Speed Based on Highâ€Quality AlN Micro/Nanowire. Advanced Materials, 2015, 27, 3921-3927.	11.1	208
141	Crystal Growth of α-HgI ₂ by the Temperature Difference Method for High Sensitivity X-ray Detection. Crystal Growth and Design, 2015, 15, 3383-3387.	1.4	14
142	The role of Be incorporation in the modulation of the N doping ZnO. Journal of Alloys and Compounds, 2015, 622, 719-724.	2.8	16
143	Radical macro spatial separation: a novel way to enhance the photocatalytic efficiency. RSC Advances, 2015, 5, 24455-24459.	1.7	1
144	[Ru(bpy) 3] 2+ -mediated photoelectrochemical detection of bisphenol A on a molecularly imprinted polypyrrole modified SnO 2 electrode. Analytica Chimica Acta, 2015, 887, 59-66.	2.6	34

#	Article	IF	CITATIONS
145	High electron mobility ZnO film for high-performance inverted polymer solar cells. Applied Physics Letters, 2015, 106, .	1.5	15
146	ZnO nanowires array grown on Ga-doped ZnO single crystal for dye-sensitized solar cells. Scientific Reports, 2015, 5, 11499.	1.6	18
147	Layered ultrathin PbI ₂ single crystals for high sensitivity flexible photodetectors. Journal of Materials Chemistry C, 2015, 3, 4402-4406.	2.7	119
148	Growth of vertically aligned ZnO nanowire arrays on ZnO single crystals. Materials Letters, 2015, 154, 40-43.	1.3	18
149	Template-synthesized ultra-thin molecularly imprinted polymers membrane for the selective preconcentration of dyes. Journal of Materials Chemistry A, 2015, 3, 10959-10968.	5.2	35
150	Raman tensor of AlN bulk single crystal. Photonics Research, 2015, 3, 38.	3.4	66
151	Enhanced visible light photocatalytic H2 production activity of g-C3N4 via carbon fiber. Applied Surface Science, 2015, 358, 287-295.	3.1	95
152	Dark current suppression of MgZnO metal-semiconductor-metal solar-blind ultraviolet photodetector by asymmetric electrode structures. Optics Letters, 2014, 39, 375.	1.7	10
153	Grain boundary barrier modification due to coupling effect of crystal polar field and water molecular dipole in ZnO-based structures. Applied Physics Letters, 2014, 104, 242114.	1.5	5
154	Crystal growth by oriented attachment: kinetic models and control factors. CrystEngComm, 2014, 16, 1419.	1.3	162
155	Schottky or Ohmic Metal–Semiconductor Contact: Influence on Photocatalytic Efficiency of Ag/ZnO and Pt/ZnO Model Systems. ChemSusChem, 2014, 7, 101-104.	3.6	103
156	ZnO nanoflower-based photoelectrochemical DNAzyme sensor for the detection of Pb2+. Biosensors and Bioelectronics, 2014, 56, 243-249.	5.3	109
157	Subsolidus phase relation in the Bi 2 O 3 —Fe 2 O 3 —La 2 O 3 system. Chinese Physics B, 2014, 23, 026402.	0.7	2
158	Subsolidus phase relationships and photocatalytic properties in the ternary system TiO2–Bi2O3–V2O5. Journal of Alloys and Compounds, 2014, 583, 285-290.	2.8	20
159	Formation of AgGaS2 nano-pyramids from Ag2S nanospheres through intermediate Ag2S–AgGaS2 heterostructures and AgGaS2 sensitized Mn2+ emission. Nanoscale, 2014, 6, 2340.	2.8	33
160	Specific Detection of Alpha-Fetoprotein Using AlGaAs/GaAs High Electron Mobility Transistors. IEEE Electron Device Letters, 2014, 35, 333-335.	2.2	11
161	Reversible self-assembly of MxS (M = Cu, Ag) nanocrystals through ligand exchange. CrystEngComm, 2014, 16, 9478-9481.	1.3	7
162	A situ hydrothermal synthesis of SrTiO3/TiO2 heterostructure nanosheets with exposed (001) facets for enhancing photocatalytic degradation activity. Applied Surface Science, 2014, 319, 68-74.	3.1	67

#	Article	IF	CITATIONS
163	Average BER of subcarrier intensity modulated free space optical systems over the exponentiated Weibull fading channels. Optics Express, 2014, 22, 20828.	1.7	53
164	Large Verdet constant in the Tb implanted gamma-Fe 2 O 3 films. Thin Solid Films, 2014, 571, 45-50.	0.8	2
165	Research progress in ZnO single-crystal: growth, scientific understanding, and device applications. Science Bulletin, 2014, 59, 1235-1250.	1.7	50
166	Al-doped ZnO thin film enhancing the photo-catalytic bactericidal performance on the (100) plane of ZnO single crystal. Catalysis Today, 2014, 224, 188-192.	2.2	4
167	Integrating Surface Textures on ZnO Substrate for High Light Extraction Efficiency Light-Emitting Diode. Journal of Physical Chemistry C, 2014, 118, 14894-14898.	1.5	2
168	Regulating the Formation of Self-Supported LiCoO ₂ Nanostructure by Alkaline Concentration and Study on Its Electrochemical Property. Journal of Nanoscience and Nanotechnology, 2014, 14, 3919-3924.	0.9	0
169	Understanding the Occurrence of the Maximum Band-Edge Photoluminescence of TGA-Capped CdS QDs via Growth Kinetic Study. Crystal Growth and Design, 2013, 13, 5220-5228.	1.4	12
170	Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g-C ₃ N ₄ Nanowires. ACS Applied Materials & Interfaces, 2013, 5, 10317-10324.	4.0	747
171	Recycling Rare Earth Elements from Industrial Wastewater with Flowerlike Nano-Mg(OH) ₂ . ACS Applied Materials & Interfaces, 2013, 5, 9719-9725.	4.0	171
172	Dependence of structural and optoelectronic properties of sputtered Mg0.50Zn0.50O films on substrate. CrystEngComm, 2013, 15, 2709.	1.3	5
173	Effect of polarization roughness scattering (PRS) on two-dimensional electron transport of MgZnO/ZnO heterostructures. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 54, 341-345.	1.3	5
174	Ultraviolet/violet dual-color electroluminescence based on n-ZnO single crystal/p-GaN direct-contact light-emitting diode. Journal of Luminescence, 2013, 140, 110-113.	1.5	12
175	Noble metal-free Ni(OH)2–g-C3N4 composite photocatalyst with enhanced visible-light photocatalytic H2-production activity. Catalysis Science and Technology, 2013, 3, 1782.	2.1	411
176	Temperature-sensitive growth kinetics and photoluminescence properties of CdS quantum dots. CrystEngComm, 2013, 15, 4963.	1.3	21
177	Cu1.94S–MnS dimeric nanoheterostructures with bifunctions: localized surface plasmon resonance and magnetism. CrystEngComm, 2013, 15, 4217.	1.3	21
178	Use of High-Pressure CO ₂ for Concentrating Cr ^{VI} from Electroplating Wastewater by Mg–Al Layered Double Hydroxide. ACS Applied Materials & Interfaces, 2013, 5, 11271-11275.	4.0	38
179	Enhanced Photocatalytic Hydrogen Production Activities of Au-Loaded ZnS Flowers. ACS Applied Materials & amp; Interfaces, 2013, 5, 1031-1037.	4.0	221
180	Steady-state characteristics and transient response of MgZnO-based metal-semiconductor-metal solar-blind ultraviolet photodetector with three types of electrode structures. Optics Express, 2013, 21, 18387.	1.7	21

#	Article	IF	CITATIONS
181	Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale, 2012, 4, 2859.	2.8	65
182	The "jump of size―phenomenon in aqueous-nanoparticle reaction system: phase transformation from nano-Mg(OH)2 to bulk MgCO3·3H2O. CrystEngComm, 2012, 14, 7165.	1.3	10
183	Tunable surface charge of ZnS : Cu nano-adsorbent induced the selective preconcentration of cationic dyes from wastewater. Nanoscale, 2012, 4, 3665.	2.8	37
184	Kinetic-Dynamic Properties of Different Monomers and Two-Dimensional Homoepitaxy Growth on the Zn-Polar (0001) ZnO Surface. Crystal Growth and Design, 2012, 12, 2850-2855.	1.4	4
185	Optical and magnetic properties of Cr-doped ZnS nanocrystallites. Journal of Applied Physics, 2012, 111, ·	1.1	53
186	Aggregation-Induced Fast Crystal Growth of SnO ₂ Nanocrystals. Journal of the American Chemical Society, 2012, 134, 16228-16234.	6.6	57
187	Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence. Journal of Materials Chemistry, 2012, 22, 2632-2640.	6.7	87
188	Sandwich-like Cu _{1.94} S–ZnS–Cu _{1.94} S nanoheterostructure: structure, formation mechanism and localized surface plasmon resonance behavior. Nanotechnology, 2012, 23, 425604.	1.3	12
189	A plasmonic nano-antenna with controllable resonance frequency: Cu1.94S–ZnS dimeric nanoheterostructure synthesized in solution. Journal of Materials Chemistry, 2012, 22, 22614.	6.7	20
190	High-Responsivity Solar-Blind Photodetector Based on \$ hbox{Mg}_{0.46}hbox{Zn}_{0.54}hbox{O}\$ Thin Film. IEEE Electron Device Letters, 2012, 33, 1033-1035.	2.2	60
191	A study of the potential application of nano-Mg(OH)2 in adsorbing low concentrations of uranyl tricarbonate from water. Nanoscale, 2012, 4, 2423.	2.8	111
192	Treatment of nanowaste via fast crystal growth: With recycling of nano-SnO2 from electroplating sludge as a study case. Journal of Hazardous Materials, 2012, 211-212, 414-419.	6.5	34
193	Oriented attachment crystal growth kinetics and its roles in tailoring optical properties of quantum dots. Scientia Sinica Chimica, 2012, 42, 1554-1575.	0.2	2
194	Study on the influence of lattice integrity and phase composition to the photocatalytic efficiency of ZnS material. Nanoscale, 2011, 3, 1512.	2.8	14
195	Study of interface electric field affecting the photocatalysis of ZnO. Chemical Communications, 2011, 47, 4517.	2.2	35
196	The growth and investigation on Ga-doped ZnO single crystals with high thermal stability and high carrier mobility. CrystEngComm, 2011, 13, 3338.	1.3	31
197	Modifying the phase and controlling the size of monodisperse ZrO2 nanocrystals by employing Gd3+ as a nucleation agent. CrystEngComm, 2011, 13, 4500.	1.3	14
198	SnO2/α-Fe2O3 nanoheterostructure with novel architecture: structural characteristics and photocatalytic properties. CrystEngComm, 2011, 13, 4873.	1.3	32

#	Article	IF	CITATIONS
199	Lanthanide activator doped NaYb1â^'xGdxF4 nanocrystals with tunable down-, up-conversion luminescence and paramagnetic properties. Journal of Materials Chemistry, 2011, 21, 6186.	6.7	79
200	MgZnO-based metal-semiconductor-metal solar-blind photodetectors on ZnO substrates. Applied Physics Letters, 2011, 98, 221112.	1.5	96
201	The Effects of Particle Concentration and Surface Charge on the Oriented Attachment Growth Kinetics of CdTe Nanocrystals in H ₂ O. Journal of Physical Chemistry C, 2011, 115, 10357-10364.	1.5	27
202	Recycling Mg(OH) ₂ Nanoadsorbent during Treating the Low Concentration of Cr ^{VI} . Environmental Science & Technology, 2011, 45, 1955-1961.	4.6	153
203	Subsolidus phase relations in the ZnO–WO3–Bi2O3 system. Journal of Alloys and Compounds, 2011, 509, 380-383.	2.8	0
204	Strategy for Preparing Al-Doped ZnO Thin Film with High Mobility and High Stability. Crystal Growth and Design, 2011, 11, 21-25.	1.4	65
205	The Analysis of the Immobilization Mechanism of Ni(II) on <i>Bacillus cereus</i> . Journal of Nanoscience and Nanotechnology, 2011, 11, 3597-3603.	0.9	8
206	The pH-dependent binding of zinc citrate to bipy/phen (bipy=2,2-bipyridine, phen=1,10-phenanthroline). Journal of Molecular Structure, 2010, 966, 59-63.	1.8	12
207	Treatment of Cr(VI)-containing nanowastes via the growth of nanomaterial. Science Bulletin, 2010, 55, 373-377.	1.7	13
208	Synthesis and Characterization of Nanocrystalline GaN by Ammonothermal Method Using CsNH ₂ as Mineralizer. Journal of Nanoscience and Nanotechnology, 2010, 10, 5741-5745.	0.9	5
209	Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2010, 2, 18-34.	2.8	486
210	Growth Strategy and Physical Properties of the High Mobility P-Type CuI Crystal. Crystal Growth and Design, 2010, 10, 2057-2060.	1.4	176
211	Formation and Self-Assembly of Cadmium Hydroxide Nanoplates in Molten Composite-Hydroxide Solution. Crystal Growth and Design, 2010, 10, 4285-4291.	1.4	16
212	Effect of Surface Etching on the Efficiency of ZnO-Based Dye-Sensitized Solar Cells. Langmuir, 2010, 26, 7153-7156.	1.6	41
213	Subsolidus phase relations in the ZnO–P2O5–WO3 system. Journal of Alloys and Compounds, 2010, 496, 105-109.	2.8	5
214	Correlation between the Photoluminescence and Oriented Attachment Growth Mechanism of CdS Quantum Dots. Journal of the American Chemical Society, 2010, 132, 9528-9530.	6.6	54
215	Bioremediation of Cr(VI) and Immobilization as Cr(III) by <i>Ochrobactrum anthropi</i> . Environmental Science & Technology, 2010, 44, 6357-6363.	4.6	130
216	ZnS nano-architectures: photocatalysis, deactivation and regeneration. Nanoscale, 2010, 2, 2062.	2.8	146

#	Article	IF	CITATIONS
217	Hydrothermal Growth of ZnO Single Crystals with High Carrier Mobility. Crystal Growth and Design, 2009, 9, 4378-4383.	1.4	77
218	Growth, Structures, and Properties of Li ₂ Zn ₂ (MoO ₄) ₃ and Co-doped Li ₂ Zn ₂ (MoO ₄) ₃ . Crystal Growth and Design, 2009, 9, 914-920.	1.4	24
219	Subsolidus phase relations in the system ZnO–B2O3–V2O5. Journal of Alloys and Compounds, 2009, 475, 122-125.	2.8	7
220	Subsolidus phase relationships in the system ZnO–V2O5–WO3 research on suitable flux for ZnO crystal growth. Journal of Alloys and Compounds, 2009, 476, 241-244.	2.8	10
221	Subsolidus phase relations in the system ZnO–P2O5–MoO3. Journal of Alloys and Compounds, 2009, 482, 49-52.	2.8	5
222	Ultraviolet-light-induced bactericidal mechanism on ZnO single crystals. Chemical Communications, 2009, , 6783.	2.2	26
223	Pure multistep oriented attachment growth kinetics of surfactant-free SnO2 nanocrystals. Physical Chemistry Chemical Physics, 2009, 11, 8516.	1.3	53
224	Surface Treatment to Enhance Photocatalytic Activity of ZnS Complex Nanostructure via a Post-Synthesis Route. Journal of Nanoscience and Nanotechnology, 2009, 9, 6721-6725.	0.9	4
225	Treatment of Cr ^{VI} â€Containing Mg(OH) ₂ Nanowaste. Angewandte Chemie - International Edition, 2008, 47, 5619-5622.	7.2	175
226	The Mass Production of ZnS Nanoarchitecture via Thermodynamic Design. Crystal Growth and Design, 2008, 8, 2324-2328.	1.4	12
227	Microscopic Investigations of the Cr(VI) Uptake Mechanism of Living <i>Ochrobactrum anthropi</i> . Langmuir, 2008, 24, 9630-9635.	1.6	77
228	Subsolidus phase relations in the systems K2O–ZnO–AO3 (A=Mo, W). Journal of Alloys and Compounds, 2008, 452, 263-267.	2.8	7
229	Subsolidus phase relations in the ZnO–MoO3–B2O3, ZnO–MoO3–WO3 and ZnO–WO3–B2O3 terr systems. Journal of Alloys and Compounds, 2008, 458, 144-150.	nary 2:8	14
230	The ternary system Na2O–ZnO–WO3: Compounds and phase relationships. Journal of Alloys and Compounds, 2008, 458, 138-143.	2.8	8
231	Subsolidus phase relationships in the system ZnO–Li2O–WO3. Journal of Alloys and Compounds, 2008, 460, 142-146.	2.8	10
232	Evolution of ZnS Nanostructure Morphology under Interfacial Free-Energy Control. Chemistry of Materials, 2008, 20, 2438-2443.	3.2	34
233	Growth and Phase-Transformation Mechanisms of Nanocrystalline CdS in Na ₂ S Solution. Journal of Physical Chemistry C, 2008, 112, 9229-9233.	1.5	37
234	Intrinsic magnetism of a series of Co substituted ZnO single crystals. Journal of Physics Condensed Matter, 2008, 20, 035206.	0.7	2

#	Article	IF	CITATIONS
235	Relationship between the coprecipitation mechanism, doping structure and physical properties of Zn1â°'xCoxS nanocrystallites. Nanotechnology, 2007, 18, 035705.	1.3	16
236	Subsolidus phase relation in the system ZnO–Li2O–MoO3. Journal of Alloys and Compounds, 2007, 430, 67-70.	2.8	12
237	NaOH Concentration Effect on the Oriented Attachment Growth Kinetics of ZnS. Journal of Physical Chemistry B, 2007, 111, 5290-5294.	1.2	32
238	Oriented Attachment Kinetics for Ligand Capped Nanocrystals:Â Coarsening of Thiol-PbS Nanoparticles. Journal of Physical Chemistry B, 2007, 111, 1449-1454.	1.2	68
239	Paramagnetic anisotropy of Co-doped ZnO single crystal. Applied Physics Letters, 2006, 89, 112507.	1.5	40
240	Surface Chemistry Controls Crystallinity of ZnS Nanoparticles. Nano Letters, 2006, 6, 605-610.	4.5	80
241	A Multistep Oriented Attachment Kinetics:Â Coarsening of ZnS Nanoparticle in Concentrated NaOH. Journal of the American Chemical Society, 2006, 128, 12981-12987.	6.6	194
242	A Thermodynamically Stable Nanophase Material. Journal of the American Chemical Society, 2006, 128, 6126-6131.	6.6	52
243	Size-Dependent Phase Transformation Kinetics in Nanocrystalline ZnS. Journal of the American Chemical Society, 2005, 127, 4523-4529.	6.6	172
244	Reversible, Surface-Controlled Structure Transformation in Nanoparticles Induced by an Aggregation State. Physical Review Letters, 2004, 92, 155501.	2.9	69
245	Analysis and simulation of the structure of nanoparticles that undergo a surface-driven structural transformation. Journal of Chemical Physics, 2004, 120, 11785-11795.	1.2	40
246	Nanoparticles: Strained and Stiff. Science, 2004, 305, 651-654.	6.0	420
247	Special phase transformation and crystal growth pathways observed in nanoparticlesâ€. Geochemical Transactions, 2003, 4, 1.	1.8	136
248	Water-driven structure transformation in nanoparticles at room temperature. Nature, 2003, 424, 1025-1029.	13.7	427
249	The Role of Oriented Attachment Crystal Growth in Hydrothermal Coarsening of Nanocrystalline ZnS. Journal of Physical Chemistry B, 2003, 107, 10470-10475.	1.2	161
250	Molecular Dynamics Simulations, Thermodynamic Analysis, and Experimental Study of Phase Stability of Zinc Sulfide Nanoparticles. Journal of Physical Chemistry B, 2003, 107, 13051-13060.	1.2	180
251	The Electrochemical Reaction of Zinc Oxide Thin Films with Lithium. Journal of the Electrochemical Society, 2003, 150, A714.	1.3	115
252	Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS. Nano Letters, 2003, 3, 373-378.	4.5	370