
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608869/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Healthy Lifestyle in Men at Increased Genetic Risk for Prostate Cancer. European Urology, 2023, 83, 343-351.	1.9	23
2	Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. International Journal of Epidemiology, 2023, 52, 71-86.	1.9	16
3	Prostate cancer risk stratification improvement across multiple ancestries with new polygenic hazard score. Prostate Cancer and Prostatic Diseases, 2022, 25, 755-761.	3.9	14
4	Association Study between Polymorphisms in DNA Methylation–Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1769-1779.	2.5	4
5	Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction. Nature Genetics, 2021, 53, 65-75.	21.4	264
6	Additional SNPs improve risk stratification of a polygenic hazard score for prostate cancer. Prostate Cancer and Prostatic Diseases, 2021, 24, 532-541.	3.9	16
7	Polygenic hazard score is associated with prostate cancer in multi-ethnic populations. Nature Communications, 2021, 12, 1236.	12.8	40
8	Genetically Inferred Telomere Length and Testicular Germ Cell Tumor Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1275-1278.	2.5	2
9	KLK3 SNP–SNP interactions for prediction of prostate cancer aggressiveness. Scientific Reports, 2021, 11, 9264.	3.3	5
10	Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nature Communications, 2021, 12, 4487.	12.8	27
11	Rare Germline Variants in ATM Predispose to Prostate Cancer: A PRACTICAL Consortium Study. European Urology Oncology, 2021, 4, 570-579.	5.4	38
12	Identification and Validation of Leucine-rich α-2-glycoprotein 1 as a Noninvasive Biomarker for Improved Precision in Prostate Cancer Risk Stratification. European Urology Open Science, 2020, 21, 51-60.	0.4	13
13	The CHEK2 Variant C.349A>G Is Associated with Prostate Cancer Risk and Carriers Share a Common Ancestor. Cancers, 2020, 12, 3254.	3.7	16
14	The effect of sample size on polygenic hazard models for prostate cancer. European Journal of Human Genetics, 2020, 28, 1467-1475.	2.8	14
15	Inherited DNA Repair Gene Mutations in Men with Lethal Prostate Cancer. Genes, 2020, 11, 314.	2.4	16
16	A Genetic Risk Score to Personalize Prostate Cancer Screening, Applied to Population Data. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1731-1738.	2.5	27
17	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11, 3353.	12.8	75
18	Shared heritability and functional enrichment across six solid cancers. Nature Communications, 2019, 10, 431.	12.8	88

#	Article	IF	CITATIONS
19	Circulating Metabolic Biomarkers of Screen-Detected Prostate Cancer in the ProtecT Study. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 208-216.	2.5	21
20	Polygenic hazard score to guide screening for aggressive prostate cancer: development and validation in large scale cohorts. BMJ: British Medical Journal, 2018, 360, j5757.	2.3	153
21	Oncologic Outcomes After Robot-assisted Radical Prostatectomy: A Large European Single-centre Cohort with Median 10-Year Follow-up. European Urology Focus, 2018, 4, 351-359.	3.1	32
22	The Stockholm-3 (STHLM3) Model can Improve Prostate Cancer Diagnostics in Men Aged 50–69 yr Compared with Current Prostate Cancer Testing. European Urology Focus, 2018, 4, 707-710.	3.1	42
23	Germline variation at 8q24 and prostate cancer risk in men of European ancestry. Nature Communications, 2018, 9, 4616.	12.8	43
24	Synergistic Interaction of <i>HOXB13</i> and <i>CIP2A</i> Predisposes to Aggressive Prostate Cancer. Clinical Cancer Research, 2018, 24, 6265-6276.	7.0	17
25	ANO7 is associated with aggressive prostate cancer. International Journal of Cancer, 2018, 143, 2479-2487.	5.1	31
26	AA9int: SNP interaction pattern search using non-hierarchical additive model set. Bioinformatics, 2018, 34, 4141-4150.	4.1	3
27	Association analyses of more than 140,000 men identify 63 new prostate cancer susceptibility loci. Nature Genetics, 2018, 50, 928-936.	21.4	652
28	Fine-mapping of prostate cancer susceptibility loci in a large meta-analysis identifies candidate causal variants. Nature Communications, 2018, 9, 2256.	12.8	88
29	SNP interaction pattern identifier (SIPI): an intensive search for SNP–SNP interaction patterns. Bioinformatics, 2017, 33, 822-833.	4.1	11
30	gsSKAT: Rapid gene set analysis and multiple testing correction for rareâ€variant association studies using weighted linear kernels. Genetic Epidemiology, 2017, 41, 297-308.	1.3	9
31	E-Science technologies in a workflow for personalized medicine using cancer screening as a case study. Journal of the American Medical Informatics Association: JAMIA, 2017, 24, 950-957.	4.4	4
32	Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nature Genetics, 2017, 49, 1141-1147.	21.4	105
33	Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor. Nature Genetics, 2017, 49, 1133-1140.	21.4	120
34	Height, selected genetic markers and prostate cancer risk: results from the PRACTICAL consortium. British Journal of Cancer, 2017, 117, 734-743.	6.4	7
35	Investigating the possible causal role of coffee consumption with prostate cancer risk and progression using Mendelian randomization analysis. International Journal of Cancer, 2017, 140, 322-328.	5.1	17
36	Identification of a Novel Autoimmune Peptide Epitope of Prostein in Prostate Cancer. Journal of Proteome Research, 2017, 16, 204-216.	3.7	21

#	Article	IF	CITATIONS
37	Alcohol consumption and prostate cancer incidence and progression: A Mendelian randomisation study. International Journal of Cancer, 2017, 140, 75-85.	5.1	28
38	Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Caseâ€Control Sequencing Studies. Genetic Epidemiology, 2016, 40, 461-469.	1.3	5
39	Body mass index in relation to serum prostateâ€specific antigen levels and prostate cancer risk. International Journal of Cancer, 2016, 139, 50-57.	5.1	25
40	<i>PALB2</i> , <i>CHEK2</i> and <i>ATM</i> rare variants and cancer risk: data from COGS. Journal of Medical Genetics, 2016, 53, 800-811.	3.2	174
41	Ten- and 15-yr Prostate Cancer-specific Mortality in Patients with Nonmetastatic Locally Advanced or Aggressive Intermediate Prostate Cancer, Randomized to Lifelong Endocrine Treatment Alone or Combined with Radiotherapy: Final Results of The Scandinavian Prostate Cancer Group-7. European Urology. 2016. 70. 684-691.	1.9	71
42	REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. American Journal of Human Genetics, 2016, 99, 877-885.	6.2	1,555
43	Polyunsaturated fatty acids and prostate cancer risk: a Mendelian randomisation analysis from the PRACTICAL consortium. British Journal of Cancer, 2016, 115, 624-631.	6.4	23
44	Assessing the role of insulinâ€like growth factors and binding proteins in prostate cancer using Mendelian randomization: Genetic variants as instruments for circulating levels. International Journal of Cancer, 2016, 139, 1520-1533.	5.1	26
45	Telomere structure and maintenance gene variants and risk of five cancer types. International Journal of Cancer, 2016, 139, 2655-2670.	5.1	43
46	Blood lipids and prostate cancer: a Mendelian randomization analysis. Cancer Medicine, 2016, 5, 1125-1136.	2.8	68
47	Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discovery, 2016, 6, 1052-1067.	9.4	157
48	Atlas of prostate cancer heritability in European and African-American men pinpoints tissue-specific regulation. Nature Communications, 2016, 7, 10979.	12.8	50
49	Pubertal development and prostate cancer risk: Mendelian randomization study in a population-based cohort. BMC Medicine, 2016, 14, 66.	5.5	42
50	Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nature Genetics, 2016, 48, 387-397.	21.4	119
51	The roles of stress and social support in prostate cancer mortality. Scandinavian Journal of Urology, 2016, 50, 47-55.	1.0	16
52	Prediction of individual genetic risk to prostate cancer using a polygenic score. Prostate, 2015, 75, 1467-1474.	2.3	54
53	Serum Levels of Human MIC-1/GDF15 Vary in a Diurnal Pattern, Do Not Display a Profile Suggestive of a Satiety Factor and Are Related to BMI. PLoS ONE, 2015, 10, e0133362.	2.5	66
54	A Large-Scale Analysis of Genetic Variants within Putative miRNA Binding Sites in Prostate Cancer. Cancer Discovery, 2015, 5, 368-379.	9.4	56

#	Article	IF	CITATIONS
55	Genetic determinants of telomere length and risk of common cancers: a Mendelian randomization study. Human Molecular Genetics, 2015, 24, 5356-5366.	2.9	128
56	Integration of multiethnic fine-mapping and genomic annotation to prioritize candidate functional SNPs at prostate cancer susceptibility regions. Human Molecular Genetics, 2015, 24, 5603-5618.	2.9	50
57	Two new loci and gene sets related to sex determination and cancer progression are associated with susceptibility to testicular germ cell tumor. Human Molecular Genetics, 2015, 24, 4138-4146.	2.9	49
58	The effects of height and BMI on prostate cancer incidence and mortality: a Mendelian randomization study in 20,848 cases and 20,214 controls from the PRACTICAL consortium. Cancer Causes and Control, 2015, 26, 1603-1616.	1.8	77
59	Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans. Human Molecular Genetics, 2015, 24, 5589-5602.	2.9	67
60	Identification of four new susceptibility loci for testicular germ cell tumour. Nature Communications, 2015, 6, 8690.	12.8	36
61	Genome-Wide Association Study of Prostate Cancer–Specific Survival. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 1796-1800.	2.5	27
62	A differential protein solubility approach for the depletion of highly abundant proteins in plasma using ammonium sulfate. Analyst, The, 2015, 140, 8109-8117.	3.5	20
63	Prostate cancer screening in men aged 50–69 years (STHLM3): a prospective population-based diagnostic study. Lancet Oncology, The, 2015, 16, 1667-1676.	10.7	308
64	Physical Activity and Survival among Men Diagnosed with Prostate Cancer. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 57-64.	2.5	115
65	Fine-Mapping the HOXB Region Detects Common Variants Tagging a Rare Coding Allele: Evidence for Synthetic Association in Prostate Cancer. PLoS Genetics, 2014, 10, e1004129.	3.5	34
66	A prostate cancer susceptibility allele at 6q22 increases RFX6 expression by modulating HOXB13 chromatin binding. Nature Genetics, 2014, 46, 126-135.	21.4	182
67	Atorvastatin prevents ATP-driven invasiveness via P2X7 and EHBP1 signaling in PTEN-expressing prostate cancer cells. Carcinogenesis, 2014, 35, 1547-1555.	2.8	53
68	A meta-analysis of 87,040 individuals identifies 23 new susceptibility loci for prostate cancer. Nature Genetics, 2014, 46, 1103-1109.	21.4	408
69	A Population-based Assessment of Germline HOXB13 G84E Mutation and Prostate Cancer Risk. European Urology, 2014, 65, 169-176.	1.9	116
70	Analysis of plasma from prostate cancer patients links decreased carnosine dipeptidase 1 levels to lymph node metastasis. Translational Proteomics, 2014, 2, 14-24.	1.2	10
71	HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCC). Human Genetics, 2013, 132, 5-14.	3.8	166
72	Identification of 23 new prostate cancer susceptibility loci using the iCOGS custom genotyping array. Nature Genetics, 2013, 45, 385-391.	21.4	492

FREDRIK WIKLUND

#	ARTICLE	IF	CITATIONS
73	A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Human Molecular Genetics, 2013, 22, 408-415.	2.9	118
74	Polygenic Risk Score Improves Prostate Cancer Risk Prediction: Results from the Stockholm-1 Cohort Study. European Urology, 2011, 60, 21-28.	1.9	117
75	Seven prostate cancer susceptibility loci identified by a multi-stage genome-wide association study. Nature Genetics, 2011, 43, 785-791.	21.4	265
76	Prostate cancer genomics: can we distinguish between indolent and fatal disease using genetic markers?. Genome Medicine, 2010, 2, 45.	8.2	23
77	Risk of Bilateral Renal Cell Cancer. Journal of Clinical Oncology, 2009, 27, 3737-3741.	1.6	42
78	Association of reported prostate cancer risk alleles with PSA levels among men without a diagnosis of prostate cancer. Prostate, 2009, 69, 419-427.	2.3	36
79	Lifetime total physical activity and prostate cancer risk: a population-based case–control study in Sweden. European Journal of Epidemiology, 2008, 23, 739-746.	5.7	31
80	Common sequence variants on 2p15 and Xp11.22 confer susceptibility to prostate cancer. Nature Genetics, 2008, 40, 281-283.	21.4	357
81	Two Genome-wide Association Studies of Aggressive Prostate Cancer Implicate Putative Prostate Tumor Suppressor Gene DAB2IP. Journal of the National Cancer Institute, 2007, 99, 1836-1844.	6.3	235
82	A common variant associated with prostate cancer in European and African populations. Nature Genetics, 2006, 38, 652-658.	21.4	738
83	H6D Polymorphism in Macrophage-Inhibitory Cytokine-1 Gene Associated With Prostate Cancer. Journal of the National Cancer Institute, 2004, 96, 1248-1254.	6.3	111