
Pedro Pablo Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608447/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Plant Phenolics as Dietary Antioxidants: Insights on Their Biosynthesis, Sources, Health-Promoting Effects, Sustainable Production, and Effects on Lipid Oxidation. , 2022, , 405-426.		3
2	Constitutive expression of <i>SlMX1</i> gene improves fruit yield and quality, health-promoting compounds, fungal resistance and delays ripening in transgenic tomato plants. Journal of Plant Interactions, 2022, 17, 517-536.	1.0	7
3	Artificial Neural Networks Elucidated the Essential Role of Mineral Nutrients versus Vitamins and Plant Growth Regulators in Achieving Healthy Micropropagated Plants. Plants, 2022, 11, 1284.	1.6	7
4	Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings. Mycorrhiza, 2021, 31, 189-201.	1.3	6
5	Phenolic profiling and in vitro bioactivities of three medicinal Bryophyllum plants. Industrial Crops and Products, 2021, 162, 113241.	2.5	15
6	The metabolomics reveals intraspecies variability of bioactive compounds in elicited suspension cell cultures of three Bryophyllum species. Industrial Crops and Products, 2021, 163, 113322.	2.5	21
7	Computer-Based Tools Unmask Critical Mineral Nutrient Interactions in Hoagland Solution for Healthy Kiwiberry Plant Acclimatization. Frontiers in Plant Science, 2021, 12, 723992.	1.7	4
8	The Combination of Untargeted Metabolomics and Machine Learning Predicts the Biosynthesis of Phenolic Compounds in Bryophyllum Medicinal Plants (Genus Kalanchoe). Plants, 2021, 10, 2430.	1.6	10
9	Foliar applied 24-epibrassinolide alleviates salt stress in rice (<i>Oryza sativa</i> L.) by suppression of ABA levels and upregulation of secondary metabolites. Journal of Plant Interactions, 2021, 16, 533-549.	1.0	17
10	Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: in vitro and ex vivo experiments. Applied Microbiology and Biotechnology, 2020, 104, 1319-1330.	1.7	43
11	Machine Learning Unmasked Nutritional Imbalances on the Medicinal Plant Bryophyllum sp. Cultured in vitro. Frontiers in Plant Science, 2020, 11, 576177.	1.7	15
12	Shoot tip necrosis of in vitro plant cultures: a reappraisal of possible causes and solutions. Planta, 2020, 252, 47.	1.6	25
13	Exploring the Use of Bryophyllum as Natural Source of Bioactive Compounds with Antioxidant Activity to Prevent Lipid Oxidation of Fish Oil-In-Water Emulsions. Plants, 2020, 9, 1012.	1.6	15
14	From Ethnomedicine to Plant Biotechnology and Machine Learning: The Valorization of the Medicinal Plant Bryophyllum sp Pharmaceuticals, 2020, 13, 444.	1.7	16
15	Modeling and Optimizing Culture Medium Mineral Composition for in vitro Propagation of Actinidia arguta. Frontiers in Plant Science, 2020, 11, 554905.	1.7	32
16	Machine Learning Technology Reveals the Concealed Interactions of Phytohormones on Medicinal Plant In Vitro Organogenesis. Biomolecules, 2020, 10, 746.	1.8	25
17	Combining Medicinal Plant In Vitro Culture with Machine Learning Technologies for Maximizing the Production of Phenolic Compounds. Antioxidants, 2020, 9, 210.	2.2	39
18	Artificial Intelligence Tools to Better Understand Seed Dormancy and Germination. , 2020, , .		3

Artificial Intelligence Tools to Better Understand Seed Dormancy and Germination. , 2020, , . 18

Pedro Pablo Gallego

#	Article	IF	CITATIONS
19	Phenolic composition and biological activities of the in vitro cultured endangered Eryngium viviparum J. Gay. Industrial Crops and Products, 2020, 148, 112325.	2.5	8
20	Legacy Effects of Agricultural Practices Override Earthworm Control on C Dynamics in Kiwifruit Orchards. Frontiers in Environmental Science, 2020, 8, .	1.5	2
21	Computer-based tools provide new insight into the key factors that cause physiological disorders of pistachio rootstocks cultured in vitro. Scientific Reports, 2019, 9, 9740.	1.6	33
22	Earthworm communities in conventional and organic fruit orchards under two different climates. Applied Soil Ecology, 2019, 144, 83-91.	2.1	6
23	Adsorption of gallic acid, propyl gallate and polyphenols from Bryophyllum extracts on activated carbon. Scientific Reports, 2019, 9, 14830.	1.6	25
24	Plant Antioxidants in Food Emulsions. , 2019, , .		8
25	Cyclodextrin-Elicited Bryophyllum Suspension Cultured Cells: Enhancement of the Production of Bioactive Compounds. International Journal of Molecular Sciences, 2019, 20, 5180.	1.8	23
26	In vitro culture of the endangered plant Eryngium viviparum as dual strategy for its ex situ conservation and source of bioactive compounds. Plant Cell, Tissue and Organ Culture, 2019, 138, 427-435.	1.2	26
27	Intensive Cultivation of Kiwifruit Alters the Detrital Foodweb and Accelerates Soil C and N Losses. Frontiers in Microbiology, 2019, 10, 686.	1.5	6
28	Bioactive Natural Products From the Genus Kalanchoe as Cancer Chemopreventive Agents: A Review. Studies in Natural Products Chemistry, 2019, 61, 49-84.	0.8	14
29	An insight into the photodynamic approach versus copper formulations in the control of Pseudomonas syringae pv. actinidiae in kiwi plants. Photochemical and Photobiological Sciences, 2018, 17, 180-191.	1.6	24
30	Comparison of the effectiveness of several commercial products and two new copper complexes to control Pseudomonas syringae pv. actinidiae. Acta Horticulturae, 2018, , 247-252.	0.1	6
31	Deciphering kiwifruit seed germination using neural network tools. Acta Horticulturae, 2018, , 359-366.	0.1	3
32	Effects of farming practices on the structure of earthworm communities in kiwifruit orchards. Acta Horticulturae, 2018, , 419-426.	0.1	2
33	Kiwifruit production and research in Spain. Acta Horticulturae, 2018, , 23-30.	0.1	2
34	Kiwifruit status in Iran: management and production. Acta Horticulturae, 2018, , 39-44.	0.1	4
35	Combining DOE With Neurofuzzy Logic for Healthy Mineral Nutrition of Pistachio Rootstocks in vitro Culture. Frontiers in Plant Science, 2018, 9, 1474.	1.7	36
36	Selecting an efficient proliferation medium forActinidia argutaâ€~Issai' explants. Acta Horticulturae, 2018, , 565-572.	0.1	10

PEDRO PABLO GALLEGO

#	Article	IF	CITATIONS
37	Neural networks models as decision-making tool for in vitro proliferation of hardy kiwi. European Journal of Horticultural Science, 2018, 83, 259-265.	0.3	18
38	Predicting optimal in vitro culture medium for Pistacia vera micropropagation using neural networks models. Plant Cell, Tissue and Organ Culture, 2017, 129, 19-33.	1.2	45
39	In vitro establishment and multiplication of hardy kiwi (<i>Actinidia arguta</i> †Issai'). Acta Horticulturae, 2017, , 51-58.	0.1	11
40	Computer-Assisted Recovery of Threatened Plants: Keys for Breaking Seed Dormancy of Eryngium viviparum. Frontiers in Plant Science, 2017, 8, 2092.	1.7	23
41	EFFECT OF AGRICULTURAL MANAGEMENT ON KIWIFRUIT NUTRITIONAL PLANT STATUS, FRUIT QUALITY AND YIELD. Acta Horticulturae, 2015, , 79-86.	0.1	7
42	EFFECTS OF AGRICULTURAL PRACTICES ON SOIL FAUNA COMMUNITIES IN KIWIFRUIT PLANTATIONS. Acta Horticulturae, 2015, , 267-273.	0.1	4
43	UAVs challenge to assess water stress for sustainable agriculture. Agricultural Water Management, 2015, 153, 9-19.	2.4	388
44	Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology. PLoS ONE, 2014, 9, e85989.	1.1	59
45	Design of tissue culture media for efficient Prunus rootstock micropropagation using artificial intelligence models. Plant Cell, Tissue and Organ Culture, 2014, 117, 349-359.	1.2	60
46	Genetic transformation of Eucalyptus globulus using the vascular-specific EgCCR as an alternative to the constitutive CaMV35S promoter. Plant Cell, Tissue and Organ Culture, 2014, 117, 77-84.	1.2	20
47	Earthworms and nitrogen applications to improve soil health in an intensively cultivated kiwifruit orchard. Applied Soil Ecology, 2011, 49, 158-166.	2.1	12
48	Improving knowledge of plant tissue culture and media formulation by neurofuzzy logic: A practical case of data mining using apricot databases. Journal of Plant Physiology, 2011, 168, 1858-1865.	1.6	64
49	Vascular-specific expression of GUS and GFP reporter genes in transgenic grapevine (Vitis vinifera L.) Tj ETQq1 Biochemistry, 2011, 49, 413-419.	1 0.784314 2.8	rgBT /Overlo 25
50	NUTRITIONAL STATUS OF KIWIFRUIT IN ORGANIC AND CONVENTIONAL FARMING SYSTEMS. Acta Horticulturae, 2010, , 155-160.	0.1	3
51	Strengths of artificial neural networks in modeling complex plant processes. Plant Signaling and Behavior, 2010, 5, 743-745.	1.2	38
52	Artificial neural networks as an alternative to the traditional statistical methodology in plant research. Journal of Plant Physiology, 2010, 167, 23-27.	1.6	96
53	Artificial neural networks modeling the in vitro rhizogenesis and acclimatization of Vitis vinifera L Journal of Plant Physiology, 2010, 167, 1226-1231.	1.6	46
54	A neurofuzzy logic approach for modeling plant processes: A practical case of in vitro direct rooting and acclimatization of Vitis vinifera L. Plant Science, 2010, 179, 241-249.	1.7	41

#	Article	IF	CITATIONS
55	Soil invertebrates control peatland C fluxes in response to warming. Functional Ecology, 2009, 23, 637-648.	1.7	33
56	EFFECT OF THREE AUXINS AND SUCROSE ON IN VITRO ROOTING IN SOIL AND ACCLIMATIZATION OF VITIS VINIFERA L. 'ALBARIÃ'O'. Acta Horticulturae, 2009, , 359-364.	0.1	4
57	EFFECTS OF THREE PLANT GROWTH REGULATORS ON KIWIFRUIT DEVELOPMENT. Acta Horticulturae, 2007, , 549-554.	0.1	4
58	CALCIUM FERTILIZATION IN A KIWIFRUIT ORCHARD. Acta Horticulturae, 2007, , 515-520.	0.1	2
59	Application of wood ash compared with fertigation for improving the nutritional status and fruit production of kiwi vines. Journal of Plant Nutrition and Soil Science, 2006, 169, 127-133.	1.1	19
60	Grape seeds: the best lignocellulosic waste to produce laccase by solid state cultures of Trametes hirsuta. Biotechnology Letters, 2003, 25, 491-495.	1.1	74
61	Biodegradation of Grape Cluster Stems and Ligninolytic Enzyme Production by Phanerochaete chrysosporium during Semi-Solid-State Cultivation. Acta Biotechnologica, 2003, 23, 65-74.	1.0	12
62	Cell Wall Autolysis During Kiwifruit Development. Annals of Botany, 1998, 81, 91-96.	1.4	12
63	Changes in Cell Wall Composition and Water-soluble Polysaccharides During Kiwifruit Development. Annals of Botany, 1997, 79, 695-701.	1.4	17
64	Analysis of the growth kinetic of fruits of Actinidia deliciosa. Biologia Plantarum, 1997, 39, 615-622.	1.9	9
65	Determination of Cell Wall Autolysis. Modern Methods of Plant Analysis, 1996, , 45-61.	0.1	4
66	A role for glutamate decarboxylase during tomato ripening: the characterisation of a cDNA encoding a putative glutamate decarboxylase with a calmodulin-binding site. Plant Molecular Biology, 1995, 27, 1143-1151.	2.0	50
67	Artificial Neural Networks Technology to Model and Predict Plant Biology Process. , 0, , .		17
68	Recent Advances in Fruit Species Transformation. , 0, , .		1
69	ConservePlants: An integrated approach to conservation of threatened plants for the 21st Century. Research Ideas and Outcomes, 0, 7, .	1.0	6
70	Narrative review of production of antioxidants and anticancer compounds from Bryophyllum spp. (Kalanchoe) using plant cell tissue culture. Longhua Chinese Medicine, 0, 3, 18-18.	0.5	5