Seung Woo Chung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608509/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reduced graphene oxide nanosheets coated with an anti-angiogenic anticancer low-molecular-weight heparin derivative for delivery of anticancer drugs. Journal of Controlled Release, 2014, 189, 80-89.	9.9	70
2	Hypoxia-tropic Protein Nanocages for Modulation of Tumor- and Chemotherapy-Associated Hypoxia. ACS Nano, 2019, 13, 236-247.	14.6	64
3	Polyprolineâ€type helicalâ€structured lowâ€molecular weight heparin (LMWH)â€taurocholate conjugate as a new angiogenesis inhibitor. International Journal of Cancer, 2009, 124, 2755-2765.	5.1	61
4	Oligomeric bile acid-mediated oral delivery of low molecular weight heparin. Journal of Controlled Release, 2014, 175, 17-24.	9.9	50
5	Strategies for non-invasive delivery of biologics. Journal of Drug Targeting, 2012, 20, 481-501.	4.4	48
6	Functional transformations of bile acid transporters induced by high-affinity macromolecules. Scientific Reports, 2014, 4, 4163.	3.3	47
7	Oral delivery of a potent anti-angiogenic heparin conjugate by chemical conjugation and physical complexation using deoxycholic acid. Biomaterials, 2014, 35, 6543-6552.	11.4	43
8	Albumin-binding caspase-cleavable prodrug that is selectively activated in radiation exposed local tumor. Biomaterials, 2016, 94, 1-8.	11.4	42
9	Tumor vasculature targeting following co-delivery of heparin-taurocholate conjugate and suberoylanilide hydroxamic acid using cationic nanolipoplex. Biomaterials, 2012, 33, 4424-4430.	11.4	38
10	Antiangiogenic and anticancer effect of an orally active low molecular weight heparin conjugates and its application to lung cancer chemoprevention. Journal of Controlled Release, 2015, 199, 122-131.	9.9	35
11	LHT7, a chemically modified heparin, inhibits multiple stages of angiogenesis by blocking VEGF, FGF2 and PDGF-B signaling pathways. Biomaterials, 2015, 37, 271-278.	11.4	31
12	Highly potent monomethyl auristatin E prodrug activated by caspase-3 for the chemoradiotherapy of triple-negative breast cancer. Biomaterials, 2019, 192, 109-117.	11.4	29
13	Metronomic oral doxorubicin in combination of Chk1 inhibitor MK-8776 for p53-deficient breast cancer treatment. Biomaterials, 2018, 182, 35-43.	11.4	25
14	Selfâ€Triggered Apoptosis Enzyme Prodrug Therapy (STAEPT): Enhancing Targeted Therapies via Recurrent Bystander Killing Effect by Exploiting Caspaseâ€Cleavable Linker. Advanced Science, 2018, 5, 1800368.	11.2	25
15	A heparin conjugate, LHbisD4, inhibits lymphangiogenesis and attenuates lymph node metastasis by blocking VEGF-C signaling pathway. Biomaterials, 2017, 139, 56-66.	11.4	25
16	Optimization of a Stable Linker Involved DEVD Peptide-Doxorubicin Conjugate That Is Activated upon Radiation-Induced Caspase-3-Mediated Apoptosis. Journal of Medicinal Chemistry, 2015, 58, 6435-6447.	6.4	24
17	Targeting prion-like protein doppel selectively suppresses tumor angiogenesis. Journal of Clinical Investigation, 2016, 126, 1251-1266.	8.2	24
18	Potentiation of anti-angiogenic activity of heparin by blocking the ATIII-interacting pentasaccharide unit and increasing net anionic charge. Biomaterials, 2012, 33, 9070-9079.	11.4	21

SEUNG WOO CHUNG

#	Article	IF	CITATIONS
19	Paclitaxel loaded nano-aggregates based on pH sensitive polyaspartamide amphiphilic graft copolymers. International Journal of Pharmaceutics, 2012, 424, 26-32.	5.2	19
20	The novel strategy for concurrent chemoradiotherapy by conjugating the apoptotic cell-binding moiety to caspase-3 activated doxorubicin prodrug. Journal of Controlled Release, 2019, 296, 241-249.	9.9	18
21	Caspase-cleavable peptide-doxorubicin conjugate in combination with CD47-antagonizing nanocage therapeutics for immune-mediated elimination of colorectal cancer. Biomaterials, 2021, 277, 121105.	11.4	15
22	Functionalized heparin-protamine based self-assembled nanocomplex for efficient anti-angiogenic therapy. Journal of Controlled Release, 2015, 197, 180-189.	9.9	14
23	Cyclic RGDyk-conjugated LMWH-taurocholate derivative as a targeting angiogenesis inhibitor. Journal of Controlled Release, 2012, 164, 8-16.	9.9	13
24	Caspase-3 mediated switch therapy of self-triggered and long-acting prodrugs for metastatic TNBC. Journal of Controlled Release, 2022, 346, 136-147.	9.9	11
25	Metronomic chemotherapy using orally active carboplatin/deoxycholate complex to maintain drug concentration within a tolerable range for effective cancer management. Journal of Controlled Release, 2017, 249, 42-52.	9.9	10
26	Albumin metabolism targeted peptide-drug conjugate strategy for targeting pan-KRAS mutant cancer. Journal of Controlled Release, 2022, 344, 26-38.	9.9	10
27	An apoptosis-homing peptide-conjugated low molecular weight heparin-taurocholate conjugate with antitumor properties. Biomaterials, 2013, 34, 2077-2086.	11.4	9
28	Radiotherapyâ€assisted tumor selective metronomic oral chemotherapy. International Journal of Cancer, 2017, 141, 1912-1920.	5.1	8
29	Preliminary safety evaluation of a taurocholateâ€conjugated lowâ€molecularâ€weight heparin derivative (LHT7): a potent angiogenesis inhibitor. Journal of Applied Toxicology, 2015, 35, 104-115.	2.8	7
30	Enhanced Anti-Angiogenic Effect of Low Molecular Weight Heparin-Bile Acid Conjugates by Co-Administration of a Selective COX-2 Inhibitor. Pharmaceutical Research, 2015, 32, 2318-2327.	3.5	7
31	Dual mechanistic TRAIL nanocarrier based on PEGylated heparin taurocholate and protamine which exerts both pro-apoptotic and anti-angiogenic effects. Journal of Controlled Release, 2021, 336, 181-191.	9.9	7
32	Combinational chemoprevention effect of celecoxib and an oral antiangiogenic LHD4 on colorectal carcinogenesis in mice. Anti-Cancer Drugs, 2014, 25, 1061-1071.	1.4	5
33	Overcoming physical stromal barriers to cancer immunotherapy. Drug Delivery and Translational Research, 2021, 11, 2430-2447.	5.8	5
34	Safety studies on intravenous infusion of a potent angiogenesis inhibitor: taurocholate-conjugated low molecular weight heparin derivative LHT7 in preclinical models. Drug Development and Industrial Pharmacy, 2016, 42, 1247-1257.	2.0	4
35	Feedback amplification of senolysis using caspase-3-cleavable peptide-doxorubicin conjugate and 2DG. Journal of Controlled Release, 2022, 346, 158-168.	9.9	4
36	Targeting angiogenic growth factors using therapeutic glycosaminoglycans on doppel-expressing endothelial cells for blocking angiogenic signaling in cancer. Biomaterials, 2022, 283, 121423.	11.4	3

#	Article	IF	CITATIONS
37	Keratin 19 interacts with GSK3β to regulate its nuclear accumulation and degradation of cyclin D3. Molecular Biology of the Cell, 2021, 32, ar21.	2.1	2
38	Metronomic dose-finding approach in oral chemotherapy by experimentally-driven integrative mathematical modeling. Biomaterials, 2022, 286, 121584.	11.4	2