Avijit Pramanik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608946/publications.pdf

Version: 2024-02-01

147801 214800 2,499 79 31 47 citations g-index h-index papers 4059 80 80 80 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Bioconjugated Nanomaterial for Targeted Diagnosis of SARS-CoV-2. Accounts of Materials Research, 2022, 3, 134-148.	11.7	10
2	Blocking SARS-CoV-2 Delta Variant (B.1.617.2) Spike Protein Receptor-Binding Domain Binding with the ACE2 Receptor of the Host Cell and Inhibiting Virus Infections Using Human Host Defense Peptide-Conjugated Graphene Quantum Dots. ACS Omega, 2022, 7, 8150-8157.	3. 5	10
3	Bio-Conjugated Magnetic-Fluorescence Nanoarchitectures for the Capture and Identification of Lung-Tumor-Derived Programmed Cell Death Lighand 1-Positive Exosomes. ACS Omega, 2022, 7, 16035-16042.	3.5	5
4	Water Triggered Synthesis of Highly Stable and Biocompatible 1D Nanowire, 2D Nanoplatelet, and 3D Nanocube CsPbBr ₃ Perovskites for Multicolor Two-Photon Cell Imaging. Jacs Au, 2021, 1, 53-65.	7.9	40
5	Aptamer Conjugated Gold Nanostar-Based Distance-Dependent Nanoparticle Surface Energy Transfer Spectroscopy for Ultrasensitive Detection and Inactivation of Corona Virus. Journal of Physical Chemistry Letters, 2021, 12, 2166-2171.	4.6	53
6	The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Advances, 2021, 3, 1588-1596.	4.6	82
7	Development of Human Host Defense Antimicrobial Peptide-Conjugated Biochar Nanocomposites for Combating Broad-Spectrum Superbugs. ACS Applied Bio Materials, 2020, 3, 7696-7705.	4.6	6
8	Mixed-Dimensional Heterostructure Material-Based SERS for Trace Level Identification of Breast Cancer-Derived Exosomes. ACS Omega, 2020, 5, 16602-16611.	3. 5	28
9	2D and Heterostructure Nanomaterial Based Strategies for Combating Drug-Resistant Bacteria. ACS Omega, 2020, 5, 3116-3130.	3.5	43
10	A WS ₂ -gold nanoparticle heterostructure-based novel SERS platform for the rapid identification of antibiotic-resistant pathogens. Nanoscale Advances, 2020, 2, 2025-2033.	4.6	19
11	Water-Soluble and Bright Luminescent Cesium–Lead–Bromide Perovskite Quantum Dot–Polymer Composites for Tumor-Derived Exosome Imaging. ACS Applied Bio Materials, 2019, 2, 5872-5879.	4.6	38
12	Designing highly crystalline multifunctional multicolor-luminescence nanosystem for tracking breast cancer heterogeneity. Nanoscale Advances, 2019, 1, 1021-1034.	4.6	6
13	Giant Chemical and Excellent Synergistic Raman Enhancement from a 3D MoS2–xOx–Gold Nanoparticle Hybrid. ACS Omega, 2019, 4, 11112-11118.	3 . 5	11
14	Composites Composed of Polydopamine Nanoparticles, Graphene Oxide, and ε-Poly- <scp>l</scp> -lysine for Removal of Waterborne Contaminants and Eradication of Superbugs. ACS Applied Nano Materials, 2019, 2, 3339-3347.	5.0	18
15	Several Orders-of-Magnitude Enhancement of Multiphoton Absorption Property for CsPbX ₃ Perovskite Quantum Dots by Manipulating Halide Stoichiometry. Journal of Physical Chemistry C, 2019, 123, 5150-5156.	3.1	41
16	Antimicrobial Peptide-Conjugated MoS ₂ -Based Nanoplatform for Multimodal Synergistic Inactivation of Superbugs. ACS Applied Bio Materials, 2019, 2, 769-776.	4.6	29
17	Multifunctional hybrid graphene oxide for circulating tumor cell isolation and analysis. Advanced Drug Delivery Reviews, 2018, 125, 21-35.	13.7	27
18	Fluorescence Resonance Energy Transfer Based Highly Efficient Theranostic Nanoplatform for Two-Photon Bioimaging and Two-Photon Excited Photodynamic Therapy of Multiple Drug Resistance Bacteria. ACS Applied Bio Materials, 2018, 1, 298-309.	4.6	38

#	Article	IF	Citations
19	Development of a SERS Probe for Selective Detection of Healthy Prostate and Malignant Prostate Cancer Cells Using Zn II. Chemistry - an Asian Journal, 2017, 12, 665-672.	3.3	15
20	Recent progress on the development of anisotropic gold nanoparticles: Design strategies and growth mechanism. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 2017, 35, 47-66.	2.9	4
21	Fluorescent, Magnetic Multifunctional Carbon Dots for Selective Separation, Identification, and Eradication of Drug-Resistant Superbugs. ACS Omega, 2017, 2, 554-562.	3.5	59
22	Two-Photon Fluorescent Molybdenum Disulfide Dots for Targeted Prostate Cancer Imaging in the Biological II Window. ACS Omega, 2017, 2, 1826-1835.	3.5	47
23	Multifunctional Three-Dimensional Chitosan/Gold Nanoparticle/Graphene Oxide Architecture for Separation, Label-Free SERS Identification of Pharmaceutical Contaminants, and Effective Killing of Superbugs. ACS Sustainable Chemistry and Engineering, 2017, 5, 7175-7187.	6.7	60
24	An Ideal <i>C</i> ₃ -Symmetric Sulfate Complex: Molecular Recognition of Oxoanions by <i>m</i> -Nitrophenyl- and Pentafluorophenyl-Functionalized Hexaurea Receptors. ACS Omega, 2017, 2, 5840-5849.	3.5	14
25	Remarkable hexafunctional anion receptor with operational urea-based inner cleft and thiourea-based outer cleft: Novel design with high-efficiency for sulfate binding. Scientific Reports, 2017, 7, 6032.	3.3	18
26	A bio-conjugated chitosan wrapped CNT based 3D nanoporous architecture for separation and inactivation of <i>Rotavirus</i> and <i>Shigella</i> waterborne pathogens. Journal of Materials Chemistry B, 2017, 5, 9522-9531.	5.8	18
27	Multifunctional Biochar for Highly Efficient Capture, Identification, and Removal of Toxic Metals and Superbugs from Water Samples. ACS Omega, 2017, 2, 7730-7738.	3.5	30
28	Nanoarchitecture Based SERS for Biomolecular Fingerprinting and Label-Free Disease Markers Diagnosis. Accounts of Chemical Research, 2016, 49, 2725-2735.	15.6	114
29	Multimodal Nonlinear Optical Imaging of Live Cells Using Plasmon-Coupled DNA-Mediated Gold Nanoprism Assembly. Journal of Physical Chemistry C, 2016, 120, 4546-4555.	3.1	19
30	Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs. Nanoscale, 2016, 8, 18301-18308.	5.6	35
31	Development of Multifunctional Fluorescent–Magnetic Nanoprobes for Selective Capturing and Multicolor Imaging of Heterogeneous Circulating Tumor Cells. ACS Applied Materials & Interfaces, 2016, 8, 15076-15085.	8.0	35
32	Designing a multicolor long range nanoscopic ruler for the imaging of heterogeneous tumor cells. Nanoscale, 2016, 8, 13769-13780.	5.6	5
33	Hybrid Graphene Oxide Based Plasmonic-Magnetic Multifunctional Nanoplatform for Selective Separation and Label-Free Identification of Alzheimer's Disease Biomarkers. ACS Applied Materials & Interfaces, 2015, 7, 13693-13700.	8.0	113
34	Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Advances, 2015, 5, 18881-18887.	3.6	99
35	Aptamer-Conjugated Graphene Oxide Membranes for Highly Efficient Capture and Accurate Identification of Multiple Types of Circulating Tumor Cells. Bioconjugate Chemistry, 2015, 26, 235-242.	3.6	98
36	Novel metal–organic framework with tunable fluorescence property: supramolecular signaling platform for polynitrophenolics. Dalton Transactions, 2015, 44, 6348-6352.	3.3	29

#	Article	IF	Citations
37	Multifunctional Biocompatible Graphene Oxide Quantum Dots Decorated Magnetic Nanoplatform for Efficient Capture and Two-Photon Imaging of Rare Tumor Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 10935-10943.	8.0	99
38	Long-range two-photon scattering spectroscopy ruler for screening prostate cancer cells. Chemical Science, 2015, 6, 2411-2418.	7.4	17
39	Bio-Conjugated CNT-Bridged 3D Porous Graphene Oxide Membrane for Highly Efficient Disinfection of Pathogenic Bacteria and Removal of Toxic Metals from Water. ACS Applied Materials & Interfaces, 2015, 7, 19210-19218.	8.0	81
40	At the Molecular Level through Photophysical Studies: Structural Implications on the Reactivity of Dual-Site Sensitive Positional Isomers Toward a Gasotransmitter (H ₂ S). Journal of Physical Chemistry C, 2015, 119, 19367-19375.	3.1	6
41	Hybrid Theranostic Platform for Second Near-IR Window Light Triggered Selective Two-Photon Imaging and Photothermal Killing of Targeted Melanoma Cells. ACS Applied Materials & Interfaces, 2015, 7, 20649-20656.	8.0	40
42	Binding and selectivity of dihydrogen phosphate by H-bond donors and acceptors in a tripodal-based thiourea receptor. Tetrahedron Letters, 2015, 56, 115-118.	1.4	23
43	A Synthetic Thiourea-Based Tripodal Receptor that Impairs the Function of Human First Trimester Cytotrophoblast Cells. International Journal of Environmental Research and Public Health, 2014, 11, 7456-7469.	2.6	3
44	Absorption of Atmospheric CO2 as Carbonate Inside the Molecular Cavity of a New Tripodal Hexaurea Receptor. Organic Letters, 2014, 16, 366-369.	4.6	26
45	Aptamer-conjugated theranostic hybrid graphene oxide with highly selective biosensing and combined therapy capability. Faraday Discussions, 2014, 175, 257-271.	3.2	27
46	Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chemical Society Reviews, 2014, 43, 6370-6404.	38.1	132
47	Engineering fused coumarin dyes: a molecular level understanding of aggregation quenching and tuning electroluminescence via alkyl chain substitution. Journal of Materials Chemistry C, 2014, 2, 6637.	5.5	53
48	Theranostic Graphene Oxide for Prostate Cancer Detection and Treatment. Particle and Particle Systems Characterization, 2014, 31, 1252-1259.	2.3	16
49	Accurate Identification and Selective Removal of Rotavirus Using a Plasmonic–Magnetic 3D Graphene Oxide Architecture. Journal of Physical Chemistry Letters, 2014, 5, 3216-3221.	4.6	33
50	Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window. Journal of Physical Chemistry Letters, 2014, 5, 2150-2154.	4.6	45
51	An exclusive fluoride receptor: fluoride-induced proton transfer to a quinoline-based thiourea. Tetrahedron Letters, 2014, 55, 1467-1470.	1.4	25
52	Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide. Scientific Reports, 2014, 4, 6090.	3.3	35
53	Hexa-Î⅓-acetato-1:2ΰ ⁴ <i>O</i> , <i>O</i> ,i>3€²;1:2ΰ ² <i>O</i> ;2:3ΰ ^{4Acta Crystallographica Section E: Structure Reports Online, 2013, 69, m643-m644.}	p> <i>O<!--</td--><td>i>ۥૢૢ<i>O</i>â</td></i>	i>ۥૢૢ <i>O</i> â
54	3,3′-Bis(quinolin-8-yl)-1,1′-[4,4′-methylenebis(4,1-phenylene)]diurea. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o158-o159.	0.2	1

#	Article	IF	Citations
55	Self-assembly of ordered water tetramers in an encapsulated [Br(H2O)12]â-' complex. Chemical Communications, 2012, 48, 8631.	4.1	25
56	Spectroscopic, Structural, and Theoretical Studies of Halide Complexes with a Urea-Based Tripodal Receptor. Inorganic Chemistry, 2012, 51, 4274-4284.	4.0	50
57	Anion Cluster: Assembly of Dihydrogen Phosphates for the Formation of a Cyclic Anion Octamer. Crystal Growth and Design, 2012, 12, 567-571.	3.0	39
58	Phosphate binding with a thiophene-based azamacrocycle in water. Inorganic Chemistry Communication, 2012, 21, 32-34.	3.9	5
59	A Quinoline Based bis-Urea Receptor for Anions: A Selective Receptor for Hydrogen Sulfate. Natural Product Communications, 2012, 7, 1934578X1200700.	0.5	2
60	A Self-Assembled Fluoride–Water Cyclic Cluster of [F(H ₂ 0)] ₄ ^{4–} in a Molecular Box. Journal of the American Chemical Society, 2012, 134, 11892-11895.	13.7	43
61	A quinoline based bis-urea receptor for anions: a selective receptor for hydrogen sulfate. Natural Product Communications, 2012, 7, 301-4.	0.5	12
62	Anion specificity induced conformational changes in cresol-based tripodal podands controlled by weak interactions: structural and Hirshfeld surface analysis. CrystEngComm, 2011, 13, 1664-1675.	2.6	14
63	A $<$ i>C $<$ /i> $<$ sub>3 $<$ /sub> Symmetric Nitrate Complex with a Thiophene-Based Tripodal Receptor. Crystal Growth and Design, 2011, 11, 959-963.	3.0	28
64	Interplay of solvent in flexible behaviour of cyclohexane dinapthyl <i>bis</i> -thiourea system: conformational aspects. Supramolecular Chemistry, 2011, 23, 425-434.	1.2	4
65	Seven-coordinate anion complex with a tren-based urea: Binding discrepancy of hydrogen sulfate in solid and solution states. Organic and Biomolecular Chemistry, 2011, 9, 4444.	2.8	42
66	Coordination assembly of p-substituted aryl azo imidazole complexes: Influences of electron donating substitution and counter ions. Polyhedron, 2010, 29, 1980-1989.	2.2	20
67	Aryl azo imidazole assisted self-assembly of d10 metal complexes: Influence of halogen substitution and counter ions. Polyhedron, 2010, 29, 2999-3007.	2.2	13
68	Tris{2-[(3-thienyl)methylideneamino]ethyl}amine. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2739-o2740.	0.2	2
69	Precursory Ag-bipyridine 2D coordination polymer: a new and efficient route for the synthesis of Agnanoparticles. CrystEngComm, 2010, 12, 401-405.	2.6	15
70	Aryl azo imidazoles assisted assembly of anion/anion–water through salt formation. CrystEngComm, 2010, 12, 250-259.	2.6	21
71	3D Solid-State Network from Hierarchical Supramolecular Self-Assembly of Transition Metal Complexes of Pyridine Based Ligand. Journal of Chemical Crystallography, 2009, 39, 416-422.	1.1	6
72	An efficient phosphate sensor: tripodal quinoline excimer transduction. Tetrahedron, 2009, 65, 2196-2200.	1.9	47

#	Article	IF	CITATION
73	Aromatic guest inclusion by a tripodal ligand: Fluorescence and structural studies. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 149-155.	3.9	12
74	Tripodal naphthalene ether ligand: Solid-state anion recognition and fluorescence studies. Journal of Molecular Structure, 2008, 879, 88-95.	3.6	13
75	Molecular to Supramolecular Structure: Influence of Coordination Environment in Azo-dye Complexes. Crystal Growth and Design, 2008, 8, 3107-3113.	3.0	18
76	Reduction of Coordinated Acetonitrile to Ethylamine in a Ruthenium Complex by p-Phenylenediamine or Hydroquinone. Organometallics, 2008, 27, 6403-6404.	2.3	6
77	Molecular, supramolecular structure and catalytic activity of transition metal complexes of phenoxy acetic acid derivatives. Polyhedron, 2007, 26, 5225-5234.	2.2	33
78	Solid State Synthesis and Hierarchical Supramolecular Self-assembly of Organic Salt Cocrystals. Journal of Chemical Crystallography, 2007, 37, 807-816.	1.1	14
79	A one-pot synthesis and self-assembled superstructure of organic salts of a 1,5-benzodiazepine derivative. Tetrahedron Letters, 2006, 47, 3135-3138.	1.4	34