
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/460876/publications.pdf Version: 2024-02-01

ΗΙΣΟΣΗΙ ΚΙΥΛΜΛ

#	Article	IF	CITATIONS
1	mTOR Is Essential for Growth and Proliferation in Early Mouse Embryos and Embryonic Stem Cells. Molecular and Cellular Biology, 2004, 24, 6710-6718.	2.3	562
2	Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nature Communications, 2019, 10, 5816.	12.8	492
3	Coexistence of calcitonin gene-related peptide and substance P-like peptide in single cells of the trigeminal ganglion of the rat: immunohistochemical analysis. Brain Research, 1985, 330, 194-196.	2.2	369
4	Pael receptor induces death of dopaminergic neurons in the substantia nigra via endoplasmic reticulum stress and dopamine toxicity, which is enhanced under condition of parkin inactivation. Human Molecular Genetics, 2007, 16, 50-60.	2.9	339
5	Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Human Molecular Genetics, 2003, 12, 1945-1958.	2.9	328
6	The differential expression patterns of messenger RNAs encoding non-N-methyl-d-aspartate glutamate receptor subunits (GluR1–4) in the rat brain. Neuroscience, 1993, 52, 515-539.	2.3	302
7	Accelerated Nerve Regeneration in Mice by upregulated expression of interleukin (IL) 6 and IL-6 receptor after trauma Journal of Experimental Medicine, 1996, 183, 2627-2634.	8.5	300
8	Neprilysin Degrades Both Amyloid β Peptides 1–40 and 1–42 Most Rapidly and Efficiently among Thiorphan- and Phosphoramidon-sensitive Endopeptidases. Journal of Biological Chemistry, 2001, 276, 21895-21901.	3.4	282
9	Expression of the Activating Transcription Factor 3 Prevents c-Jun N-Terminal Kinase-Induced Neuronal Death by Promoting Heat Shock Protein 27 Expression and Akt Activation. Journal of Neuroscience, 2003, 23, 5187-5196.	3.6	241
10	Akt/Protein Kinase B Prevents Injury-Induced Motoneuron Death and Accelerates Axonal Regeneration. Journal of Neuroscience, 2000, 20, 2875-2886.	3.6	228
11	A Novel ATP-dependent Inward Rectifier Potassium Channel Expressed Predominantly in Glial Cells. Journal of Biological Chemistry, 1995, 270, 16339-16346.	3.4	225
12	Akt Activation Protects Hippocampal Neurons from Apoptosis by Inhibiting Transcriptional Activity of p53. Journal of Biological Chemistry, 2001, 276, 5256-5264.	3.4	218
13	AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. NeuroReport, 1993, 4, 1263-1265.	1.2	205
14	Distribution of the substance P receptor (NK-1 receptor) in the central nervous system. Molecular Brain Research, 1993, 18, 43-58.	2.3	195
15	Expression and activity-dependent changes of a novel limbic-serine protease gene in the hippocampus. Journal of Neuroscience, 1995, 15, 5088-5097.	3.6	194
16	Microglial TREM2/DAP12 Signaling: A Double-Edged Sword in Neural Diseases. Frontiers in Cellular Neuroscience, 2018, 12, 206.	3.7	186
17	Mitochondriaâ€associated membrane collapse is a common pathomechanism in <i><scp>SIGMAR</scp>1</i> ―and <i><scp>SOD</scp>1</i> ―inked <scp>ALS</scp> . EMBO Molecular Medicine, 2016, 8, 1421-1437.	6.9	182
18	Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and) Tj ETQq0 C	0 rgBT /Ov 2.3	erlock 10 Tf 5 180

Research, 1993, 18, 141-151.

#	Article	IF	CITATIONS
19	A noxious stimulus induces the preprotachykinin-A gene expression in the rat dorsal root ganglion: a quantitative study using in situ hybridization histochemistry. Molecular Brain Research, 1988, 4, 31-35.	2.3	179
20	Localization of two calcium binding proteins, calbindin (28 kD) and parvalbumin (12 kD), in the vertebrate retina. Journal of Comparative Neurology, 1990, 302, 417-424.	1.6	139
21	Siglecâ€H is a microgliaâ€specific marker that discriminates microglia from CNSâ€associated macrophages and CNSâ€infiltrating monocytes. Glia, 2017, 65, 1927-1943.	4.9	123
22	Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 4345-4350.	7.1	114
23	Distribution of somatostatin mRNA in the rat nervous system as visualized by a novel non-radioactive in situ hybridization histochemistry procedure. Neuroscience, 1990, 38, 223-244.	2.3	112
24	Astrocytic phagocytosis is a compensatory mechanism for microglial dysfunction. EMBO Journal, 2020, 39, e104464.	7.8	105
25	c-fos may code for a common transcription factor within the hypothalamic neural circuits involved in osmoregulation. Brain Research, 1992, 572, 42-51.	2.2	104
26	Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease. Brain Research, 1990, 525, 209-214.	2.2	103
27	TREM2/DAP12 Signal Elicits Proinflammatory Response in Microglia and Exacerbates Neuropathic Pain. Journal of Neuroscience, 2016, 36, 11138-11150.	3.6	101
28	Glutamate-like immunoreactive structures in primary sensory neurons in the rat detected by a specific antiserum against glutamate. Experimental Brain Research, 1987, 65, 691-4.	1.5	98
29	Nerve injury enhances rat neuronal glutamate transporter expression: identification by differential display PCR. Journal of Neuroscience, 1995, 15, 7872-7878.	3.6	96
30	Ontogeny of cholecystokinin-8-containing neuron system of the rat: An immunohistochemical analysis. I. Forebrain and upper brainstem. Journal of Comparative Neurology, 1983, 218, 25-41.	1.6	95
31	Role of the flocculus in the development of vestibular compensation: Immunohistochemical studies with retrograde tracing and flocculectomy using Fos expression as a marker in the rat brainstem. Neuroscience, 1997, 76, 571-580.	2.3	92
32	Evidence for the Co-Expression of Oxytocin and Vasopressin Messenger Ribonucleic Acids in Magnocellular Neurosecretory Cells: Simultaneous Demonstration of Two Neurohypophysin Messenger Ribonucleic Acids by Hybridization Histochemistry. Journal of Neuroendocrinology, 1990, 2, 257-259.	2.6	89
33	Regional distribution of cells expressing glycine receptor α2 subunit mRNA in the rat brain. Brain Research, 1992, 590, 95-108.	2.2	89
34	Immunocytochemical localization of β-adrenergic receptors in the rat brain. Brain Research, 1989, 485, 125-140.	2.2	88
35	G-Protein-Coupled Receptor Screen Reveals a Role for Chemokine Receptor CCR5 in Suppressing Microglial Neurotoxicity. Journal of Neuroscience, 2008, 28, 11980-11988.	3.6	87
36	Cell Type-Specific Intervention of Transforming Growth Factor β/Smad Signaling Suppresses Collagen Gene Expression and Hepatic Fibrosis in Mice. Gastroenterology, 2005, 129, 259-268.	1.3	85

HIROSHI KIYAMA

#	Article	IF	CITATIONS
37	Differential Induction of Antimicrobial REGIII by the Intestinal Microbiota and Bifidobacterium breve NCC2950. Applied and Environmental Microbiology, 2013, 79, 7745-7754.	3.1	84
38	Starvation Compromises Paneth Cells. American Journal of Pathology, 2011, 179, 2885-2893.	3.8	82
39	Collapsin response mediator protein-2 accelerates axon regeneration of nerve-injured motor neurons of rat. Journal of Neurochemistry, 2003, 86, 1042-1050.	3.9	76
40	Critical Role for DP5/Harakiri, a Bcl-2 Homology Domain 3-Only Bcl-2 Family Member, in Axotomy-Induced Neuronal Cell Death. Journal of Neuroscience, 2004, 24, 3721-3725.	3.6	76
41	Transient adenoviral gene transfer of Smad7 prevents injury-induced epithelial–mesenchymal transition of lens epithelium in mice. Laboratory Investigation, 2004, 84, 1259-1270.	3.7	75
42	Noxa Is a Critical Mediator of p53-Dependent Motor Neuron Death after Nerve Injury in Adult Mouse. Journal of Neuroscience, 2005, 25, 1442-1447.	3.6	74
43	Neuronal Injury-inducible Gene Is Synergistically Regulated by ATF3, c-Jun, and STAT3 through the Interaction with Sp1 in Damaged Neurons. Journal of Biological Chemistry, 2008, 283, 6988-6996.	3.4	74
44	Electrical activation and c-fos mRNA expression in rat neurosecretory neurones after systemic administration of cholecystokinin Journal of Physiology, 1991, 444, 51-63.	2.9	73
45	Effects of MK801 on Fos expression in the rat brainstem after unilateral labyrinthectomy. Brain Research, 1995, 700, 182-190.	2.2	72
46	Preproenkephalin gene expression in the rat spinal cord after noxious stimuli. Molecular Brain Research, 1989, 5, 227-234.	2.3	71
47	Expression and Translocation of Aquaporinâ€2 in the Endolymphatic Sac in Patients with Meniere's Disease. Journal of Neuroendocrinology, 2010, 22, 1157-1164.	2.6	71
48	Endothelin-converting enzymes and endothelin receptor B messenger RNAs are expressed in different neural cell species and these messenger RNAs are coordinately induced in neurons and astrocytes respectively following nerve injury. Neuroscience, 2000, 101, 441-449.	2.3	70
49	The GABAA receptor \hat{I}^31 subunit is expressed by distinct neuronal populations. Molecular Brain Research, 1992, 15, 121-132.	2.3	69
50	Meniere's Attacks Occur in the Inner Ear with Excessive Vasopressin Typeâ€2 Receptors. Journal of Neuroendocrinology, 2008, 20, 1295-1300.	2.6	68
51	Nerve injuryâ€activated microglia engulf myelinated axons in a P2Y12 signalingâ€dependent manner in the dorsal horn. Glia, 2010, 58, 1838-1846.	4.9	68
52	Requirement of Ras for the Activation of Mitogen-Activated Protein Kinase by Calcium Influx, cAMP, and Neurotrophin in Hippocampal Neurons. Journal of Neuroscience, 2001, 21, 6459-6466.	3.6	67
53	Comparison of mice deficient in the high- or low-affinity neurotensin receptors, Ntsr1 or Ntsr2, reveals a novel function for Ntsr2 in thermal nociception. Brain Research, 2004, 998, 122-129.	2.2	67

54 Characteristic Localization of gpl30 (the Signal-transducing Receptor Component Used in Common) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

#	Article	IF	CITATIONS
55	The Small GTP-Binding Protein TC10 Promotes Nerve Elongation in Neuronal Cells, and Its Expression Is induced during Nerve Regeneration in Rats. Journal of Neuroscience, 2000, 20, 4138-4144.	3.6	64
56	Constitutive nitric oxide synthase is associated with retinal vascular permeability in early diabetic rats. Diabetologia, 2001, 44, 1043-1050.	6.3	64
57	GTP Hydrolysis by the Rho Family GTPase TC10 Promotes Exocytic Vesicle Fusion. Developmental Cell, 2006, 11, 411-421.	7.0	62
58	Differential expression of Notch1 and Notch2 in developing and adult mouse brain. Molecular Brain Research, 1995, 29, 263-272.	2.3	61
59	Distribution of GAP-43 (B50/F1) mRNA in the adult rat brain by in situ hybridization using an alkaline phosphatase labeled probe. Molecular Brain Research, 1993, 18, 1-16.	2.3	60
60	Colchicine-induced expression of proneurotensin mRNA in rat striatum and hypothalamus. Molecular Brain Research, 1991, 9, 353-358.	2.3	58
61	Distribution of the ω-conotoxin receptor in rat brain. An autoradiographic mapping. Neuroscience, 1989, 32, 405-416.	2.3	57
62	Differential expression of oxytocin receptor mRNA in the developing rat brain. Neuroscience Research, 1996, 24, 291-304.	1.9	56
63	Immunohistochemical localization of chick retinal 24 kdalton protein (visinin) in various vertebrate retinae. Brain Research, 1985, 331, 209-215.	2.2	55
64	Pancreatitis-Associated Protein-III Is a Novel Macrophage Chemoattractant Implicated in Nerve Regeneration. Journal of Neuroscience, 2006, 26, 7460-7467.	3.6	55
65	Peripheral and spinal mechanisms of nociception in a rat reserpine-induced pain model. Pain, 2015, 156, 415-427.	4.2	55
66	A novel mammalian T-box-containing gene, Tbr2, expressed in mouse developing brain. Developmental Brain Research, 1999, 115, 183-193.	1.7	54
67	A Chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Glia, 2014, 62, 1407-1417.	4.9	53
68	Localization of GABAA-receptor γ2-subunit mRNA-containing neurons in the rat central nervous system. Neuroscience, 1992, 47, 45-61.	2.3	52
69	Nociception originating from the crural fascia in rats. Pain, 2013, 154, 1103-1114.	4.2	51
70	Neurotensin immunoreactivity in the human cingulate gyrus, hippocampal subiculum and mammillary bodies. Its potential role in memory processing. Brain Research, 1986, 375, 351-356.	2.2	50
71	Expression of Reg/PAP family members during motor nerve regeneration in rat. Biochemical and Biophysical Research Communications, 2005, 332, 126-134.	2.1	50
72	Sensitive non-radioisotopic in situ hybridization histochemistry: demonstration of tyrosine hydroxylase gene expression in rat brain and adrenal. Molecular Brain Research, 1990, 7, 213-219.	2.3	49

#	Article	IF	CITATIONS
73	Selective Upregulation of Cytokine Receptor Subchain and Their Intracellular Signalling Molecules After Peripheral Nerve Injury. European Journal of Neuroscience, 1997, 9, 1047-1054.	2.6	49
74	Vlgr1 is required for proper stereocilia maturation of cochlear hair cells. Genes To Cells, 2007, 12, 235-250.	1.2	49
75	A new method for producing a specific and high titre antibody against glutamate using colloidal gold as a carrier. Brain Research, 1986, 382, 399-403.	2.2	48
76	Different postnatal development of cells expressing mRNA encoding neurotensin receptor. Neuroscience, 1992, 48, 137-149.	2.3	48
77	Three dimensional analysis of retinal neuropeptides and amine in the chick. Brain Research Bulletin, 1985, 15, 155-165.	3.0	46
78	p53-Independent Cyclin G Expression in a Group of Mature Neurons and Its Enhanced Expression during Nerve Regeneration. Journal of Neuroscience, 1996, 16, 5961-5966.	3.6	46
79	Unique anti-apoptotic activity of EAAC1 in injured motor neurons. EMBO Journal, 2006, 25, 3411-3421.	7.8	46
80	Ontogeny of cholecystokinin-8 containing neuron system of the rat: An immunohistochemical analysis—ll. Lower brain stem. Neuroscience, 1983, 10, 1341-1359.	2.3	44
81	GABAA Receptor subunit messenger RNAs show differential expression during cortical development in the rat brain. Neuroscience, 1992, 51, 583-591.	2.3	44
82	Nerve Growth Factor Protects Oligodendrocytes from Tumor Necrosis Factor-α-induced Injury through Akt-mediated Signaling Mechanisms. Journal of Biological Chemistry, 2000, 275, 16360-16365.	3.4	44
83	So-called interplexiform cells immunoreactive to tyrosine hydroxylase or somatostatin in rat retina. Brain Research, 1985, 346, 136-140.	2.2	43
84	Characteristic localization of non-NMDA type glutamate receptor subunits in the rat pituitary gland. Molecular Brain Research, 1993, 19, 262-268.	2.3	43
85	Enhanced expression of 14-3-3 family members in injured motoneurons. Molecular Brain Research, 1998, 55, 315-320.	2.3	43
86	Brain-derived neurotrophic factor rescues neuronal death induced by methamphetamine. Biological Psychiatry, 2004, 55, 52-60.	1.3	43
87	Mitochondrial fission is an acute and adaptive response in injured motor neurons. Scientific Reports, 2016, 6, 28331.	3.3	43
88	Activated cAMP-response Element-binding Protein Regulates Neuronal Expression of Presenilin-1. Journal of Biological Chemistry, 2001, 276, 9688-9698.	3.4	42
89	Recent progress in the use of the technique of non-radioactive in situ hybridization histochemistry: new tools for molecular neurobiology. Neuroscience Research, 1990, 9, 1-21.	1.9	40
90	Regulation of mRNA expression involved in Ras and PKA signal pathways during rat hypoglossal nerve regeneration. Molecular Brain Research, 1995, 29, 147-156.	2.3	40

#	Article	IF	CITATIONS
91	Expression patterns of a glutamate-binding protein in the rat central nervous system: Comparison withN-methyl-d-aspartate receptor subunit 1 in rat. Neuroscience, 1995, 64, 459-475.	2.3	40
92	Biphasic expression of activating transcription factor-3 in neurons after cerebral infarction. Molecular Brain Research, 2003, 115, 147-156.	2.3	40
93	Mutant Loricrin is Not Crosslinked into the Cornified Cell Envelope but is Translocated into the Nucleus in Loricrin Keratoderma. Journal of Investigative Dermatology, 2000, 115, 1088-1094.	0.7	39
94	Induced expressions of Rab24 GTPase and LC3 in nerve-injured motor neurons. Biochemical and Biophysical Research Communications, 2005, 337, 1206-1213.	2.1	39
95	Annexin III implicated in the microglial response to motor nerve injury. Glia, 2006, 53, 723-732.	4.9	39
96	Damage-Induced Neuronal Endopeptidase Is Critical for Presynaptic Formation of Neuromuscular Junctions. Journal of Neuroscience, 2010, 30, 6954-6962.	3.6	39
97	Differential effects of acute dopaminergic D1 and D2 receptor antagonists on proneurotensin mRNA expression in rat striatum. Molecular Brain Research, 1991, 9, 341-346.	2.3	38
98	The nuclear events guiding successful nerve regeneration. Frontiers in Molecular Neuroscience, 2011, 4, 53.	2.9	38
99	Autoradiographic visualization in rat brain of receptors for ω-conotoxin GVIA, a newly discovered calcium antagonist. Brain Research, 1988, 451, 386-389.	2.2	37
100	An in situ hybridization histochemistry method for the use of alkaline phosphatase-labeled oligonucleotide probes in small intestine Journal of Histochemistry and Cytochemistry, 1991, 39, 1377-1384.	2.5	37
101	Changes in nitric oxide synthase-like immunoreactivities in unipolar brush cells in the rat cerebellar flocculus after unilateral labyrinthectomy. Brain Research, 1997, 765, 1-6.	2.2	37
102	Dopaminergic D1 and D2 receptor antagonists decrease prosomatostatin mRNA expression in rat striatum. Neuroscience, 1991, 44, 35-44.	2.3	36
103	Mitochondrial behavior during axon regeneration/degeneration in vivo. Neuroscience Research, 2019, 139, 42-47.	1.9	36
104	Transgenic mouse overexpressing the Akt reduced the volume of infarct area after middle cerebral artery occlusion. Neuroscience Letters, 2004, 359, 159-162.	2.1	35
105	Down-Regulation of KCC2 Expression and Phosphorylation in Motoneurons, and Increases the Number of in Primary Afferent Projections to Motoneurons in Mice with Post-Stroke Spasticity. PLoS ONE, 2014, 9, e114328.	2.5	35
106	A DAP12â€Dependent signal promotes proâ€inflammatory polarization in microglia following nerve injury and exacerbates degeneration of injured neurons. Glia, 2015, 63, 1073-1082.	4.9	35
107	GPR34 in spinal microglia exacerbates neuropathic pain in mice. Journal of Neuroinflammation, 2019, 16, 82.	7.2	35
108	An immunohistochemical study on the river lamprey retina. Brain Research, 1986, 362, 389-393.	2.2	34

#	Article	IF	CITATIONS
109	Expressed-sequence-tag approach to identify differentially expressed genes following peripheral nerve axotomy. Molecular Brain Research, 1999, 64, 34-40.	2.3	34
110	Effects of Nutritional Supplementation on Fatigue, and Autonomic and Immune Dysfunction in Patients with End-Stage Renal Disease: A Randomized, Double-Blind, Placebo-Controlled, Multicenter Trial. PLoS ONE, 2015, 10, e0119578.	2.5	34
111	Distribution of Tyrosine Hydroxylase mRNA in the Rat Central Nervous System Visualized by Alkaline Phosphatase in situ Hybridization Histochemistry. European Journal of Neuroscience, 1990, 2, 512-524.	2.6	33
112	Expression of glutamate (AMPA type) and γ-aminobutyric acid (GABA)A receptors in the rat caudal trigeminal spinal nucleus. Neuroscience Letters, 1995, 186, 169-172.	2.1	33
113	A disintegrin and metalloprotease with thrombospondin type1 motifs (ADAMTS-1) and IL-1 receptor type 1 mRNAs are simultaneously induced in nerve injured motor neurons. Molecular Brain Research, 2001, 89, 158-163.	2.3	33
114	Occurrence of calcitonin gene-related peptide in the chicken amacrine cells. Brain Research, 1985, 327, 367-369.	2.2	32
115	Damage-Induced Neuronal Endopeptidase (DINE/ECEL) Expression Is Regulated by Leukemia Inhibitory Factor and Deprivation of Nerve Growth Factor in Rat Sensory Ganglia after Nerve Injury. Journal of Neuroscience, 2002, 22, 9410-9418.	3.6	32
116	Altered expression of neprilysin family members in the pituitary gland of sleep-disturbed rats, an animal model of severe fatigue. Journal of Neurochemistry, 2005, 95, 1156-1166.	3.9	32
117	Chronic stress elicits prolonged activation of αâ€MSH secretion and subsequent degeneration of melanotroph. Journal of Neurochemistry, 2009, 109, 1389-1399.	3.9	32
118	microRNA-124 is down regulated in nerve-injured motor neurons and it potentially targets mRNAs for KLF6 and STAT3. Neuroscience, 2014, 256, 426-432.	2.3	32
119	Ontogeny of [3H]neurotensin binding sites in the rat cerebral cortex: Autoradiographic study. Developmental Brain Research, 1987, 31, 303-306.	1.7	31
120	Co-expression of cholecystokinin mRNA and tyrosine hydroxylase mRNA in populations of rat substantia nigra cells; a study using a combined radioactive and non-radioactive in situ hybridization procedure. Molecular Brain Research, 1991, 9, 87-93.	2.3	31
121	Up-regulation of ERK (MAP kinase) and MEK (MAP kinase kinase) transcription after rat facial nerve transection. Neuroscience Research, 1994, 20, 275-280.	1.9	31
122	Agonists for G-protein-coupled receptor 84 (GPR84) alter cellular morphology and motility but do not induce pro-inflammatory responses in microglia. Journal of Neuroinflammation, 2017, 14, 198.	7.2	31
123	Adenosine 3',5'-Cyclic Monophosphate Enhances Dopamine Accumulation in Rat Hypothalamic Cell Culture Containing Dopaminergic Neurons. Neuroendocrinology, 1990, 52, 256-261.	2.5	30
124	CAP-43 (B50/F1) gene regulation by axonal injury of the hypoglossal nerve in the adult rat. Molecular Brain Research, 1994, 21, 9-18.	2.3	30
125	Differential Display Reveals Transcriptional Up-regulation of the Motor Molecules for Both Anteroarade and Retrograde Axonal Transport During Nerve Regeneration. European Journal of Neuroscience, 1997, 9, 1542-1547.	2.6	30
126	Up-regulation of thioredoxin expression in motor neurons after nerve injury. Molecular Brain Research, 1998, 62, 86-91.	2.3	30

8

#	Article	IF	CITATIONS
127	Phagocytic astrocytes: Emerging from the shadows of microglia. Clia, 2022, 70, 1009-1026.	4.9	30
128	Co-existence of glucagon- and substance P-like immunoreactivity in the chicken retina. Neuroscience, 1985, 16, 417-424.	2.3	29
129	Expression of NMDA receptor subunit mRNA in the vestibular ganglion of the rat and guinea-pig. NeuroReport, 1994, 5, 862-864.	1.2	29
130	Dimethylarginine dimethylaminohydrolase (DDAH) as a nerve-injury-associated molecule: mRNA localization in the rat brain and its coincident up-regulation with neuronal NO synthase (nNOS) in axotomized motoneurons. European Journal of Neuroscience, 1999, 11, 2160-2166.	2.6	29
131	Vesicular acetylcholine transporter can be a morphological marker for the reinnervation to muscle of regenerating motor axons. Neuroscience Research, 2004, 48, 305-314.	1.9	29
132	Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Scientific Reports, 2016, 6, 25317.	3.3	29
133	Coexistence of pancreatic polypeptide and substance P in the chicken retina. Brain Research, 1985, 361, 25-35.	2.2	28
134	A neurotensin-immunoreactive pathway from the subiculum to the mammillary body in the rat. Brain Research, 1986, 375, 357-359.	2.2	28
135	A stress-sensitive chemokinergic neuronal pathway in the hypothalamo-pituitary system. Neuroscience, 1996, 75, 133-142.	2.3	28
136	Enhancement of Extracellular Glutamate Scavenge System in Injured Motoneurons. Journal of Neurochemistry, 2002, 71, 913-919.	3.9	28
137	Distinct localization of two serine–threonine kinase receptors for activin and TGF-β in the rat brain and down-regulation of type I activin receptor during peripheral nerve regeneration. Molecular Brain Research, 1996, 42, 263-271.	2.3	27
138	Coexpression of GABAA receptor γ1 and γ2 subunits in the rat trigeminal ganglion. Molecular Brain Research, 1994, 21, 363-367.	2.3	26
139	Alternative expression of Shc family members in nerve-injured motoneurons. Molecular Brain Research, 1998, 53, 291-296.	2.3	26
140	Unilateral labyrinthectomy downregulates glutamate receptor δ-2 expression in the rat vestibulocerebellum. Molecular Brain Research, 1998, 61, 170-178.	2.3	26
141	Expression of damage-induced neuronal endopeptidase (DINE) mRNA in peri-infarct cortical and thalamic neurons following middle cerebral artery occlusion. Journal of Neurochemistry, 2004, 91, 956-964.	3.9	26
142	Involvement of Extracellular Calcium and Arachidonate in [³ H] Dopamine Release from Rat Tuberoinfundibular Neurons. Neuroendocrinology, 1989, 50, 481-487.	2.5	25
143	Substance P receptor (NK-1) in the central nervous system: possible functions from a morphological aspect. Regulatory Peptides, 1993, 46, 114-123.	1.9	25
144	Increased F1/GAP-43 mRNA Accumulation in Gerbil Hippocampus after Brain Ischemia. Journal of Cerebral Blood Flow and Metabolism, 1995, 15, 1132-1136.	4.3	25

#	Article	IF	CITATIONS
145	The messenger RNAs encoding metabotropic glutamate receptor subtypes are expressed in different neuronal subpopulations of the rat suprachiasmatic nucleus. Neuroscience, 1995, 66, 161-173.	2.3	25
146	In Vitro and In Vivo Transfer of bcl-2 Gene into Keratinocytes Suppresses UVB-induced Apoptosis¶. Photochemistry and Photobiology, 2001, 74, 579.	2.5	25
147	Expression of Human Cystatin A by Keratinocytes Is Positively Regulated via the Ras/MEKK1/MKK7/JNK Signal Transduction Pathway but Negatively Regulated via the Ras/Raf-1/MEK1/ERK Pathway. Journal of Biological Chemistry, 2001, 276, 36632-36638.	3.4	25
148	ld1, ld2 and ld3 are induced in rat melanotrophs of the pituitary gland by dopamine suppression under continuous stress. Neuroscience, 2010, 169, 1527-1534.	2.3	25
149	Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury. Cell Death and Disease, 2017, 8, e2847-e2847.	6.3	25
150	Immunocytochemical localizations of cytosolic and mitochondrial glutamic oxaloacetic transaminase isozymes in rat primary sensory neurons as a marker for the glutamate neuronal system. Brain Research, 1987, 402, 197-200.	2.2	24
151	Coexistence of enkephalin and somatostatin in the chicken retina. Brain Research, 1989, 489, 254-260.	2.2	24
152	Changes in preproenkephalin mRNA after unilateral and bilateral labyrinthectomy in the rat medial vestibular nucleus. Molecular Brain Research, 1993, 19, 237-240.	2.3	24
153	The Production of CINC/gro, a Member of the Interleukin-8 Family, in Rat Anterior Pituitary Gland. Biochemical and Biophysical Research Communications, 1994, 202, 161-167.	2.1	24
154	Identification of Peripherin as a Akt Substrate in Neurons. Journal of Biological Chemistry, 2007, 282, 23491-23499.	3.4	24
155	The formation of argpyrimidine, a methylglyoxal–arginine adduct, in the nucleus of neural cells. Biochemical and Biophysical Research Communications, 2009, 378, 209-212.	2.1	24
156	Possible ATP release through lysosomal exocytosis from primary sensory neurons. Biochemical and Biophysical Research Communications, 2013, 430, 488-493.	2.1	24
157	R-spondin 2 promotes acetylcholine receptor clustering at the neuromuscular junction via Lgr5. Scientific Reports, 2016, 6, 28512.	3.3	24
158	Immunocytochemical localizations of cytosolic and mitochondrial glutamic oxaloacetic transaminase isozymes in rat retina as markers for the glutamate-aspartate neuronal system. Brain Research, 1985, 325, 336-339.	2.2	23
159	Postnatal ontogeny of cells expressing prepro-neurotensin/neuromedin N mRNA in the rat forebrain and midbrain: A hybridization histochemical study involving isotope-labeled and enzyme-labeled probes. Journal of Comparative Neurology, 1991, 310, 300-315.	1.6	23
160	Regulation of Src Family Kinases in the Developing Rat Brain: Correlation with Their Regulator Kinase, Csk1. Journal of Biochemistry, 1994, 116, 386-392.	1.7	23
161	Targeted and regulable expression of transgenes in hepatic stellate cells and myofibroblasts in culture and in vivo using an adenoviral Cre/loxP system to antagonise hepatic fibrosis. Gut, 2007, 56, 396-404.	12.1	23
162	The increase of alpha-melanocyte-stimulating hormone in the plasma of chronic fatigue syndrome patients. BMC Neurology, 2010, 10, 73.	1.8	23

#	Article	IF	CITATIONS
163	Expression analysis of the regenerating gene (Reg) family members Regâ€IIIβ and Regâ€IIIγ in the mouse during development. Journal of Comparative Neurology, 2012, 520, 479-494.	1.6	23
164	Weakened rate-dependent depression of Hoffmann's reflex and increased motoneuron hyperactivity after motor cortical infarction in mice. Cell Death and Disease, 2014, 5, e1007-e1007.	6.3	23
165	Corticotropin-releasing factor in the amacrine cells of the chicken retina. Brain Research, 1984, 298, 197-200.	2.2	22
166	Postnatal development of preproenkephalin mRNA containing neurons in the rat lower brainstem. Journal of Comparative Neurology, 1990, 292, 193-213.	1.6	22
167	Nitric oxide in the flocculus works the inhibitory neural circuits after unilateral labyrinthectomy. Brain Research, 1999, 815, 405-409.	2.2	22
168	Increased expression of mRNAs for microtubule disassembly molecules during nerve regeneration. Molecular Brain Research, 2002, 102, 105-109.	2.3	22
169	Inflammation induces serine protease inhibitor 3 expression in the rat pineal gland. Neuroscience, 2002, 113, 387-394.	2.3	22
170	Developmental alteration of nerve injury induced glial cell line-derived neurotrophic factor (GDNF) receptor expression is crucial for the determination of injured motoneuron fate. Journal of Neurochemistry, 2002, 82, 961-975.	3.9	22
171	Melanocortin receptor 4 is induced in nerveâ€injured motor and sensory neurons of mouse. Journal of Neurochemistry, 2007, 101, 1145-1152.	3.9	22
172	Interferon Regulatory Factor 8 Expressed in Microglia Contributes to Tactile Allodynia Induced by Repeated Cold Stress in Rodents. Journal of Pharmacological Sciences, 2014, 126, 172-176.	2.5	22
173	Gene Expression of KA Type and NMDA Receptors and of a Glycine Transporter in the Rat Pineal Gland. Neuroendocrinology, 1993, 58, 77-79.	2.5	21
174	Inhibition of Ras extracellular-signal-regulated kinase (ERK) mediated signaling promotes ciliary neurotrophic factor (CNTF) expression in Schwann cells. Journal of Neurochemistry, 2001, 77, 700-703.	3.9	21
175	Cavernous nerve injury elicits GAP-43 mRNA expression but not regeneration of injured pelvic ganglion neurons. Brain Research, 2003, 986, 166-173.	2.2	21
176	Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis. IScience, 2019, 15, 536-551.	4.1	21
177	Postnatal development of mRNA specific for a metabotropic glutamate receptor in the rat brain. Neuroscience Research, 1992, 15, 58-63.	1.9	20
178	Induction of Pancreatitis-Associated Protein (PAP) Family Members in Neurons after Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 1683-1693.	3.4	20
179	ECEL1 mutation implicates impaired axonal arborization of motor nerves in the pathogenesis of distal arthrogryposis. Acta Neuropathologica, 2016, 132, 111-126.	7.7	20
180	Hyperactivation of proprioceptors induces microglia-mediated long-lasting pain in a rat model of chronic fatigue syndrome. Journal of Neuroinflammation, 2019, 16, 67.	7.2	20

#	Article	IF	CITATIONS
181	Localization of chick retinal 24,000 dalton protein (visinin)-like immunoreactivity in the rat lower brain stem. Neuroscience, 1985, 14, 547-556.	2.3	19
182	Immunohistochemical demonstration of tyrosine hydroxylase (TH)-positive but dopamine β-hydroxylase (DBH)-negative neuron-like cells in the pineal gland of golden hamsters. Neuroscience Letters, 1988, 93, 28-31.	2.1	19
183	Ontogeny of calcitonin gene-related peptide in the organ of Cortl of the rat. Developmental Brain Research, 1989, 45, 309-312.	1.7	19
184	Synaptic contact between vestibular afferent nerve and cholinergic efferent terminal: its putative mediation by nicotinic receptors. Molecular Brain Research, 1993, 18, 343-346.	2.3	19
185	Localization and ontogeny of damage-induced neuronal endopeptidase mRNA-expressing neurons in the rat nervous system. Neuroscience, 2006, 141, 299-310.	2.3	19
186	Altered expression of Smad family members in injured motor neurons of rat. Brain Research, 2007, 1132, 36-41.	2.2	19
187	Dual functions of microglia in the formation and refinement of neural circuits during development. International Journal of Developmental Neuroscience, 2019, 77, 18-25.	1.6	19
188	Demonstration of histaminergic neurons in horizontal cells of guinea pig retina. Brain Research, 1987, 410, 269-274.	2.2	18
189	Cytokine-induced neutrophil chemoattractant gene expression in the rat hypothalamus by osmotic stimulation. Molecular Brain Research, 1997, 52, 326-329.	2.3	18
190	Identification of a Novel WD Repeat-Containing Gene Predominantly Expressed in Developing and Regenerating Neurons. Journal of Biochemistry, 2000, 128, 923-932.	1.7	18
191	A simple method for the separation of retinal sublayers from the entire retina with special reference to application for cell culture. Journal of Neuroscience Methods, 1984, 10, 229-235.	2.5	17
192	Occurrence of galanin-like immunoreactivity in vestibular and cochlear efferent neurons after labyrinthectomy in the rat. Brain Research, 1994, 644, 135-143.	2.2	17
193	A sequence-specific splicing activator, Tra2l², is up-regulated in response to nerve injury. Molecular Brain Research, 1998, 62, 220-223.	2.3	17
194	Targeted gene therapy toward astrocytoma using a Cre/loxP-based adenovirus system. Brain Research, 2006, 1081, 34-43.	2.2	17
195	Transient suppression of the vesicular acetylcholine transporter in urinary bladder pathways following spinal cord injury. Brain Research, 2007, 1137, 20-28.	2.2	17
196	Phospholipid localization implies microglial morphology and function via Cdc42 <i>in vitro</i> . Glia, 2017, 65, 740-755.	4.9	17
197	Non-pathological roles of microglial TREM2/DAP12: TREM2/DAP12 regulates the physiological functions of microglia from development to aging. Neurochemistry International, 2020, 141, 104878.	3.8	17
198	Morphology, localization, and postnatal development of dural macrophages. Cell and Tissue Research, 2021, 384, 49-58.	2.9	17

#	Article	IF	CITATIONS
199	Localization of chick retinal visinin-like immunoreactivity in the rat forebrain and diencephalon. Neuroscience, 1985, 15, 667-675.	2.3	16
200	Sympathetic and parasympathetic ganglia express non-NMDA type glutamate receptors: distinct receptor subunit composition in the principle and SIF cells. Molecular Brain Research, 1993, 19, 345-348.	2.3	16
201	Differential regulation of phospholipase C isozymes in the rat facial nucleus following axotomy. Neuroscience, 1994, 59, 121-129.	2.3	16
202	Role of amino acids in salivation and the localization of their receptors in the rat salivary gland. Molecular Brain Research, 1995, 33, 261-268.	2.3	16
203	Noxious stimulation enhances release of cytokine-induced neutrophil chemoattractant from hypothalamic neurosecretory cells Neuroscience Research, 1997, 27, 181-184.	1.9	16
204	Increased a-series gangliosides positively regulate leptin/Ob receptor-mediated signals in hypothalamus of GD3 synthase-deficient mice. Biochemical and Biophysical Research Communications, 2016, 479, 453-460.	2.1	16
205	Mammillothalamic enkephalinergic pathway in the rat: an immunocytochemical analysis. Brain Research, 1987, 401, 1-8.	2.2	15
206	Gene transfer and the expression of a foreign gene in vivo in post-mitotic neurons of the adult rat brain using the hemagglutinating virus of the Japan-liposome method. Molecular Brain Research, 1994, 25, 359-363.	2.3	15
207	Up-regulation of ferritin heavy chain mRNA expression in the rat skeletal muscle after denervation: detected by means of differential display. Neuroscience Research, 1995, 23, 353-360.	1.9	15
208	Nerve injury induces the expression of EXT2, a glycosyltransferase required for heparan sulfate synthesis. Neuroscience, 2006, 141, 1961-1969.	2.3	15
209	Threeâ€dimensional analysis of somatic mitochondrial dynamics in fissionâ€deficient injured motor neurons using FIB/SEM. Journal of Comparative Neurology, 2017, 525, 2535-2548.	1.6	15
210	CCK pathway from supramammillary region to the nucleus anterior ventralis thalami of the young rats. Peptides, 1984, 5, 889-893.	2.4	14
211	Developmental control over vitamin-D-induced calbindin gene expression during early differentiation of chicken jejunal enterocytes. Differentiation, 1991, 46, 69-75.	1.9	14
212	Differential immunocytochemical localization of GABAA receptor γ1 and γ2 subunits in the rat brain. Molecular Brain Research, 1993, 20, 263-266.	2.3	14
213	Expression of GABAA receptor γ1 and γ2 subunits in the peripheral vestibular system of the rat. Brain Research, 1994, 650, 157-160.	2.2	14
214	Dexamethasone enhances level of GAP-43 mRNA after nerve injury and facilitates re-projection of the hypoglossal nerve. Molecular Brain Research, 1995, 32, 308-312.	2.3	14
215	Discordant expression of c-Ret and glial cell line-derived neurotrophic factor receptor alpha-1 mRNAs in response to motor nerve injury in neonate rats. Molecular Brain Research, 1999, 70, 298-303.	2.3	14
216	Age-related alteration of neurturin receptor GFRa2 and nNOS in pelvic ganglia. Neurobiology of Aging, 2006, 27, 1524-1530.	3.1	14

#	Article	IF	CITATIONS
217	Existence of c-Kit negative cells with ultrastructural features of interstitial cells of Cajal in the subserosal layer of the <i>W/W^v</i> mutant mouse colon. Journal of Smooth Muscle Research, 2015, 51, 1-9.	1.2	14
218	b-series gangliosides crucially regulate leptin secretion in adipose tissues. Biochemical and Biophysical Research Communications, 2015, 459, 189-195.	2.1	14
219	New Insights of a Neuronal Peptidase DINE/ECEL1: Nerve Development, Nerve Regeneration and Neurogenic Pathogenesis. Neurochemical Research, 2019, 44, 1279-1288.	3.3	14
220	Immunohistochemical demonstration of histamine N-methyltransferase-like structures in rat kidney. Cell and Tissue Research, 1986, 243, 681-4.	2.9	13
221	Identification of the metabotropic glutamate receptor-1 protein in the rat trigeminal ganglion. Brain Research, 1993, 627, 341-344.	2.2	13
222	Marginal topography of neurons expressing the substance P receptor in the rat suprachiasmatic nucleus. Molecular Brain Research, 1994, 21, 157-161.	2.3	13
223	GAP-43 mRNA suppression by the ribozyme in PC12 cells and inhibition of evoked dopamine release. Molecular Brain Research, 1995, 32, 338-341.	2.3	13
224	The p53-independent nuclear translocation of Cyclin G1 in degenerating neurons by ischemic and traumatic insults. Experimental Neurology, 2005, 193, 350-360.	4.1	13
225	Over-Expression of Pancreatic Pituitary Adenylate Cyclase–Activating Polypeptide (PACAP) Aggravates Cerulein-Induced Acute Pancreatitis in Mice. Journal of Pharmacological Sciences, 2009, 110, 451-458.	2.5	13
226	Elevated Urinary Levels and Urothelial Expression of Hepatocarcinoma-intestine-pancreas/Pancreatitis-associated Protein in Patients With Interstitial Cystitis. Urology, 2010, 75, 933-937.	1.0	13
227	N-terminal Cleaved Pancreatitis-associated Protein-III (PAP-III) Serves as a Scaffold for Neurites and Promotes Neurite Outgrowth. Journal of Biological Chemistry, 2013, 288, 10205-10213.	3.4	13
228	Motor Nerve Arborization Requires Proteolytic Domain of Damage-Induced Neuronal Endopeptidase (DINE) during Development. Journal of Neuroscience, 2016, 36, 4744-4757.	3.6	13
229	Immunoreactive avian pancreatic polypeptide in the chicken retina: overall distribution. Brain Research, 1984, 310, 164-167.	2.2	12
230	Ontogeny of substance P-containing structures in the chicken retina: Immunohistochemical analysis. Developmental Brain Research, 1986, 30, 37-45.	1.7	12
231	Expression of muscarinic and nicotinic receptor mRNA in the salivary gland of rats: a study by in situ hybridization histochemistry. Molecular Brain Research, 1993, 17, 335-339.	2.3	12
232	Lack of Fgf18 causes abnormal clustering of motor nerve terminals at the neuromuscular junction with reduced acetylcholine receptor clusters. Scientific Reports, 2018, 8, 434.	3.3	12
233	Neurotensin-containing projections from the retrosplenial cortex to the anterior ventral thalamic nucleus in the rat. Neuroscience, 1988, 26, 819-826.	2.3	11
234	Co-localization of adrenergic receptors and vitamin-D-dependent calcium-binding protein (calbindin) in the dopaminergic amacrine cells of the rat retina. Neuroscience Research, 1989, 7, 257-263.	1.9	11

#	Article	IF	CITATIONS
235	Molecular cloning of the rat NADH:ubiquinone oxidoreductase subunit and its up-regulation in the facial muscle after denervation: Detected by means of differential display. Neurological Research, 1996, 18, 329-336.	1.3	11
236	An Implication of Protein Phosphatase 2A-ß in the Rat Flocculus for Lesion-induced Vestibular Plasticity. Acta Oto-Laryngologica, 1998, 118, 685-691.	0.9	11
237	Expression of Pancreatitis Associated Proteins in Urothelium and Urinary Afferent Neurons Following Cyclophosphamide Induced Cystitis. Journal of Urology, 2008, 179, 1603-1609.	0.4	11
238	Cholecystokinin-8-like immunoreactive neuron pathway from the supramammillary region to the ventral tegmental nucleus of Gudden of the rat. Brain Research, 1984, 304, 397-400.	2.2	10
239	Ontogeny of visinin-like immunoreactive structures in the rat cerebellum and vestibular nuclei: An immunohistochemical analysis. Developmental Brain Research, 1985, 22, 247-253.	1.7	10
240	Transient expression of neurotensin mRNA in the mitral cells of rat olfactory bulb during development. Neuroscience Letters, 1991, 128, 85-89.	2.1	10
241	A newly modified SCG10 promoter and Cre/loxP-mediated gene amplification system achieve highly specific neuronal expression in animal brains. Gene Therapy, 2006, 13, 1244-1250.	4.5	10
242	Reply:. Hepatology, 2007, 45, 1585-1586.	7.3	10
243	The Absence of Somatotroph Proliferation During Continuous Stress is a Result of the Lack of Extracellular Signalâ€Regulated Kinase 1/ 2 Activation . Journal of Neuroendocrinology, 2012, 24, 1335-1345.	2.6	10
244	An intracellular study of the optic tectum of the carp in vitro. Neuroscience Letters, 1983, 38, 17-22.	2.1	9
245	Cloning and characterization of the rat neurotensin receptor gene promoter. Molecular Brain Research, 1996, 40, 97-104.	2.3	9
246	Expression of gicerin, a novel cell adhesion molecule, is upregulated in the astrocytes after hypoglossal nerve injury in rats. Neuroscience Letters, 1999, 260, 149-152.	2.1	9
247	Simultaneous expression of glutathione, thioredoxin-1, and their reductases in nerve transected hypoglossal motor neurons of rat. Brain Research, 2010, 1306, 1-7.	2.2	9
248	Pancreatitis-associated protein-I and pancreatitis-associated protein-III expression in a rat model of kainic acid-induced seizure. Neuroscience, 2011, 175, 273-280.	2.3	9
249	Endotoxin activates a chemokinergic neuronal pathway in the hypothalamo- pituitary system. Endocrinology, 1996, 137, 4503-4506.	2.8	9
250	Postnatal ontogeny of POMC gene expression in the rat pituitary: an analysis by in situ hybridization histochemistry. Developmental Brain Research, 1989, 47, 53-58.	1.7	8
251	Up-regulation of PKA RIα subunit mRNA in rat skelet al muscle after nerve injury. NeuroReport, 1995, 6, 1050-1052.	1.2	8
252	Differential regulation of the regulatory subunits for phosphatidylinositol 3-kinase in response to motor nerve injury. Molecular Brain Research, 2004, 131, 119-125.	2.3	8

#	Article	IF	CITATIONS
253	Continuous stress promotes expression of VGF in melanotroph via suppression of dopamine. Molecular and Cellular Endocrinology, 2013, 372, 49-56.	3.2	8
254	Increase of transcription factor EB (TFEB) and lysosomes in rat DRG neurons and their transportation to the central nerve terminal in dorsal horn after nerve injury. Neuroscience, 2016, 313, 10-22.	2.3	8
255	The Link between Type III Reg and STAT3-Associated Cytokines in Inflamed Colonic Tissues. Mediators of Inflammation, 2019, 2019, 1-10.	3.0	8
256	Axonal injury alters the extracellular glial environment of the axon initial segment and allows substantial mitochondrial influx into axon initial segment. Journal of Comparative Neurology, 2021, 529, 3621-3632.	1.6	8
257	Dine (Damage-Induced Neuronal Endopeptidase). Protein and Peptide Letters, 2004, 11, 451-460.	0.9	8
258	Growth Factors and Extracellular Signal-Regulated Kinases (Mitogen-Activated Protein Kinase) in the Rat Pineal Gland. Neuroendocrinology, 1994, 59, 152-155.	2.5	7
259	Expression of vasoactive intestinal polypeptide receptor mRNA and secretory regulation by vasoactive intestinal polypeptide in rat submandibular and sublingual salivary glands. Archives of Oral Biology, 1997, 42, 197-204.	1.8	7
260	GAP-43 N-terminal translocation signal targets β-galactosidase to developing axons in a pan-neuronal transgenic mouse line. Developmental Brain Research, 2000, 121, 109-112.	1.7	7
261	Continuous stress-induced dopamine dysregulation augments PAP-I and PAP-II expression in melanotrophs of the pituitary gland. Biochemical and Biophysical Research Communications, 2011, 407, 7-12.	2.1	7
262	Suppression of c-Kit signaling induces adult neurogenesis in the mouse intestine after myenteric plexus ablation with benzalkonium chloride. Scientific Reports, 2016, 6, 32100.	3.3	7
263	Distinct functional consequences of ECEL1/DINE missense mutations in the pathogenesis of congenital contracture disorders. Acta Neuropathologica Communications, 2017, 5, 83.	5.2	7
264	Zonisamide ameliorates neuropathic pain partly by suppressing microglial activation in the spinal cord in a mouse model. Life Sciences, 2020, 263, 118577.	4.3	7
265	Ontogeny of tyrosine hydroxylase-positive but dopamine β-hydroxylase-negative neuron-like cells in the pineal gland of golden hamsters. Neuroscience Letters, 1989, 97, 41-45.	2.1	6
266	The transient appearance of proneurotensin mRNA in the rat hypoglossal nucleus during development. Developmental Brain Research, 1991, 58, 293-296.	1.7	6
267	Up-regulation of GAP-43 () gene expression in vestibular efferent neurons following labyrinthectomy in the rat: In situ hybridization using an alkaline phosphatase-labeled probe. Hearing Research, 1994, 80, 123-127.	2.0	6
268	Identification and functional characterization of mouse TPO1 as a myelin membrane protein. Brain Research, 2006, 1070, 1-14.	2.2	6
269	Alteration of glial cell lineâ€derived neurotrophic factor family receptor alphaâ€2 mRNA expression and its coâ€expression with neuronal nitric oxide synthase in pelvic ganglia following unilateral cavernous nerve injury. International Journal of Urology, 2008, 15, 82-86.	1.0	6
270	Local ventilation system successfully reduced formaldehyde exposure during gross anatomy dissection classes. Anatomical Science International, 2010, 85, 251-252.	1.0	6

#	Article	IF	CITATIONS
271	Molecular characterization and expression of the low-density lipoprotein receptor-related protein-10, a new member of the LDLR gene family. Biochemical and Biophysical Research Communications, 2010, 391, 1110-1115.	2.1	6
272	Urinary levels of Hepatocarcinoma-intestine-pancreas/Pancreatitis-associated protein as a diagnostic biomarker in patients with bladder cancer. BMC Urology, 2012, 12, 24.	1.4	6
273	Exposure to diphtheria toxin during the juvenile period impairs both inner and outer hair cells in C57BL/6 mice. Neuroscience, 2017, 351, 15-23.	2.3	6
274	An Electron Microscopic Immunocytochemical Study on the Tyrosine Hydroxylase-Positive, Dopamine Beta-Hydroxylase-Negative Cells in the Pineal Gland of Golden Hamsters. Journal of Neuroendocrinology, 1989, 1, 423-426.	2.6	5
275	Gene regulation of cyclic amp-dependent protein kinase subunits (Cα,β; RIα, β and RIIα,β) in rat facial motoneurons after nerve transection. Neuroscience, 1994, 63, 1101-1109.	2.3	5
276	Chemical Neuro-Circuit from a Receptor Aspect Acta Histochemica Et Cytochemica, 1994, 27, 1-9.	1.6	5
277	Colchicine induces the GAP-43 gene expression in rat hypothalamus. Molecular Brain Research, 1995, 30, 373-377.	2.3	5
278	Expression of Glycine max (soybean agglutinin) binding molecule in injured motoneurons and its specific localization in the extracellular matrix between injured neurons and microglia. Neuroscience Research, 1997, 27, 271-275.	1.9	5
279	Localization of molecules involved in cytokine receptor signaling in the rat trigeminal ganglion. Molecular Brain Research, 1997, 44, 163-166.	2.3	5
280	Complete adult neurogenesis within a Wallerian degenerating nerve expressed as an ectopic ganglion. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1469-1480.	2.7	5
281	TC10, a Rho family GTPase, is required for efficient axon regeneration in a neuronâ€autonomous manner. Journal of Neurochemistry, 2021, 157, 1196-1206.	3.9	5
282	Insulin-induced hypoglycemia activates a chemokinergic neuronal pathway in the hypothalamo-pituitary system. Neuropeptides, 1999, 33, 271-275.	2.2	4
283	IPP isomerase, an enzyme of mevalonate pathway, is preferentially expressed in postnatal cortical neurons and induced after nerve transection. Molecular Brain Research, 1999, 67, 231-238.	2.3	4
284	Ontogeny and innervation of taste buds in mouse palatal gustatory epithelium. Journal of Chemical Neuroanatomy, 2016, 71, 26-40.	2.1	4
285	Morphological changes and expression of protein kinase CK2 beta subunit in the microglia after hypoglossal nerve transection. , 2000, 29, 61-66.		3
286	Morphological demonstration of retinal neuroreceptors and mRNA: Immunohistochemical demonstration of adrenergic receptor and visualization of preprotachykinin A mRNA by hybridization histochemistry. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1988, 8, S167-S181.	0.0	2
287	Effects of constant light and darkness on the intrapineal neurons of golden hamsters, stained for tyrosine hydroxylase A morphometric analysis. Journal of Neural Transmission, 1990, 82, 231-237.	2.8	2
288	Neurotensin transcription is oppositely regulated during development and regeneration. NeuroReport, 1994, 5, 1589-1592.	1.2	2

HIROSHI KIYAMA

#	Article	IF	CITATIONS
289	Neuromodulators in the retina: An immunohistochemical analysis. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1987, 6, S205-S225.	0.0	1
290	A mouse model of microglia-specific ablation in the embryonic central nervous system. Neuroscience Research, 2021, 173, 54-61.	1.9	1
291	Suture of Transected Nerve Suppresses Expression of BH3-Only Protein Noxa in Nerve-Transected Motor Neurons of C57BL/6J Mouse. Journal of Neurotrauma, 2007, 24, 876-884.	3.4	Ο
292	Aberrant synapse formation of the phrenic nerves in DINE-deficient mice. Neuroscience Research, 2009, 65, S157-S158.	1.9	0
293	The pancreatitis-associated protein-III (PAP-III) is polymerized into a fibrillar structure by the cleavage of its N-terminus. Neuroscience Research, 2010, 68, e252.	1.9	Ο
294	Consequences of glia-neuron interaction impairments in nerve regeneration. Neuroscience Research, 2011, 71, e26.	1.9	0
295	Dysfunction in the Hypothalamo-Hypophyseal System under Chronic Stress and Fatigue. Advances in Neuroimmune Biology, 2013, 4, 219-228.	0.7	0
296	Collapse of mitochondria-associated membrane as common pathomechanism for amyotrophic lateral sclerosis. Journal of the Neurological Sciences, 2017, 381, 104.	0.6	0